Steiner Triple Systems with Automorphism Type [1,0,0,0,0,0,0,t,0,...,0,1,0,...,0]

Michael Minic

and

R. Calahan Ziilstra

Department of Mathematical Sciences Middle Tennessee State University Murfreesboro, TN 37132

Abstract. Necessary and sufficient conditions are given for a Steiner triple system of order v admitting an automorphism consisting of one large cycle, t cycles of length 8, and a fixed point, with $t \le 4$. Necessary conditions are given for all $t \ge 1$.

1. Introduction

A Steiner triple system of order v, denoted STS(v), is a pair (X, β), where X is a set of cardinality v, and β is a collection of 3-subsets of X, called blocks, such that any 2-subset of X is contained in a unique block. The notation (x, y, z) will be used for the block containing the subsets {x, y}, {y, z}, and {x, z}. It is well known that a STS(v) exists if and only if v = 1 or 3 (mod 6). If (X, β) is a Steiner triple system of size v, then a subsystem of (X, β) is an ordered pair (X, β ') such that $X' \subseteq X$ and $\beta' \subseteq \beta$ and (X', β') is a STS(v'), where v' is the cardinality of X'.

An automorphism of a STS(ν) is a permutation π of X that preserves the blocks in β . A Steiner triple system of order ν admitting the automorphism π will be denoted STS_{π}(ν). A permutation of a ν -element set is said to be of type [π] =

^{*}Funded in part by MTSU Faculty Research and Creative Activities Committee.

 $[\pi_1, \pi_2, ..., \pi_v]$ if the disjoint cyclic decomposition of has π_i cycles of length *i*. So $\sum i \cdot \pi_i = v$. The *orbit* of a block under an automorphism π is the image of the block under the powers of π . A set *B* of blocks is a set of *base blocks* or *starter blocks* for a STS(v) under the permutation π if the orbits of the blocks of *B* produce the STS(v) and exactly one block of *B* occurs in each orbit.

A question of concern has been that of given a particular automorphism type, does there exist an STS(ν). Several types of automorphisms have been explored in connection with the question. Extensive results exist for Steiner triple systems. For a survey of these results, see [3]. Of particular interest to this paper is the k-rotational Steiner triple system, which admits an automorphism of type $[\pi] = [1, 0, \ldots, 0, k, 0, \ldots, 0]$. The permutation consists of a single fixed point and precisely k cycles of length $(\nu - 1)/k$. The spectrum of a k-rotational Steiner triple system of order ν has been completely determined [1,2,5].

The purpose of this paper is to address the problem of existence for Steiner triple systems admitting an automorphism with a disjoint decomposition consisting of one fixed point, t cycles of length 8, and one large cycle of length d = v - 8t - 1. Thus the automorphism is of type $[\pi] = [1, 0, 0, 0, 0, 0, 0, t, 0, \dots, 0, 1, 0, \dots, 0]$ where $\pi_1 = 1$, $\pi_8 = t$, and $\pi_d = 1$. If t = 0, then the system is a 1-rotational Steiner triple system. Thus, we assume $t \ge 1$. Since d is the size of the larger cycle, we have $d \ge 9$.

2. STS(v) with
$$\pi = (\infty) (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1) (0, 1, 2, ..., d-1)$$

Let π be an automorphism having one fixed point, one 8-cycle, and one cycle of length d. So v = d + 9, and π is of type $[\pi] = [1, 0, 0, 0, 0, 0, 0, 1, 0, \dots, 0, 1, 0, \dots, 0]$ where $\pi_1 = 1$, $\pi_8 = 1$, and $\pi_d = 1$. The STS(v) can be defined on the v-set $X = Z_d \cup X$ where $X = \{\infty, 0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1\}$. The permutation of X can be defined as follows:

if
$$a = \infty$$
 then $\pi(a) = a$
if $a \in X \setminus \{\infty\}$ then $\pi(a_1) = [a+1 \pmod{8}]_1$
if $a \in \{0, 1, 2, ..., d-1\}$ then $\pi(a) = a+1 \pmod{d}$.

Hence the disjoint cyclic decomposition of π on the set X can be represented by $\pi = (\infty) (0, 1, 2, 3, 4, 5, 6, 7) (0, 1, ..., d-1)$.

