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Abstract

We consider two possible methods of embedding a (simple undi-
rected) graph into a uniquely vertex colourable graph. The first
method considered is to build a k—chromatic uniquely vertex colourable
graph from a k—chromatic graph G on GUK, by adding a set of new
edges between the two components. This gives rise to a new parame-
ter called fizing number (Daneshgar (1997)). Our main result in this
direction is to prove that a graph is uniquely vertex colourable if and
only if its fixing number is equal to zero (which is a counterpart to
the same kind of result for defining numbers proved by Hajiabolhas-
san et.al. (1996)).

In our second approach, we try a more subtle method of embedding
which gives rise to the parameters ¢, —indez and 7, -indez (r = 0,1)
for graphs. In this approach we show the existence of certain classes
of u—cores, for which, the existence of an extremal graph provides a
counter example for Xu’s conjecture.
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1 Basic Goals and Preliminaries

In this section, first, we try to introduce the main background, objectives
and results of this paper. Also, after that we go through some basic defi-
nitions and known results which will be used in the rest of the paper. The
organization of the paper is explained in what follows.

1.1 Basic Goals

Uniquely colourable graphs (or UCG’s for short) are interesting for their
many different connections to important graph colouring problems (e.g. see
[8] and its list of references). On the other hand, since it is known that the
characterization of chromatic structures is essentially not a well-defined
problem, one may try to introduce a hierarchy of these structures and then
try to analysis the most simple ones. One approach to this is introduced
in [11] (also see [8]), where the core of a UCG is defined and minimal cores
are studied.

Study of cores is important in the study of colouring structures, and spe-
cially, the construction of infinite family of them with prescribed param-
eters is an interesting and important problem in the study of extremal
UCG’s. The main theme of this paper is to try to obtain an extension of
this scenario to general graphs, and filling the relationship in between, by
introducing appropriate extensions of graphs to uniquely colourable ones.
In Section 2 we consider one of the most simple forms of this embedding
process by means of complete graphs. This will introduce a new parame-
ter for graphs which is called the fixing number! [5]. We investigate some
properties of this parameter and our main result in this section is that a
graph is a UCG if and only if its fixing number is equal to zero.

Also, in Section 3 we consider a more subtle method of embedding which
introduces the new parameters t_—index and 7, —index (r = 0, 1) for graphs.
Our main result in this regard is to prove that under certain conditions on
these parameters, some specific classes of cores exist.

1.2 Some Basic Definitions and Concepts

In the sequel, N = {1,2,...} is the set of natural numbers. For any finite
set X, |X| is the size of X, i.e. the number of elements of X, and P(X)
is the power set of X, i.e. the set of all subsets of X. We consider finite

LAt the time of writing this paper the first author was notified that T. Morrill and
D. Pritikin had also come to the definition of the fixing number through list—colouring
concepts (what they call the list-defining number is a generalization of fixing number for
an arbitrary number of colours). Also, part (b) of Proposition 1 is stated by T. Morrill
and D. Pritikin as a theorem with a proof based on alternating paths [16].
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simple undirected graphs such as G = (V(G), E(G)) with the vertez set
V(G) and the edge set E(G). |V(G)| and |E(G)| represent the order and
the size of the graph G, respectively. In what follows we go through some
definitions and results which will be used in the sequel, while we refer to
[2, 18] for the basic concepts and backgrounds in graph theory.

K, is the complete graph on k vertices and a subgraph of a graph G which
is isomorphic to K, is called a k-cliqgue of G. The clique number of G,
cl(G), is the maximum number k such that G contains a k-clique.

The cartesian product of two graphs G and H is a graph, K = GOH, with
V(K) = V(G) x V(H) in which two vertices (u,,v,) and (u,,v,) are ad-
jacent in K if and only if u, is adjacent to u, in G and v, = v, or v, is
adjacent to v, in H and u, = u,.

