THE HEIGHT DISTRIBUTION OF NODES IN
NON-CROSSING TREES

ALOIS PANHOLZER!

ABSTRACT. We consider non-crossing trees and show, that the height
of node pn with 0 < p < 1 in a non-crossing tree of size n is asymp-
totically Maxwell-distributed. We also give an asymptotic formula
for the expected height of node pn.

1. INTRODUCTION

A non-crossing tree is defined as a connected acyclic graph with the
vertex set of n points in the plane forming the vertices of a convex polygon
and whose edges are straight line segments that do not cross. We consider
further the vertices labelled counter-clockwise from 1 to n with vertex 1 as
the root of the tree.

The enumeration problem was considered first in [9] and also by Dulucq
and Penaud [3]. It turns out, that the number of non-crossing trees of size
n + 1 is equal to the number of ternary trees of size n and therefore given
by 525 (3*=2). A lot of parameters of non-crossing trees are studied quite
recently by Noy [8], Flajolet and Noy [4] and Deutsch and Noy [1]. Among
other parameters, in [1] the expected height of a non-crossing tree was
studied under the assumption, that all trees of the same size are considered
to be equally likely. The height of a node in a rooted tree is here always
defined as the number of vertices on the direct path from the root to this
node and the height of the tree is then the maximum of all heights of the
nodes in this tree.

The behaviour of the height of several families of trees has already been
analysed. Especially the so called family of simply generated trees were
studied by Flajolet and Odlyzko [5]. In [1] a height-preserving bijection
between the non-crossing trees and a member of the family of simply gen-
erated trees (the even trees) was established, and therefore results of [5] are
applicable. It follows, that the expected height of non-crossing trees of size
n is asymptotically given by % 3mn.
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FIGURE 1. A non-crossing tree with heights h(j) of the
nodes j.

We will study here a somehow different parameter. Instead of considering
the height of the whole tree, we are interested in the height 2(j) of a given
node j. (see figure 1.)

For simply generated families of trees, the height of the leaves (the
endnodes) was studied by Drmota [2] and by Gittenberger [7]. Although
their results are not applicable for non-crossing trees (above mentioned
height-preserving bijection does not preserve the labelling of the nodes),
we can use their approach of using generating functions and extracting
coefficients by means of a double Hankel-contour integral.

In our analysis, we will use the following combinatorial decomposition
of a non-crossing tree as described in [4]. A non-crossing tree consists of a
root, which is attached to a (possibly empty) sequence of butterflies, where
a butterfly is a (ordered) pair of non-crossing trees, that share a common
root. (see figure 2.)

This combinatorial decomposition can be translated immediately into an
algebraic equation for the generating functions T'(2) = },,5¢ Tnz" of the
numbers T}, of non-crossing trees of size n and B(z) = ¥_,,50 Bnz" of the
numbers By, of buttetflies with n nodes. We get the system

)

T(z) = B(2) =

_*
1-B(z)’
and therefore the equation

T3(2) — 2T(2) + 2> =0. 1)
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FIGURE 2. The combinatorial decomposition of a non-
crossing tree.

Expanding these generating functions around their dominant algebraic
singularity z = ;—.,, either by solving the algebraic equation (1) or by using
the Weierstrass preparation theorem, we get

T() = Do) + T 1~ e m 2212, (o)

27 1 23 27
B(Z)—BO(Z)+Bl(Z) I—TZNE—T l—z-z, (2b)
with functions To(2), T1(2), Bo(z) and By (z) analytic in a neighborhood of
the singularity.

2. THE GENERATING FUNCTION FOR THE HEIGHT DISTRIBUTION

We want to study here the random variable Xn,j, which counts the
height h(j) of node j in a non-crossing tree of size n, under the model,
that all non-crossing trees of this size occur equally likely. To do this,
we use trivariate generating functions F(z,u,v) = Zn,j'm Fo jmz™uwiv™
for the number of non-crossing trees of size n, where node J has height
m. We also use the auxiliary functions B(z,u,v) = ¥, ; . B jmz"uiv™
of the number of butterflies of size n, where node j has height m and
F(z,u,v) = >n, im F j;mz™uv™ of the number of non-crossing trees with
node n as root and where node j has height m (with respect to this root
n).
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The above described combinatorial decomposition of a non-crossing tree
leads immediately to the following equations:

_ zuy zuvB(z,u,v)
F(z,u,v) = 1B + A-BR)0=-BGu)’ (3a)
Blz,u,v) = ﬁ'(z,u;v)T(z) + T(zu)l;(tz, u,v) _ vT(z'z:)T(z) . (3b)