Lemma 2.1. If (X, β) is a $STS_{\pi}(v)$, where $\pi = (\infty)(0, 1, 2, 3, 4, 5, 6, 7)(0, 0)$ 1, 2, ..., d-1) and d=v-9 is the length of the large cycle, then 8|d. **Proof.** By the definition of Steiner triple system, the set $\{x_i, 0\}$ must be contained in some block. It can be shown that there are no base blocks of the form (a, b_1, c_1) ; that is, with one element from the large cycle and two elements from the short cycle. Suppose that such a block exists. Then applying π to this block 8 times produces the block $(a + 8 \pmod{d}, b_1, c_1)$. We have stated that $d \ge 1$ 9. Thus, $a + 8 \pmod{d} \neq a$, and the resulting block is different from (a, b_1, c_1) , contradicting the fact that b_1 and c_1 must appear together in exactly one block. Therefore there can be no blocks of the form (a, b_1, c_1) . Similarly, there can be no blocks of the form (∞, a, b_1) . Thus, the block containing $\{x_1, 0\}$ must be of the form (x, 0, y), with $y \in \{1, 2, 3, ..., d-1\}$. Applying the automorphism π to the block $(x_1, 0, y)$ d times yields the block $(\pi(x_1), \pi(0), \pi(y)) = ([x + d)$ (mod 8)], 0, y). Again using the definition of STS, note that the set $\{0, y\}$ can only appear as a subset of exactly one block. Therefore, $(x_1, 0, y) = ([x + d \pmod{x_1}, 0, y))$ 8)], 0, y), and thus $x \equiv x + d \pmod{8}$, since x was chosen from the cycle of length 8. Then $8 | (x_1 + d) - x_2$; in other words, 8 | d.

It is known that a Steiner triple system of order ν exists if and only if $\nu \equiv 1$ or 3 (mod 6). Combining this with the above lemma gives $\nu \equiv 1$ or 9 (mod 24). It can be shown that if $\nu = 1$ or 9 then the STS(ν) is non-existent or trivial.

Lemma 2.2. If a Steiner triple system of order ν admitting the automorphism π exists, then $\nu \equiv 1$ or 9 (mod 24).

The following constructions on the set $X = \{\infty, 0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1\} \cup Z_d$ demonstrate that the necessary conditions of Lemma 2.2 are also sufficient.

Lemma 2.3. A STS(v) on the set X admitting the automorphism π exists if $v \equiv l \pmod{24}$.

Proof. Let v = 24s + 1. With slight modifications to the difference partitions described by Skolem, Peltesohn, and Rosa, we can ensure that every possible difference between elements is represented in exactly one base block [4,6,7,8]. It can be shown that for s = 0, the solution is non-existent. For all $s \ge 1$, the base blocks include $(\infty, 0, 12s - 4)$, $(\infty, 0, 1, 1, 1, 3, 1)$, and additional blocks as follows:

Case 1: $s \equiv 0 \pmod{4}$ and $s \ge 4$.

```
(0, 1, 10s - 4);
           (0, 12s - 6, 6_1); (0, 12s - 5, 3_1); (0, 2s + 1, 2_1); (0, 8s - 6, 7_1);
           (0, 4 + 8m, 6s + 4m), m = 0, 1, ..., (s/2) - 1;
           (0, 8 + 8m, 10s + 4m), m = 0, 1, ..., (s/2) - 2;
           (0, 1+2m, 12s-5-2m), m=1, 2, \ldots, 3s-2, m \neq s.
Case 2: s \equiv 1 \pmod{4}.
           (0, 1, 10s - 5);
           (0, 12s - 6, 1); (0, 12s - 5, 4); (0, 2s + 1, 2); (0, 8s - 6, 0);
           (0, 4 + 8m, 6s - 2 + 4m), m = 0, 1, ..., [(s - 1)/2] - 1;
           (0, 8 + 8m, 10s - 2 + 4m), m = 0, 1, \ldots, [(s - 1)/2] - 1;
           (0, 1+2m, 12s-5-2m), m=1, 2, \ldots, 3s-2, m \neq s.
Case 3: s \equiv 2 \pmod{4}.
           (0, 1, 10s - 4);
           (0, 12s - 6, 7); (0, 12s - 5, 3); (0, 2s + 1, 6); (0, 8s - 6, 4);
           (0, 4 + 8m, 6s + 4m), m = 0, 1, ..., (s/2) - 1;
           (0, 8 + 8m, 10s + 4m), m = 0, 1, \dots, (s/2) - 2;
           (0, 1+2m, 12s-5-2m), m=1, 2, \ldots, 3s-2, m \neq s.
Case 4: s \equiv 3 \pmod{4}.
           (0, 1, 10s - 5);
           (0, 12s - 6, 5, 1); (0, 12s - 5, 3, 1); (0, 2s - 1, 1, 1); (0, 8s - 6, 0, 1);
           (0, 4 + 8m, 6s - 2 + 4m), m = 0, 1, ..., \lceil (s - 1)/2 \rceil - 1;
           (0, 8 + 8m, 10s - 2 + 4m), m = 0, 1, ..., \lceil (s - 1)/2 \rceil - 1;
           (0, 1+2m, 12s-5-2m), m=1, 2, \ldots, 3s-2, m \neq s.
```