Consider a graph G and a collection of nonvoid subsets of P(V(G)) such as
F=(W,,...,W,) with W, € P(V(G)) for all 1 <i <l. Note that in this
setting, it is possible to have a subset of P(V(G)) appears more than once
in the collection. Also, there are situations throughout this paper that such
collections appear naturally as domains of some maps. Therefore, we make
this a rule to consider a collection F = (W,,...,W,) as a set of ordered
pairs as (i, W,) in which the first component is used as a counter. In this
paper, this is called a list F C N x P(V(G)) of subsets of P(V(G)) [10}.
A proper k-colouring (or simply a k-colouring for short) of a graph G is
an assignment of colours from a set of colours, namely {1,2,...,k}, to the
vertices of G such that adjacent vertices take different colours; and a graph
which admits a k—colouring is said to be a k—colourable graph. Note that
any k—colouring of G induces a k-partition on the vertex set of G, V(G),
such that there is no adjacent vertices in any class of this partition. These
classes are called colour—classes of G (with respect to this k—colouring) and
[i] denotes the colour—class of colour i. x(G), the chromatic number of
G, is the minimum integer k such that G admits a k-colouring, and a k-
chromatic graph G is a graph with x(G) = k. Also, ccl(G) = x(G) — cl(G)
will be called the coclique number of G.

List colouring is one of the generalizations of the above concept in which
each vertex has its own list of legal colours. In this regard, a list colouring
problem for a graph G with lists £ = {L,},. s, is to assign a colour i, to
each vertex v of G such that i, € L, and adjacent vertices take different
colours.

While finding a necessary and sufficient condition for a list colouring prob-
lem is quite hard in general, for the complete graph K, the problem reduces
to the well known Marriage Theorem of P. Hall. Also, as a consequence of
this theorem we have the following theorem of M. Hall which has already
been used in the study of unique colourability and defining sets of graphs
14, 15).
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Theorem A. [13] If n sets A,,..., A, have a system of distinct represen-
tative (SDR) and the smallest of these sets contains t objects, then ift > n,
there are at least t(t — 1) ...(t — n+ 1) different SDR’s, and if t < n, there
are at least t! different SDR'’s.

A graph G is said to be k-uniguely-vertez—colourable (or a k-UCG for
short) if x(G) = k and any k—colouring of G induces a unique k-partition
on V(G). The following theorem of M. Truszczyniski and S.J. Xu shows
that there is a lower bound for |E(G)| when G is a k-UCG.

Theorem B. {19, 17] The minimum number of edges for a k-UCG, G, is

v@Ik-1- (3)

and equality holds if and only if the subgraph induced on any two colour-
classes of G is a tree.

It is easy to see that this lower bound is tight by the existence of g-trees
[3]. In this regard, we define

Definition 1. For any graph, G, A(G) = |E(G)| - |V(G)|(k—-1)+ (;) o

Note that Theorem B essentially means that for any k-UCG, G, we have
A(G) > 0. Also, as examples, it is easy to check that A(K,) = 0 for any
n > 0, A(T) = 0 for any tree T, A(C,,) =1 and A(C,,,,) = —2(n —1).
Moreover, we have the following conjecture of S.J. Xu for minimal UCG’s.

Conjecture 1.[19] Xu’s Conjecture
If G is a k-UCG with A(G) = 0 then ccl(G) = 0.

Although, recently, using a computer search, it has been shown that there
exists a counter example for Conjecture 1 which is actually a 3-chromatic
core on 24 vertices (1], we believe that constructing other k—chromatic cores
which are counter examples of Conjecture 1 for k > 3 is an important task
since such graphs should contain important chromatic structures (also see
[4)).

Another concept which is closely related to the vertex colouring of graphs
is the concept of a defining set for a graph G. A defining set for a graph
G is a set S C V(G) of vertices along with their colours such that it
uniquely extends to a x(G)-colouring of G. The defining number, d(G),
is the minimum of |S| such that S is a defining set for G. We refer the
interested reader to [15] for more details and the background.

To emphasis on the relationship between these concepts note that when
one fixes the colours of some vertices in a set S C V(G), then the extension
problem to a k-colouring is actually a list colouring problem for which each
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vertex v € S has a list of colours as L, = {1,...,k} — A, where A is the
colours of all the vertices in S which are adjacent to v (note that A may be
an empty set). Clearly, S is a defining set if and only if this list colouring
problem has a unique solution. Also, it is evident that a graph is a k~UCG
if and only if the list colouring problem with L, = {1,..., k} for any vertex
v has k! solutions (unique up to permutation of colours or, equivalently,
unique up to the induced partition).

A k-UCG with no vertex of degree k¥ — 1 whose colour—classes all have
more than one vertex is called a u-core? (or a core for short). K, is,
pathologically, defined to be a core and also it is known that any UCG, G,
has a unique core cor(G) (as its induced subgraph) [8, 11]. The following
simple lemma is also used in the sequel.