By symmetry arguments we have F‘n,j_m = Fp nt+1-j,m and

Bq.j,m = Bn,nt1-j,m or equivalently F(z,u,v) = uF(zu,u",v) and B(z,u,v) =

uB(zu,u~!,v). With this considerations, we obtain from equation (3a)
2w 2vB(z,u,v)

1-B(zu) (1-B(2))(1-B(zu))"
The algebraic system (3) gives as solution for the generating function

F(z,u,v):

F(z,u,v) =

(3¢)

Flz,u,0) = vuT(2) :

T(z)+T
l1-v ( l—B(i l—z;(zu ) (4)
v2uT?(z2) 1

"~ (1= B(z))(1 - B(zu)) 1—v ((1_;13‘ : +T_z; _ ) .

3. EXTRACTING COEFFICIENTS BY A DOUBLE CONTOUR INTEGRAL

We are now interested in the coefficients
Fn,j,m = [znujvm]F(z’ u’ v) b

especially in the most interesting case % = pforafixedratio0 < p < 1. We
will also restrict ourselves to values m < C+/n for a fixed constant C > 0.
This is quite natural, because we know from [1], that the expected height
of the non-crossing tree is of order ©(y/n).

For the number of non-crossing trees of size n, where node pn has exactly
height m, we get from equation (4) with the substitution w = zu:

T(z) + T(w) )"'" B
(1 - B(2))(1 - B(w))

1 T?(2) ( T(2) + T(w) )""2

, (1-B(z))(1 - B(w)) \ (1 - B(2))(1 - B(w)) '
To extract coefficients, we will basically use Cauchy’s formula

Frpnim = [z(‘“")""'lw"”"]T(z) (

(a-p)nt1, pn—

_[z

-1
— 1 1 T(2)+T(w m
F"»P"-m = (2ni)? fl‘l fl"z Z(I=pInF2yypn T(Z) ( 1-B(z))(1-B(w ) dzdw—

-t [ 1 T2(z x
(@ri)2 Jry Jry z0-pm¥2yen (1-B(z))(1-B(w

-2
T(z2)+T(w m
x ( 1-B(z))(1-B{w ) dzdw
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FIGURE 3. The integration paths I'; for j = 1,2.

_ 1 1 T(2)T(w)
T (2mi)? ,/]:‘ /;:2 2(1=P)n+29ppn T(2) + T'(w) %

X ( T(z) + T(w) )m—l dzdw,

(%)

(1-B(2))(1 - B(w))

where the paths of integration I'y = I'y; +T'1p + T'i3 + g + T'ys +Tig and
T3 = I'y; + g2 + Toz + T'aq + 25 + o6 are given by*(compare with figure

3):

— — 4 t
P = {z= #(+ )
F12={Z=24—7(1+ﬁy;)

I'is =F—12’

P = {2 = #0 + o55)

I's =T,

§Rt<0,|t|=1},

Os%tslogzn,8t=l} ,

Rt =log’n + 32@1',‘& =1+ sgr,ogr gn%+6} ,

*For some technical reasons, it seems here, that such an “artifical” contour is more
convenient than a simpler one, used by other authors. Otherwise we would run into
troubles when estimating the remainder terms.
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2 Tndtes; 7, ke
I'ie = {z 2| = ;-7 1+ log "+’§n(1_:-)£1+§n ) :
arg |1+ logzn“g"h_‘ﬁ(l“’é"h‘) <largz| <o .
(1-p)n
and
—_ — 4 8 _
o ={w= &1+ 2)|Rs <0,ls| =1},

Top = {w: %(l-l-pin) 0$§Rs$log2n,%‘s=1} ,

o3 =T,
F24={z=-247(1+p—‘n- §Rs=log2n+32ér,$}s=1+Azér,og_rsnéﬂ},
Ig5 = Taq,
+ey . +e
Ty6 = {z 2| = & ] 4 logtn+Fnt p:,(1+=§n& )|
log? n+ 32 &+‘+'(1+-\2Qn*+‘)
arg(1+ o8 nt pn‘ <largz|<mp .

In the paths I';g and I'yg the € can be an arbitrary positive value smaller
than 1
3

4. EVALUATION OF THE INTEGRAL

We will show in section 5, that the contribution of the paths z € I'jy U
Ty5 UTg or w € Tgq U g5 U 'gg in the integral (5) is asymptotically
neglectable. We will denote the contribution of this part of the integral
(the remainder integral) with R, ,». That means, we will get the main
contribution of the integral for the paths z € I'; UT 12 UT 13 Aw € T3 U
I'y2 U 23, which we will denote with Iy, p m. Thus we will show, that

Foonm = Inpm + Bnpm ~ Inpm, (6)

where we are going to evaluate the integral I, , m this section.