Lemma 2.4. A STS(v) on the set X admitting the automorphism π exists if v = 9 (mod 24) and $v \neq 9$.

Proof. Let $v \equiv 9 \pmod{24}$, say v = 24s + 9. It can be shown that for s = 0, no STS(v) exists admitting the automorphism π . So let $s \ge 1$. Using similar techniques to those employed in Lemma 2.3, we find that the base blocks (∞ , 0, 12s), (0, 8s, 16s), (∞ , 0, 4, 1, 0, 1, 3), and additional blocks as follows:

```
Case 1: s \equiv 0 \pmod{8} and s \ge 8.

(0, 2s - 2, 12s - 2);

(0, 1, 1_1); (0, 5s + 1, 3_1); (0, 7s - 1, 4_1); (0, 12s - 1, 6_1);

(0, 1 + 2m, 12s - 1 - 2m), m = 1, 2, ..., 3s - 1, m \ne 5s/2;

(0, 4 + 8m, 6s + 4m), m = 0, 1, ..., (s/2) - 1;

(0, 8 + 8m, 10s + 4 + 4m), m = 0, 1, ..., (s/2) - 2.

Case 2: s \equiv 2 \pmod{8}.

(0, 2s - 2, 12s - 2);

(0, 1, 4_1); (0, 5s + 1, 5_1); (0, 7s - 1, 6_1); (0, 12s - 1, 7_1);

(0, 1 + 2m, 12s - 1 - 2m), m = 1, 2, ..., 3s - 1, m \ne 5s/2;

(0, 4 + 8m, 6s + 4m), m = 0, 1, ..., (s/2) - 1;

(0, 8 + 8m, 10s + 4 + 4m), m = 0, 1, ..., (s/2) - 2.
```

```
Case 3: s \equiv 4 \pmod{8}.
          (0, 2s - 2, 12s - 2);
          (0, 1, 4); (0, 5s + 1, 6); (0, 7s - 1, 5); (0, 12s - 1, 7);
           (0, 1+2m, 12s-1-2m), m=1, 2, \ldots, 3s-1, m \neq 5s/2;
          (0, 4 + 8m, 6s + 4m), m = 0, 1, ..., (s/2) - 1;
           (0, 8 + 8m, 10s + 4 + 4m), m = 0, 1, ..., (s/2) - 2.
Case 4: s \equiv 6 \pmod{8}.
           (0, 2s - 2, 12s - 2);
          (0, 1, 1); (0, 5s + 1, 4); (0, 7s - 1, 3); (0, 12s - 1, 6);
           (0, 1+2m, 12s-1-2m), m=1, 2, \ldots, 3s-1, m \neq 5s/2;
           (0, 4 + 8m, 6s + 4m), m = 0, 1, ..., (s/2) - 1;
           (0, 8 + 8m, 10s + 4 + 4m), m = 0, 1, ..., (s/2) - 2.
Case 5: s \equiv 1 \text{ or } 5 \pmod{8}.
           (0, 1, 6s - 1);
          (0, 12s - 1, 5]; (0, 12s - 2, 3]; (0, 2, 6]; (0, 6s + 1, 7];
           (0, 1+2m, 12s-1-2m), m=1, 2, \ldots, 3s-2;
           (0, 4 + 8m, 10s + 2 + 4m), m = 0, 1, ..., (s - 1)/2 - 1;
           (0, 8m, 6s - 2 + 4m), m = 1, 2, \ldots, (s - 1)/2.
Case 6: s \equiv 3 or 7 (mod 8).
           (0, 1, 6s - 1);
           (0, 12s - 1, 4); (0, 12s - 2, 2); (0, 2, 7); (0, 6s + 1, 6);
           (0, 1+2m, 12s-1-2m), m=1, 2, \ldots, 3s-2;
           (0, 4 + 8m, 10s + 2 + 4m), m = 0, 1, ..., (s - 1)/2 - 1;
           (0, 8m, 6s - 2 + 4m), m = 1, 2, ..., (s - 1)/2.
```