Lemma 1. If we construct a new graph G* from a graph G by adding a
new vertez and connecting it to all vertices in V(QG), then ccl(G) = ccl(G*)
and A(G) = A(G*).

2 The Fixing Number

In this section we consider a simple method of embedding a k—chromatic
graph G into a k-UCG H by trying to add some new edges appropriately
to GU K. This scenario gives rise to the concept of fixing number which
is first introduced in [5, 8] (also see [16]).

To be more precise, let G be a k-chromatic graph and consider the graph
H = GUK, such that V(K,) = {v,,...,v, } and assume that we have fixed
the colours of the component K, such that v, € [i] for all ¢ € {1,...,k}.
Then a class of (new) edges as ®, such that for each edge e € ® one end of
e isin {v, }:;1 and the other end is in V(G), is called a fizing set (of edges)
for @ if the graph H with the vertex set V(H) and the edge set E(H)U &
is a k-UCG. Also, ¢,(G) is defined as

¢, (G) = min{|®| | ® is a fixing set for G},

and ¢(G) = ¢,(G) - (’;) is called the fizing number of G. Before we proceed
we focus on some simple examples.

Example 1. As a simple example consider the graph G, in Figure 1; and
note that by the fixing depicted in this figure we have ¢(G,) < 1. Also, it
is fairly easy to check that ¢(G,) = 1 (for a simpler proof see Proposition 1
and Theorem 2). o

2This is different from the categorical definition of cores.
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Figure 1: ¢(G,) =1 (see Example 1).

Example 2. For the next example we focus on the cycles C, (n > 2). It is
clear that for even cycles we have ¢(C,,) = 0 (we will see in the sequel that
the fixing number of any UCG is zero). Also, for the odd cycles we claim
that ¢(C,,,,) = 2(n—1). To see this, we first note that ¢(C,,,,) < 2(n—1),
since in Figure 2 we have introduced a fixing set of size 2n + 1.

On the other hand, although, it is not very hard to prove that ¢(C,,,,) >
2(n — 1) by direct reasoning, but this inequality is a direct consequence of
our next results since ¢(C,,,,) + A(C,,,,) > 0 (see Proposition 1(b)). ©

C2n+1

Figure 2: ¢(C,,,,) =2(n —1) (see Example 2).

Note that the concept of fixing number can also be considered as a general-
ization (weakened form) of the concept defining number. ;From this point
of view, consider a k~chromatic graph G and a list colouring problem on G
in which all vertices of G receive the list {1,2,..:,k}. Then ¢,(G) is the
minimum total number of colours that one can exclude from the lists in
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such a way that the new list colouring problem has a unique solution (also
see [16]).

The following proposition contains the most basic properties of the fix-
ing number, and an upper bound in terms of defining number, which are
actually direct consequences of the definition.

Proposition 1. For any k-chromatic graph G,
a) 0< ¢(G) < (k—1)d(G) - (3)-

b) ¢(G) + A(G) > 0 and if equality holds then the subgraph induced on
any two colour—classes of the minimal colouring is a forest.

Proof. First, for the left hand inequality of part (a) note that the sub-
graph induced on any two colour—classes of the k-UCG H which contains G
and the k—clique is connected. Consequently, there exists at least one edge
between any two vertices of the k-clique and the corresponding colour-
classes in G. This shows that at least (5) edges are needed for the fixing.
Now, for the right hand side, assume that G has a defining set of size d.
Then it is sufficient to connect each vertex, v, of the defining set to all
vertices of the k—clique except the one which has the same colour as v; in
order to fix the colours of the vertices of the defining set which specifies a
fixed colouring of G by itself.

On the other hand, for (b) just note that

AG) +¢(G) = A(H)) 2 0;
since H is a UCG (see Theorem B). o

It is also interesting to note that the following bound for the defining num-
ber, which has first appeared in [15], is a direct corollary of the above
proposition.

Corollary 1.[15] For any graph G,
IE@)|
x(G) -1
On the other hand, considering the sharpness of inequalities in Proposi-

tion 1, let us recall that d(K,0C,,,,) = n+1 [15], and, therefore, we have
the following example.

d(G) 2 [V(G)I -

Example 3. Let G = K,0C,,,,, then from Proposition 1 we have

n—-2<¢G)<2n-1.