First we will study the integrand of (5) in the neighborhoods of the
singularities z = 7 and w = ;. With the substitutions

4 t 4 s
=—(14 — =—(1+—

2,7( + a —p)n) and w 27( + Im) )

we get from the asymptotic expansions (2):

T(‘)=(§“ﬁ"3@7\/——5)‘(1+0(‘§;‘) Tw)=(3-%5/~%)-(+o(lg))),
B(a)=(}- 525 vV=%)-(1+0(kh), Bw)=(4-3FV=F)-(1+olsh) .

z

(8a)
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When we define the abbreviations

_ TE)+T(w) _ T(:)T(w)
nE0) = B a-Bw) Y = 16 i T
we get

_ (-5 v7E) -(1+0h)+(3- 25 v/F)-(1+o(l2h))
I €y ] (1+0(“)) (3+3%v=3)-(vo(kD)

2\/17\/; 2/ ——+0('S| '”). (8b)

(- v=E)-(1+0th)-(3- 25 v/=F)-(1+o()
$-mts V-1 ) (1ro()+ (3- 25 /~1)-(1ro(l))

(
0By,

This leads further to the expansion

b1(z, w)™1 = em-V10e(1- s V=E -2/ F+o(l+ )
= e‘m%ﬂ . e_mi%ﬁ. (1+O(ml%l+m,%l+\/_]%—l+\/]’_:[_)) .
(8d)

and

We also use the expansions

oo () (10 (1)),
o= (I) e (e0 ().

With the expansions (8) in the neighborhood of the singularities z = 24.,.
and w = i7 we are now able to evaluate the integral (5) for the paths

of integration z € I'; UT12 U453 and w € L9y U9 UTy;. With the
abbreviations

Ci = {tllt| = 1,Rt < 0} U {t|0 < Rt < log®n, St = +1},
C2 = {slls] = 1,Rs < 0} U {5]0 < Rs < log®n, s = +1},
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FIGURE 4. The Hankel contour 7.

we obtain:

In,P,m = (27”:)2 z(l—p)n+2wpn
I'1UlM 12Ul 3 T21Ul22UT 28
_ (2T\" 1 1 —“‘7&’—2 (;"_, )V-t —3—36—-3"‘ V=3
= (%) st Ey Jo. Je, € e " x

X (1+O(mlﬁl+m%l+\/g+ \/—]ﬁ_l))dsdt. 9)

Together with the estimation

_t__&_"_- —_t e m —
/c e w7 V™ e KRV 4 |5 | ds
1 2

1 ¢2(z,w)(¢1 (z’w))rn—l dzdw

< / / le=+=t{[¢- 1™ |\ds]lde] = Or(1)
C, JC2

for L, M > 0 we obtain

—t— 3m oy v
In,p,m = (241)7; WTEW@%’ fol fC-z e t 2v/n(1-0) ﬁe_s_%\/__sd‘?dt'
-(1+o(12h). (10)

To evaluate this integral, we apply the following lemma, which can e. g.
be found in [2]:

Lemma 1. Let v be a Hankel contour starting from +e2™c0, passing
around 0 and terminating at +00. Then we have for A,p >0

1 —AvV=t-pt 1y _ )\N—% —2—2
omi /., © d=57me "
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To estimate the error, when using the Hankel contour +y instead of C;
resp. Cy we have to keep in mind, that

/ e MWVt = O(p—tem Ky
AN {e|RE> K}

uniformly for K > 0, which leads in our case to an exponentially small
error term (e~ log” ),

With lemma 1 we immediately get the following proposition:
Proposition 2. Fore<p<l-eandm < Cv/n with arbitrary but fized
€ >0 and C > 0 we obtain

Inpm m’ (27)ne-m’ﬁ’i—p; : (1 +0 ('ml)) eH))

T 8m3(l-p)3 \ 2 3

5. THE REMAINDER INTEGRAL

In this section we will show, that the remainder integral Ry, , 1, where z
lies in T'14UT" 5 Ul or w lies in Ty U235 Ul is asymptotically neglectable.
More precisely we get, that the remainder integral Ry, p,m is exponentially

small compared to I, 5, (|Rn,p,m| = of ll—",;“zﬂl) for every fixed L > 0).
5.1. The lager circle. First we will consider the cases z € I'jg or w € Tg.
The integrand in (5) consists of ¢, (2, w) and ¢2(z,w) and both functions

are analytic inside the integration domain, and thus bounded, let us say by
a K > 0. With m < C/n for a fixed C > 0 we get