In each case, the collection of blocks form a set of base blocks for a $STS(\nu)$. Combining Lemmas 2.2, 2.3 and 2.4, we get the following result:

Theorem 2.5. A Steiner triple system of order v with v = d + 9 admitting an automorphism whose disjoint decomposition is a fixed point, a cycle of length 8, and a cycle of length d exists if and only if v = 1 or d (mod d) and d and d d.

3. STS(
$$\nu$$
) with $(\pi) = (\infty) (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1) (0_2, 1_2, 2_2, 3_2, 4_2, 5_2, 6_2, 7_2) (0, 1, 2, ..., d-1)$

Theorem 3.1. There can be no Steiner triple system STS(v) that admits an automorphism of the type $[\pi] = [1, 0, 0, 0, 0, 0, 0, t, 0, \dots, 0, 1, 0, \dots, 0]$ with $t \equiv 2 \pmod{3}$.

Proof. Let v = d + 8t + 1. Such a STS has a subsystem of size 8t + 1. Since a subsystem is also a STS, $8t + 1 \equiv 1$ or 3 (mod 6). Thus, $t \equiv 0$ or 1 (mod 3).

4. STS(v) with
$$\pi = (\infty) (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1) (0_2, 1_2, 2_2, 3_2, 4_2, 5_2, 6_2, 7_2) (0_3, 1_3, 2_3, 3_3, 4_3, 5_3, 6_2, 7_3) (0, 1, ..., d-1)$$

Let π be the automorphism defined as follows: $\pi = (\infty) (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1) (0_2, 1_2, 2_2, 3_2, 4_2, 5_2, 6_2, 7_2) (0_3, 1_3, 2_3, 3_3, 4_3, 5_3, 6_3, 7_3) (0, 1, \dots, d-1)$ with $\nu = d + 25$.

As in the proof of Lemma 2.1, it can be shown that the large cycle must be divisible by 8. Thus we have:

Lemma 4.1. If (X,β) is a STS(ν), where $\pi = (\infty) (0_1, 1_1, \dots, 7_r) (0_2, 1_2, \dots, 7_r) (0_3, 1_3, \dots, 7_s) (0, 1, \dots, d-1)$ and $d = \nu - 25$ is the length of the large cycle, then $8 \mid d$.

Combining this lemma with the fact that a Steiner triple system of order ν exists if and only if $\nu \equiv 1$ or 3 (mod 6) gives the following necessary condition (analogous to Lemma 2.2).

Lemma 4.2. If a Steiner triple system of order ν admitting the automorphism π exists, then $\nu \equiv 1$ or 9 (mod 24).

Suppose, however that $t \equiv 0 \pmod 3$, say $t \equiv 3k$, and $v \equiv 1 \pmod 24$, say 24s + 1. Then $d \equiv 24s - 24k$ and the set of all differences between pairs of elements in the larger cycle can be characterized as $D = \{1, 2, 3, \ldots, 12(s - k)\}$. Each of these differences must occur in starter blocks. Each of the 8-cycles will require 4 of these differences and the 12(s - k) difference must be paired with the fixed point. The remaining 12(s - k) - 4(3k) - 1 differences must occur in triples in base blocks consisting of elements from the larger cycle. Thus we must have that 3 divides 12s - 24k - 1 or else 3 divides 12s - 24k - 2. Neither of these being the case, it is not possible that $v \equiv 1 \pmod {24}$. We have then in conclusion the following theorem (a refinement of Lemma 4.2):

Theorem 4.3. If a Steiner triple system of order v = d + 8t + 1 admitting the automorphism of type $[\pi] = [1, 0, 0, 0, 0, 0, 0, t, 0, \dots, 0, 1, 0, \dots, 0]$ exists with $t \equiv 0 \pmod{3}$, then $v \equiv 9 \pmod{24}$.