307



Also, the following theorem can be considered as the counterpart of Theo-
rem 2 in [15] and has essentially the same method of proof.

Theorem 1.Let G be a simple graph on n vertices with degree sequence
(d,)™, and let m be an integer such that x(G) < m. Then

6, (K, DG) > i(m;d‘)

i=1
Corollary 2. If m > n then ¢,(K, OK,) > n(™ ).

One also can prove the following theorem which may be considered as
the counterpart of the corresponding theorem for defining sets proved by
Hajiabolhassan et.al. [12].

Theorem 2.¢(G) = 0 if and only if G is a UCG.

Proof. First, assume that G is a k~-UCG. Then choose vertices v, (i =
1,...,k) each from one of the colour—classes and note that {v, |t = 1,...,k}
is a defining set. Now, it is easy to see that (£) edges is enough to fix the
colours of vertices in G and Proposition 1(a) says that this is also necessary.
Hence ¢(G) = 0. :

Conversely, let ¢(G) = 0 and assume that H is the k~UCG which contains
G and the k-clique. Let o be the colouring of G which is induced by
the unique colouring of H. Then, by direct forcing, this colouring induces
some lists of (admissible) colours on the vertices of the k-clique. Since this
list—colouring problem on the k-clique has only one solution, by M. Hall's
Theorem (Theorem A), one of the vertices, say v,, has a list which only
contains one colour; and this means that v, is connected to at least k — 1
vertices in G. Now if we delete the colour of v, from the other lists we face
a new list—colouring problem with k — 1 colours and by the same kind of
reasoning there is a vertex v, in the k-clique which is connected to at least
k — 2 vertices of G and so forth. This along with ¢(G) = 0 shows that there
is an ordering of vertices of the k-clique such as {v, | ¢ = 1,...,k}, such
that each v, is connected to exactly k — ¢ vertices in G (i = 1,...,k).
Hence, we know the structure of H. Assume that G has another k-colouring
different from o. Then it is clear that we can extend this colouring to a k-
colouring of H using the above structure; and this is a contradiction since
H is a k-UCG. o

At the end of this section it is instructive to add some remarks about the
extremal condition ¢ + A = 0. First note that from Proposition 1 we
have some information about the structure of these graphs, however, it
should be noted that classification of graphs for which ¢(G) + A(G) =0,
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is an extremely hard problem. To see this, note that if G is a UCG, then
#(G) = 0 and equality holds if and only if A(G) = 0. In this case we know
a lot about such graphs with ccl(G) = 0, however, we do not know a lot
about ccl(G) > 0 [1, 4, 5, 6, 7, 8, 11]3. In the next section we try to turn
around this problem by considering a more subtle embedding which can
also generate UCG’s with ccl > 0.

3 t—indices and 7—indices

In this section we consider the embedding of a (k — 1)-chromatic graph G
into a k-UCG H and, this time, we wish to have ccl(H) > 0; which means
that we should avoid any k-clique in our construction. Our new method
of construction can be described as follows. We first assume that

1) G is (k — 1)—chromatic.

2) G has a special structure which makes it possible to add some new
set of vertices such as V"~ to G and make a new graph H such that
in any k-colouring of H, V" is a fixed colour—class and ccl(H) > 0.

3) This fixed colour—class can be used to fix the colour of the rest of
vertices in such a way that for the new graph A we have ccl(H) > 0.

To begin let us recall the following definition from [10].
Definition 2.[10] Consider a (k — 1)-chromatic graph G. Then a list
F={GW)|1<i<)

of subsets of P(V(Q)) is called a transverse system for G if both of the
following conditions are satisfied.

e For every (k — 1)-colouring o of G, if ({,W,) € F then W; has
nonempty intersection with all colour classes of o.

e For every k-colouring o : V(G) onte {1,...,k} of G, there exists
(i,W.) € F such that W; has nonempty intersection with all colour
classes of .

<

Example 4. Consider the prism P = D4 — {b,,b,,b,} (see Figure 3) and
note that

F ={(Q1,{a,,0,,¢,,¢,}),(2,{a;,a5,¢,,¢,}), (3, {a5;0,,¢5,¢, 1)}

is a transverse system for P. o
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Figure 3: The graph D4.

The following theorem is actually a generalization of a theorem of M.
Truszczyniski [17] which has first appeared in [8] and has been already used
in construction of k-chromatic graphs with some extremality conditions
(e.g. see [10]). This theorem is our first step toward our second assump-
tion.