¢2(Z,'LU) <K= 0(1) y
¢1(z,w)™ 1 < K™ < KOVA-1 — (eé\/'_‘) , (12)

with a real C.
We consider now w € I'yg, where we have the estimation

|w| > i (1+ ﬁ#)

=27 2
and
4\ V2 nh+e ne
np > —_— ~ -
fwl™ 2 (27) (1+ 2p n
4\™ (np) log(l+ 3"3.“) A4\ b+
= ﬁ e > 57- e 2

Thus we obtain

LT np .
s (B wo(2) o), am
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for a positive C > 0.
For an arbitrary z € I'y we have

425 (- =)

and therefore the estimate

(1—p)n+2 (1-p)n
Izl—n(l—ﬂ)—2 < 2 (2747,) =0 ((%7-) ) . (14)

Thus we get, that the integral (5) is for the path w € I'2¢ bounded by
o (Grecv-ort), (15)

with a positive C > 0 and a real C.
For z € I';¢ and an arbitrary w one can show in an analogous way, that

the integral is here also bounded by O ((3})”36"/'_‘“7"5“).

5.2. Near the singularity. Now we consider the remaining cases where
z¢Teandw @ I'yg but z € 14 U5 or w € T'yg U5, Without loss of
generality we consider the case w € 'y UT'25 and z ¢ I'16.

For an arbitrary z € I'; we have the estimate (14) and for w € I'2q UT'25

we have )
4 log®n
> — —
|w| > o7 (1 + )

and thus we get
en og? n om
o< (5)7 e -0 ((3) o) o

n
|Z|—n(1—p)—2|w|—pn =0 ((%) 6-01052 n) , (17)

with a positive C > 0.
In order to prove, that the remainder integral is asymptotically ne-
glectable, it suffices to show, that

$2(z,w)(d1(z,w))™

is bounded for w € ['24 U5 and an arbitrary z ¢ I'ig. Due to ¢2(z,w) =
O(1), we only have to consider ¢;(z,w). We want to show, that for these
integration paths we have

¢1(Z,’w) S 1.
4

Here we are in the neighborhood of the singularities 2 = 57 and w =

;—7, where the asymptotic expansions (8) are valid. The substitution (7)
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together with the asymptotic expansion for ¢, (z,w) suggests to study the
parameter

a
A—l-ﬁ

with an @ > 0 and n sufficiently large.
o Consider first the path z € I'y;, which gives

—t=e¥ with —~ < s
t=e with 2__1/)52,

and from this we get |4| < 1.
e Next we consider z € I';3 U I'y3, which leads with the substitution
(7) to t = r £4 with 0 < r < log?> n. We obtain

/_t = (1+r2)%ei(§i;—arct&ﬂ%) = \_;_5 (\/,/1+r2 —T:‘:i\/ 1+7r2 ;)

and thus
AP = 72=n-+(')(7=)+0( ) for r small (r = O(1)),
A" = 1- 7r=n+O(F)+O(—L) for r large (1 = o(r)).

e It remains z € I';4 U I'y5, which gives t = log? +3/-_-r +i(1+ £r)
with 0 < r < n3+¢, We obtain

~i=— (\/\/m—qii\/\/m'l'q) ;

withp=1+32@r and ¢ = log®n + Jgr. We get

1- 5=Z2(1+0((2)*) + 0('—932—”) for r small (r = o(log® n)),
AP = {1 20t eo1-Fo logn 4 o )+0(—s—) for r ~ clog?n,
1-v2- 3§+0(—\§=)+0("

Thus for n sufficiently large we have |A4| < 1 for all paths z @ I'16. These
considerations are still valid if we study the parameter 1— \/— - —-\/_
(with positive constants a > 0, b > 0), so we get |, (2, w)] < 1 for the paths
2@ T and w € Doy UTys.

Analogous considerations lead also to the result |¢;(z,w)| < 1 for the
paths w g 'y and z € T34 Uy5.