The following constructions on the set $X = \{\infty\} \cup Z_d \cup \{0, 1, 2, 3, 4, 5, 6, 7, \}$, i = 1,2,3, demonstrate that the necessary conditions of Lemma 4.3 are also sufficient.

Lemma 4.4. A STS(v) on the set X admitting the automorphism exists if $v \equiv 9 \pmod{24}$ and $v \neq 9$ and $v \neq 33$.

Proof. Let v = 24s + 9. Then d = v - 25 = 24s - 16. It can be shown that for s = 0 or s = 1, no STS(v) exists admitting the automorphism. So $s \ge 2$. Then the base blocks are as follows:

$$(\infty, 0, 12s - 8); (\infty, 0_1, 4_1); (\infty, 0_2, 4_2); (\infty, 0_3, 4_3); (0_1, 0_2, 0_3); (0_1, 2_2, 6_3); (0_1, 1_1, 6_2); (0_1, 2_1, 3_2); (0_1, 3_1, 7_2); (0_3, 1_3, 6_1); (0_3, 2_3, 3_1); (0_3, 3_3, 7_1); (0_2, 1_2, 7_3); (0_2, 2_2, 3_3); (0_2, 3_2, 5_3); (0, 4s - 2m - 8, 8s - m - 9), m = 1, 2, ..., 2s - 5; (0, 4s - 2m - 9, 12s - m - 13), m = 1, 2, ..., 2s - 5; (0, 4s - 4, 12s - 10); (0, 4s - 7, 12s - 12); (0, 4s - 6, 8s - 8); (0, 8s - 9, 7_2); (0, 4s - 9, 3_3); (0, 8s - 5, 5_3).$$
If $s \equiv 0 \pmod{4}$ and $s \geq 4$, include: $(0, 6s - 5, 1_1)$; $(0, 8s - 7, 4_1)$; $(0, 4s - 1, 7_1)$; $(0, 12s - 13, 5_1)$. If $s \equiv 1 \pmod{4}$ and $s \geq 5$, include: $(0, 6s - 5, 3_1)$; $(0, 8s - 7, 6_1)$; $(0, 4s - 1, 5_1)$; $(0, 12s - 13, 4_1)$. If $s \equiv 3 \pmod{4}$, include: $(0, 6s - 5, 6_1)$; $(0, 8s - 7, 4_1)$; $(0, 4s - 1, 5_1)$; $(0, 12s - 13, 7_1)$. If $s \equiv 0 \pmod{4}$, include: $(0, 6s - 5, 6_1)$; $(0, 8s - 7, 4_1)$; $(0, 4s - 1, 5_1)$; $(0, 12s - 13, 7_1)$. If $s \equiv 0 \pmod{2}$ and $s \geq 2$, include: $(0, 4s - 5, 5_2)$; $(0, 12s - 11, 6_2)$; $(0, 4s - 7, 4_2)$; $(0, 4s - 3, 6_3)$; $(0, 12s - 9, 7_3)$. If $s \equiv 1 \pmod{2}$ and $s \geq 3$, include: $(0, 4s - 5, 4_2)$; $(0, 12s - 11, 3_2)$; $(0, 4s - 7, 6_2)$; $(0, 4s - 3, 7_3)$; $(0, 12s - 9, 4_3)$.

Combining Theorem 4.3 and Lemma 4.4, we get the following result:

Theorem 4.5. A Steiner triple system of order v with v = d + 25 admitting an automorphism whose disjoint decomposition is a fixed point, three cycles of length 8, and a cycle of length d exists if and only $v \equiv 9 \pmod{24}$ and $v \neq 9$ and $v \neq 33$.