Theorem 3.[10) Let H be a k-chromatic graph such that in every k-
colouring of H there is a fized colour-class V™ consisting of m specified
vertices v,,...,v,, (m > 1); and consider G = H -V . Also define
F={GNs () | v EV.}- Then,

a) x(G) =k -1 and F is a transverse system for G.
Moreover if cl(H) < k — 1 then,

b) cd(GIW;i])) < k — 2 for every (i,W,) € F (and also clearly cl(G) <
k-1).

Conversely, let G be a (k — 1)-chromatic graph and let F C N x P(V(G))
be a transverse system for G. Then the graph H obtained by adding to G
new vertices v,, for each ((¢,W;) € F), and joining each v, to all vertices
in W, is a k-chromatic graph such that in any one of its k-colourings the
class V' = {v, | (i,W,) € F} is fized. If in addition (b) is also fulfilled
then cdl(H) <k-1.

3T. Morrill and D. Pritikin in [16] consider this problem where they call these graphs
k-optimal.

310



Note that by condition (a) for any (i, W,) € F we have |W,| > k— 1. Also,
as an application of this theorem we can consider the transverse system
of Example 4 and deduce that {b,,b,,b,} is a fixed colour—class in any
4-colouring of D4 (see Figure 3). For more on this theorem and related
subjects see [8].

Now, we try to formulate the necessary definitions which will be used to
compute A(H) in the final step.

Definition 3. Let G be a (k — 1)-chromatic graph. Then, a list F C
N x P(V(QG)) is said to be admissible of type O (resp. admissible of type
1) if F satisfies condition (a) (resp. conditions (a) and (b)) of Theorem 3,
|F| > 1 and

HGwW)eF | W|=k-1} <k
The t,—indez (resp. t, —indez) of G,t,(G) (resp. t,(G)), is defined to be the
minimum of || F|| — (k — 1)|F| where

IFl=" > W],

G,W;)eF

and F is an admissible list of type 0 (resp. of type 1). Moreover, in the case
of t, (G), if there is no such admissible list we define ¢, (G) = —c0. Also, for
any graph G, 7.(G) = ¢(G) + t_(G), is called the 7, -indez of G (r = 0,1).
<o

Example 5.As a trivial case, consider a (k — 1)-chromatic graph G with
k > 2 and consider the following list

F={1,V(G)(2,V(G)}.

Now, note that this list is a transverse system for G which trivially satisfies
the conditions of an admissible list of type 0. This observation shows that
0<4(G) <2(V(G) -k +1). o

Example 6. As it is more or less clear from the definition, ¢-indices and 7—
indices are usually quite hard to compute. To set forward some examples,
let us consider odd cycles C,,,, (n > 1). Then it is fairly easy to see that
having two new vertices which are connected to all vertices of the cycle
provide a minimal admissible list of type 1, and consequently we have

to(czn-n) =1, (Czn+1) =4(n-1) (n>1).
Also considering Example 2 we can deduce that

T0(02n+)) =T (C2n+l) = 6(77' - 1) (n >1).
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As one more example, consider the prism P = D4—{b,,b,,b,} (see Figure 3)
and note that

F={(1,{a,,a,,¢,,¢,}),(2,{a,,05,¢,,¢}),(3,{a;,2,,¢5,¢,})}

provides a minimal admissible list of type 1. Hence, D4 is actually the
4-chromatic graph which is obtained by adding the three new vertices
{b,,b;,b,} to P through F, and consequently

t,(P)=t,(P)=12-3x3=3.

Also,
¢(P)=1 and r7,(P)=r7(P)=4.

The graph D4 was already obtained as a special case of a general construc-
tion using forcing [4, 6, 7, 9] (for more on this subject see [5, 8]). o

Now, we are ready to apply our embedding as follows.

Theorem 4. Let G be a (k—1)-chromatic graph with . > —oco (r =0,1).
Then there exists a core, U, such that

VOO IVGI+FI+2(k=1), cd(U)=r, x(U)=k,
A(U) = A(G) +7.(G) - [V(G)| + k- 1;

in which F is a minimal admissible list of type r.