That means, that in all these cases the integral (5) is bounded by

|2|~P1=0)=2 | =om = © ((-241)"6"’“32 ") )
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6. THE HEIGHT DISTRIBUTION OF THE NODES

With the now shown equation (6) and the exponentially small remainder
integral we finally get

Theorem 3. The number Fy pn,m 0f non-crossing trees of size n, where
the node labelled with pn has height m is given by

m? 27\" ___an2 |m|>)
F n = —_— 16np(i-p) . 1 + O it §
O T 48mn3(p(1 - p)) i ( 4 ) ¢ ( ( n

uniformly for e < p < 1—e and m < C/n, wheree > 0, C > 0 are arbitrary
but fized.

Either with Stirling’s approximation of T, = 2n1_1 (3:_"13) or directly by
means of singularity analysis (compare to [6]) we get from (2) the expansion

_ VB~ or\" 1
n=g (1) (0 (3)) o
which leads to

Corollary 4. Let j = pn with 0 < p < 1 and m = z/n + o(y/n) for
n — co. Then we have for x >0

. 2 =
ﬁF"”'"‘ = 3v3z e_maflzTﬂ’ +o(1).
T — 16y/7(p(1-p))t
That means, that the limiting distribution of the normalized height %‘# 13
for a fized ratio p = -}l with 0 < p < 1 a Mazwell distribution with parameter

o= \/gp(l — p). The density function f,(z) of the limiting distribution is
given by
2
3\/32’; 3 e-ﬁp_s(zlsz)' .
16v/7(p(1 - p))2

The Maxwell distribution with parameter o is defined as the distribu-
tion Y = /X? + X2 + X2, where the X; are independently normally dis-
tributed random variables AV'(0,02) with mean 0 and variance 2. It has
the following density function f(z) and moments M, = E(Y ®)

V22 _ a2 2 . s+3
= T 2s M = —922 8
f(z) ‘/7?036 227 for z>0; M, \/1?2 aI‘( 5 )

7. THE EXPECTATION OF THE NODE-HEIGHTS

From the generating function F'(z,u,v), we can also get the expectations
E(X,,;) of the height of node j in a non-crossing tree of size n:
("] 2 F(z,u,v)],_,

T )

E(Xn,;) = (19)
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We will use the abbreviation G, ; = [z"u] %F(z,u,v)[ul. Especially we
are interested in the expected values for a fixed ration p = % Differentiating
(4) with respect to v and evaluating at v = 1 leads to

2 2
“(T(z)_?1-8135T511181'"57+((Tn-;( f)(,lj:(:u))’)
%F(Z, u, v)l‘u=l = (1_ T(2)+T(zu )’2 = . (20)

1-B(z —B(zu

With the substitution w = zu, we get
G, n = [z(l—p)n+1wpn—l] ¢3(2)w) )
” (1= ¢1(2,w))?
with
2T%(z) T2(2)(T(2) + T(w))
z,w)=T(z) - + .

#2216 - T B - 5D * - B - Bw)P

To extract coefficients, we use again Cauchy’s integration formula, with
contours I'1 and I'; as described in section 3:

G. = 1 / / 1 $3(2, w)
M (2mi)? Jp, Jr, 2M0-0¥2en (1= 6, (7, w))?
where ¢, (z,w) is defined as in section 4.

Analogous considerations as in section 5 leads to the fact, that the we
get the main term of the integral for the paths z € T';; UT'2 UT3 and
w € ['y1 UT23 UT 23 (the details are here omitted).

The substitutions (7) together with the local expansion for ¢ (z, w) and

the expansion
_1 /1t [ls] )
¢3(z,w)—9+0( el -

leads to the integral

dzdw, (21)

27 —s—t dsdt

Cron= gt (&) o ™ o ey
- (1+0(d).

The evaluation of the integral follows from the following lemma, which
can e. g. be found in [2]:
Lemma 5. Let v be a Hankel contour. Then we have fora,B>0

(22)

1 / / e—t=s dsdt _2 o
(2mi)? J, J, (av/=t+Bv/=35)?  w(a®+52)2"
This gives

cum= (B ST (150( ).

4 27 Jn
and with the expansion (18) we finally obtain from (19)

31



Theorem 6. The ezpected height E(Xn ;) of the node j = pn for0 < p <1
in @ non-crossing tree of size n is asymptotically given by

E(Xn,;) ~ ‘8_%-&\/7—1

It should be remarked, that by simplifying expression (20) and extracting
coefficients one can also find an explicit formula for the expectations:

Theorem 7. The expected height E(Xy ;) is for 1 < j < n given by
E(Xn;) =2 -1+3 -3~

-%?1‘—}1 J r_%%&-}%ﬁj—‘—k)——s(ukﬂ))(s(n-k))
(D) k=2 (&=1)(2k~9) (n—h+D)(2n—2kF1 v ) Cnek )
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