5. STS(
$$\nu$$
) with $\pi = (\infty) (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1) (0_2, 1_2, 2_2, 3_2, 4_2, 5_2, 6_2, 7_2)$

$$(0_3, 1_3, 2_3, 3_4, 4_5, 5_5, 6_5, 7_3)$$
 $(0_4, 1_4, 2_4, 3_4, 4_4, 5_4, 6_4, 7_4)$ $(0, 1, 2, \ldots, d-1)$

Let π be the automorphism defined as follows: $\pi = (\infty) (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1) (0_2, 1_2, 2_2, 3_2, 4_2, 5_2, 6_2, 7_2) (0_3, 1_3, 2_3, 3_3, 4_3, 5_3, 6_3, 7_3) (0_4, 1_4, 2_4, 3_4, 4_4, 5_4, 6_4, 7_4) (0, 1, 2, ..., d-1) with <math>v = d + 33$.

The lemmas which precede the proof for four 8-cycles are similar in nature to those of Section 2. We can again determine that $8 \mid d$, and thus the following necessary condition.

Lemma 5.1. If a Steiner triple system of order v admitting the automorphism exists, then $v \equiv 1$ or $9 \pmod{24}$.

Let A be the following set of base blocks for a STS: $A = \{(\infty, 0_1, 4_1); (\infty, 0_2, 4_2), (\infty, 0_3, 4_3); (\infty, 0_4, 4_4); (0_1, 0_2, 1_4); (0_2, 0_3, 2_1); (0_3, 0_4, 2_2); (0_4, 1_1, 2_3); (0_1, 0_3, 3_3); (0_2, 0_4, 3_4); (0_3, 1_1, 4_1); (0_4, 1_2, 4_2); (0_1, 0_4, 2_4); (0_2, 1_1, 3_1); (0_3, 1_2, 3_2); (0_4, 1_3, 3_3); (0_1, 1_1, 3_2); (0_2, 1_2, 3_3); (0_3, 1_3, 3_4); (0_4, 1_4, 4_1); (0_1, 1_2, 3_4); (0_2, 1_3, 4_1); (0_3, 1_4, 4_2); (0_4, 2_1, 4_3)\}.$ In fact, these are exactly the base blocks for a 4-rotational STS on 33 elements, which indicates an automorphism consisting of one fixed point and 4 cycles of length eight. These blocks are a subsystem of the desired STS(ν).

The following constructions on the set $X = \{\infty\} \cup Z_d \cup \{0_i, 1_i, 2_i, 3_i, 4_i, 5_i, 6_i, 7_i\}$, i = 1, 2, 3, 4, demonstrate that the necessary conditions of Lemma 5.1 are also sufficient.

Lemma 5.2. A STS(v) on the set X admitting the automorphism exists if $v \equiv 1 \pmod{24}$ and $v \geq 97$.

Proof. Let v = 24s + 1. It can be shown that for s = 0, 1, 2, or 3, no STS(v) exists admitting the automorphism π . So $s \ge 4$. Then the base blocks include (∞ , 0, 12s - 16), all of the base blocks in set A, and additional blocks as follows: Case 1: s is even and $s \ge 6$.