Proof. Fix an admissible list of type r for G (r = 0,1) such as F and
introduce new vertices v, ,, ,’s for each (i,W,) € F. Then connect each
Vw., to all vertices of W, C V(G) and note that in any k-colouring of
the new graph, v, ,, ,’s form a fixed colour—class (by the hypothesis and
Theorem 3).
Now consider the general pattern of the graph U, depicted in Figure 4,
where a;’s are the vertices of the (k — 1)-clique K, _, for which we assume
that a; € [j] (j = 1,...,k = 1). By the definition of an admissible list we
know that |F| > 1 and we also know that the number of (i, W,)’s with
|[W,| = k —1is less than or equal to k — 1. Hence, we can join a;’s to
Yw,, S such that
e Each a; is connected to exactly one vertex in {v ,, , | (:,W;) € F}.
e There is no vertex v, ., , which is connected to all vertices in
{a, | 5=1,...,k-1}.
e Each vertex v, , with [W,| = k — 1 is connected to at least one
vertexin {a;, | j=1,...,k—1}.

312



Moreover, add k—1 vertices b,’s (j = 1,...,k— 1) and join each b; to one of
the vertices in {v, ,, , | (3, W,) € F} and all vertices in {a, | i # j}. Now
note that in any k-colouring of this graph {a;,b,} C[j] G =1,...,k—1)
and {v,,, | (i,W,) € F} C k]

In order to complete the structure it is sufficient to fix the colour—classes of
G and this can be done by adding a fixing set of edges between {b, | j =
1,...,k—1} and V(G). Using this structure in a minimal case provides a
k~UCG which clearly does not have a colour—class of size 1. Therefore, the
core of this k~-UCG is a graph with the desired parameters. a

Fixing

Figure 4: General pattern of U (Theorem 4).

Note that the theorem holds for both cases 7 = 0 and r = 1, however, the
importance of the theorem is for the case r = 1.

Corollary 3. Let G be a k—chromatic graph with T, > —co (r = 0 or 1).
Then 7.(G) + A(G) > |V(G)| — k.

Proof. Note that A(U) > 0 for any UCG, U. a

It is clear from Theorem 3 that, {v} is a fixed colour—class of size one in a
k-chromatic graph G if and only if the vertex v is connected to all vertices
in V(G) — {v}; and from this point of view, Lemma 1 states that ccl and
A are invariant under deletion or addition of such colour—classes. The next
proposition shows that ¢, t_ and 7, (r = 0,1) have the same property.
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Proposition 2. If we construct a new graph G* from a graph G by adding
a new vertez and connecting it to all vertices in V(G), then ¢(G) = ¢(G*),
7.(G) =7.(G*) and t_(G) =t_(G*) (r =0,1).

Proof. First, consider the fixing number and assume that v is the vertex
which is added to the k-chromatic graph G. In order to compute the fixing
number of G*, we should add the minimum number of edges to G* UK, _,
in such a way that we obtain a (k + 1)-UCG.

Now if we connect v to k vertices in K, _,, v is forced to take the remaining
colour; and then it suffices to use a fixing set of G to fix the rest of colours.
This shows that ¢(G*) < &(G).

On the other hand, consider a fixing of G* as a (k + 1)-UCG H, and
assume that [k + 1] = {v,u} for some vertex u € V(K,,,). Now, since
in any UCG the subgraph induced on any two colour-classes is connected
[17], we may deduce that there are at least k edges in the fixing set of G*
which are adjacent to u or v. Also, we know that H —[k+1] is a UCG and
consequently ¢(G*) > &(G). This proves that ¢(G*) = ¢(G).

For t, (r = 0,1) note that if F is an admissible list of type » for G, then
one can add the new vertex v to any W, for (i, W,) € F to obtain

Fr={@Wu{s}) | (W) eF}

which is clearly an admissible list of type r for G*. This shows that ¢_(G*) <
t.(G).

Conversely, let 7* be an admissible list of type r for G*. Then by condition
(a) of Theorem 3 we know that v is in any W for (i, W) € F*. Therefore,
if we exclude v from classes of F* to obtain F, then it is clear that F is an
admissible list of type r for G and consequently ¢_(G) =t_(G*) (r =0, 1).
The equalities 7, (G) = 7.(G*) (r = 0, 1) follows from the definition. o

Corollary 4. Let G be a (k, — 1)-chromatic graph that satisfies the con-
ditions of Theorem 4 (r = 0 or 1). Then there ezists a class of cores
{U.} 2, such that for each k > k, we have

VU S IVG) +IF|+3k =k =2, cd(U,) =7, x(U,)=k,
AU, = AG) +7.(G) = [V(G)| + k, — 1.