$$(0, 2s - 1, 4_1)$$
 and $(0, 12s - 17, 2_1)$ only when $s \equiv 2 \pmod{4}$;
 $(0, 2s - 1, 1_1)$ and $(0, 12s - 17, 3_1)$ only when $s \equiv 0 \pmod{4}$;
 $(0, 8s - 14, 7_1)$; $(0, 12s - 18, 6_1)$; $(0, 1, 10s - 15)$; $(0, 3, 5_2)$;
 $(0, 5, 6_2)$; $(0, 7, 7_2)$; $(0, 9, 4_2)$; $(0, 12s - 22, 0_3)$; $(0, 12s - 26, 0_3)$;

```
1_3); (0, 12s - 30, 4_3); (0, 12s - 34, 5_3); (0, 12s - 19, 6_4); (0, 12s - 19, 6_4); (0, 12s - 19, 6_4);
           21, 5); (0, 12s - 23, 4); (0, 12s - 25, 7);
           (0, 4 + 8m, 6s - 8 + 4m), m = 0, 1, ..., (s/2) - 2;
           (0, 8 + 8m, 10s - 12 + 4m), m = 0, 1, ..., (s/2) - 2;
           (0, 2m + 11, 12s - 27 - 2m), m = 0, 1, ..., 3s - 10, m \neq s - 6.
Case 2: s is odd and s \ge 7.
           (0, 2s - 1, 5) and (0, 12s - 17, 2) only when s \equiv 3 \pmod{4};
           (0, 2s - 1, 0_1) and (0, 12s - 17, 5_1) only when s \equiv 1 \pmod{4};
           (0, 8s - 14, 3); (0, 12s - 18, 6); (0, 1, 10s - 14);
           (0, 3, 5); (0, 5, 6); (0, 7, 7); (0, 9, 4),
           (0, 12s - 22, 6_3); (0, 12s - 26, 4_3); (0, 12s - 30, 7_3);
           (0, 12s - 34, 5_3); (0, 12s - 19, 4_A); (0, 12s - 21, 7_A);
           (0, 12s - 23, 6); (0, 12s - 25,5);
           (0, 4 + 8m, 6s - 6 + 4m), m = 0,1,..., (s - 3)/2;
           (0, 8 + 8m, 10s - 10 + 4m), m = 0, \dots, [(s - 3)/2] - 1;
           (0, 2m + 11, 12s - 27 - 2m), m = 0, 1, \ldots, 3s - 10, m \neq s - 6.
Case 3: s = 4.
           (0, 30, 6_1); (0, 31, 1_1); (0, 7, 3_1); (0, 18, 7_1);
           (0, 3, 3); (0, 5, 1); (0, 9, 7); (0, 11, 5);
           (0, 26, 2); (0, 22, 1); (0, 14, 4); (0, 10, 7);
           (0, 29, 1_{a}); (0, 27, 5_{a}); (0, 23, 7_{a}); (0, 21, 3_{a});
           (0, 4, 16); (0, 8, 28); (0, 1, 25); (0, 13, 19); (0, 15, 17).
Case 4: s = 5.
           (0,9,2,); (0,26,6,); (0,42,7,); (0,43,3,);
           (0, 3, 0); (0, 5, 6); (0, 7, 3); (0, 11, 2);
           (0, 38, 0,); (0, 34, 3,); (0, 30,4,); (0,22,5,);
           (0, 41, 3); (0, 39, 7); (0, 37, 6); (0, 33, 5);
            (0, 4, 24); (0, 12, 28); (0, 8, 40); (0, 1, 36); (0, 13, 31);
            (0, 15, 29); (0, 17, 27); (0, 19, 25); (0, 21, 23).
```

Lemma 5.3. A STS(v) on the set X admitting the automorphism π exists if $v \equiv 9 \pmod{24}$ and $v \ge 81$.

Proof. Let v = 24s + 9. It can be shown that for s = 0, 1, or 2, no STS(v) exists admitting the automorphism. So $s \ge 3$. Then the base blocks include (∞ , 0, 12s - 12), (0, 8s - 8, 16s - 16), all of the base blocks in set A, and additional blocks as follows:

Case 1: $s \equiv 0 \pmod{4}$ and $s \ge 4$.

```
(0, 12s - 13, 4); (0, 12s - 14, 2); (0, 2, 7); (0, 6s - 5, 6);
          (0, 6s - 11, 5); (0,3,4); (0, 6s - 13, 6); (0, 5, 7);
          (0, 10, 2); (0, 12s - 18, 4); (0, 14, 5); (0, 12s - 22, 3)
          (0, 6s - 1, 4); (0, 12s - 15, 1); (0, 6s + 1, 3); (0, 12s - 17, 12s - 17);
          6_{A}); (0, 6s - 9, 6s - 3); (0, 1, 6s - 7);
           (0, 2m + 7, 12s - 19 - 2m), m = 0, 1, ..., 3s - 11;
           (0, 4 + 8m, 10s - 8 + 4m), m = 0, 1, \ldots, s/2 - 2;
           (0, 8m, 6s - 8 + 4m), m = 1, 2, ..., s/2 - 1.
Case 2: s \equiv 1 \text{ or } 3 \pmod{4} and s \geq 3.
           (0, 5s - 4, 3) and (0, 7s - 8, 6) only when s \equiv 1 \pmod{8};
           (0, 5s - 4, 6) and (0, 7s - 8, 7) only when s \equiv 3 \pmod{8};
           (0, 5s - 4, 7) and (0, 7s - 8, 6) only when s \equiv 5 \pmod{8};
           (0, 5s - 4, 6) and (0, 7s - 8, 3) only when s \equiv 7 \pmod{8};
           (0, 1, 1); (0, 12s - 13, 4); (0, 2s - 4, 12s - 14); (0, 3, 5);
           (0, 4s - 3, 4); (0, 5, 6); (0, 4s - 5, 7); (0, 12s - 18, 2);
           (0, 4s - 6, 4); (0, 12s - 22, 5); (0, 4s - 2, 3); (0, 12s - 15, 6);
           (0, 8s - 9, 7_{A}); (0, 12s - 17, 5_{A}); (0, 8s - 7, 4_{A});
           (0, 2m+7, 12s-9-2m), m=0, 1, \ldots, 3s-7, m \neq (5s-5)/2s
           -3, 2s - 5, 2s - 6;
           (0, 4 + 8m, 6s - 6 + 4m), m = 0, 1, ..., [(s-1)/2] - 1;
           (0, 8 + 8m, 10s - 6 + 4m), m = 0, 1, ..., [(s-1)/2] - 2.
Case 3: s \equiv 2 \pmod{4} and s \ge 6.
           (0, 12s - 13, 3); (0, 12s - 14, 6); (0, 2, 7); (0, 6s - 5, 1);
           (0, 6s - 11, 4); (0, 3, 5); (0, 6s - 13, 7); (0, 5, 6);
           (0, 10, 2); (0, 12s - 18, 4); (0, 14, 5); (0, 12s - 22, 3);
           (0, 6s - 1, 5); (0, 12s - 15, 4); (0, 6s + 1, 64); (0, 12s - 17, 64);
           7_{A}); (0, 6s - 9, 6s - 3); (0, 1, 6s - 7);
           (0, 2m + 7, 12s - 18 - 2m), m = 0, 1, \ldots, 3s - 11;
            (0.4 + 8m, 10s - 8 + 4m), m = 0, 1, ..., s/2 - 2;
            (0, 8m, 6s - 8 + 4m), m = 1, 2, ..., s/2 - 1.
```

Combining Lemmas 5.1,5.2, and 5.3, we get the following result:

Theorem 5.4. A Steiner triple system of order v with v = d+33 admitting an automorphism whose disjoint decomposition is a fixed point, four cycles of length 8, and a cycle of length d exists if and only $v \equiv 1$ or 9 (mod 24) and $v \geq 81$.

6. Concluding Remarks

In closing, we state previous results, that being the case of t=0, and summarize the new results. For $t \le 4$, a Steiner triple system of size v admitting π as an automorphism of type $[\pi] = [1, 0, 0, 0, 0, 0, t, 0, \dots, 0, 1, 0, \dots, 0]$ exists if and only if v = 3 or 9 (mod 24) and t = 0, v = 1 or 9 (mod 24) and t = 1 or 4, or v = 9 (mod 24) and t = 3. If t = 2 then no such Steiner triple system exists.

In generalizing, for all t let $t \ge 1$ and v = d + 8t + 1. As was shown in Theorem 3.1, $t \equiv 0$ or 1 (mod 3). By Theorem 4.3, if $t \equiv 0 \pmod{3}$ then $v \equiv 9 \pmod{24}$. We have in conclusion the following:

Theorem 6.1. If a Steiner triple system of order v = d+8+1 admitting an automorphism whose disjoint cyclic decomposition consists of a fixed point, t cycles of length 8, and one cycle of length d exists, then $v \equiv 1 \pmod{24}$ and $t \equiv 1 \pmod{3}$ or $v \equiv 9 \pmod{24}$ and $t \equiv 0$ or $1 \pmod{3}$.

- [1] C.J. Cho, Rotational Steiner triple systems, Discrete Math. 42 (1982) 153-159.
- [2] C.J. Colbourn and Z. Jiang, The Spectrum for Rotational Steiner Triple Systems, Journal of Combinatorial Designs 4 (1996) 205-217.
- [3] M. Minic, Steiner triple systems with a particular automorphism type, M.S. Thesis, Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN, 1997.
- [4] R. Peltesohn, Eine Losing der beiden Heffterschen Differenzenprobleme, Compositio Mathematica 6 (1939) 251-267.
- [5] K.T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981) 57-66.
- [6] A Rosa, Poznamka o cyklickych Steinerovych systemoch trojic, Math. Fyz. Cas. 16 (1966) 285-290.

- [7] T. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957) 57-69.
- [8] T. Skolem, Some remarks on the triple systems of Steiner, Math. Scand. 6 (1958) 273-280.