Proof. Use Lemma 1 on G to obtain a (k — 1)-chromatic graph, then
apply Proposition 2 and Theorem 4 to this graph. (mi

To begin, consider odd cycles G = C,, ,, for (n > 1) and apply Theorem 4.
Then since A(C,,,,) = —2(n — 1) and 7,(C,,,,) = 6(n — 1) we obtain a
new 4-UCG H, with

VH) =2n+9, cc(H,)=1, x(H)=4 and A(H,) =2(n-1).
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Now note that ccl (fIz) =1, A(I:IQ) = 2 and applying Corollary 4 we obtain
the following proposition.

Proposition 3. There ezists a class of cores {U:}(kz o Such that
IV(U)=3k+1, cd(U])=1, x(U)) =k, and A(U))=2,

for each k > 4.

On the other hand, consider the prism P = D4 — {b,,b,,b,} (see Figure 3)
with 7, (P) = 4 and A(P) = 0. Then if we apply Theorem 4 we obtain a
graph H, with

|V(H,)| =15, cc(H,) =1, x(H,) =4, and A(H,)=1.
Applying Corollary 4 yields,

Proposition 4. There ezists a class of cores {U:}(,‘Z o Such that

1 1 1 1
VU =3k+3, cc(U,)=1, x(Uh) =k, and A(U,) =1,
for each k > 4.

On the other hand, it is easy to see that, in general, the above construction
is very far from being vertex-minimal. For this, note that we could add a
new vertex d to the graph D4 of Figure 3 and join it to vertices a,, a4, b,
and ¢, in order to obtain a 4-UCG on 10 vertices (where we have used a
one vertex fixing structure which uses a 3-clique in the graph itself [4, 6]).
Also, for the case of odd cycles too, one can easily check that only one extra
vertex is sufficient for the fixing process. This gives rise to an enhancement
of the previous result as follows.

Proposition 5. There ezists a class of cores {Ui}u«z o Such that

V() =2k+3, cal(0l)=1, x(U))=k, and AD)) =2,
for each k > 4.

The following conjecture has been set forward in [8}.

Conjecture 2.[8] If G is a k-UCG such that 5 < k < |V(G)| £ 2(k+ 1),
ccl(G) > 0 and A(G) < 2, then x(cor(G)) < k.

In our new approach in this section, the extremal graphs are those with
x = k and 7, + A = |V| — k; while we know that if such a graph exists then
Xu'’s conjecture is wrong. Needless to say, finding methods of construction
which generate such extremal graphs is of great importance since this kind
of graphs (or even graphs which are nearly extremal in this sense) have very
interesting colouring properties (e.g. see [9]). To sum up, we introduce the
following problem,
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Problem 1. Find a k-chromatic graph, G, such that 7,(G) + A(G) =
[V(G)| - k.

(<))

Figure 5: Using a maximum clique in fixing (see Section 4).

4 A More General Overview

In this paper we considered the problem of embedding a graph G, as an
induced subgraph, into a UCG H; and we obtained some parameters for
graph G by applying Truszczyniski-Xu Theorem for H. However, this setup
can be generalized even for the cases when G is just a subgraph of H
(which is not necessarily induced); since we have already encountered cases
in which t/he construction of Theorem 4 is not vertex minimal.

As an example of this approach we can consider cases in which one max-
imum clique of the graph is used instead of the extra cliques used in our
previous embeddings. To see this, assume that G is a k-chromatic graph
with ¢l(G) = ¢, and consider the graph G U K, __ with one maximum g¢-
clique of G (as in Figure 5). Now, if we assume that {v,,...,v,} are the
vertices of the g—clique and {v_,,,...,v,} are the vertices of K,__ and if
we form a K, on these vertices, then one can talk about the minimum
number of edges between the set of vertices {v,,...,v,} and V(G) which
turns GU K, _, into a k~-UCG. Also, we can use this new parameter in an
embedding similar to that of Theorem 4 and obtain UCG’s with a smaller
number of vertices.

Note that we could even consider G itself, without any additional vertices,
and try to turn it into a k~UCG by adding new edges. Then one can talk
about the minimum number of such edges as a new parameter for G.

We do not follow these ideas here, however, we note that these new param-
eters are more difficult to handle.
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