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ABSTRACT

In this paper we extend the work of Bogart and Trenk (3]
and Fishburn and Trotter [6] in studying different classes of
bitolerance orders. We provide a more comprehensive list of
classes of bitolerance orders and prove equality between some
of these classes in general and other classes in the bipartite
domain. We also provide separating examples between unequal
classes of bitolerance orders.

1 Introduction

An ordered set or poset P = (V, <) consists of a set V and a binary relation
~< on V which is irreflexive, transitive and therefore antisymmetric. In this
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paper we consider only finite posets. If z < y or y < z we say that = and
y are comparable; otherwise we say they are incomparable and write z || y.
An interval order is a poset P = (V, <) that has a representation in which
v € V is.assigned an interval I, on the real line so that z < y if and only
if I; is completely to the left of I,.

One application of interval orders arises in the scheduling of events. If
I, represents the meeting time period for event v then events = and y do
not conflict (and can be assigned to the same room) if and only if z and
y are comparable. Unfortunately, this strict notion of conflict can lead to
difficulties such as there not being enough rooms to meet the demand for
meeting space. One solution adds some flexibility by assigning both an
interval I, = [L(v), R(v)] and a real tolerance, ¢, where 0 < t, < |I| to
each event. In this interpretation, z < y if and only if L(z) < L(y) and
|Iz N I)| < min{t;,t,}. Thus two events may still be comparable even if
their assigned intervals intersect. We can think of the intersection as a time
period in which they would share the resource, such as a meeting room.

Posets that can be represented in this way are called bounded tolerance
orders. They were first studied in [8] and [9] via their incomparability
graphs as the class of bounded tolerance graphs.

In a representation of a bounded tolerance order, if I, C I, then [z N
L] = |I;| > t; > min{ts,ty} so z || y. Thus we can have a non-empty
intersection between the intervals assigned to comparable elements only
when that intersection is at the beginning or the end of each interval. An
even broader class of orders was introduced in [3] motivated by the idea
that the length of intersection a meeting may be willing to tolerate at the
beginning could be different from the amount it would tolerate at the end.

Definition 1. An order P = (V, <) is a bounded bitolerance order if each
v € V can be assigned a real interval I, = [L(v), R(v)] and two additional
tolerant points p(v),q(v) € I, satisfying p(v) # L(v) and q(v) # R(v)
so that z < y if and only if R(z) < p(y) and g(z) < L(y). The quantity
t(v) = p(v) — L(v) > 0 is the left tolerance of v and t,(v) = R(v) —q(v) >0
is the right tolerance of v. The collection (Z,p,q), where Z = {I, |v € V},
p={p(v) |ve V}and g={g(v) | v € V} is called a bounded bitolerance
representation.

Figure 1 shows the order 3 + 2 and a bounded bitolerance representation
of it. In this and later representations, we use rectangles (resp. ellipses)
to denote the location of tolerant points p(v) (resp. g(v)). More generally,
the order r + s consists of two chains: z; < z2 < -+ < zr and i1 < y2 <
.+« < yg, With z; incomparable to y; for every i and j. Orders of the form
r + s appear repeatedly in Section 2.

The class of bounded bitolerance orders is equivalent to two well-known
classes of posets. The first are posets of interval dimension at most two
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Figure 1: The order 3 + 2 and a bounded bitolerance representation of it.

(denoted by idim < 2), that is, posets that can be written as the inter-
section of two interval orders. The second are trapezoid orders, introduced
in [4]. Dagan et al. [4] prove that these two classes are equivalent, and
Langley [11] observed that they are also equivalent to the class of bounded

bitolerance orders.
Subclasses of bounded bitolerance orders have been studied based on
three kinds of restrictions.

Restrictions on Intervals I,

Definition 2. (Unit): P is a unit bitolerance order if it has a bounded
bitolerance representation (Z, p, g) in which |I;| = || for all z,y € V.

Definition 3. (Proper): P is a proper bitolerance order if it has a bounded
bitolerance representation (Z,p, q) in which I, ¢ I, for all z,y € V.

Restrictions on Tolerant Points p(v), q(v)

Definition 4. (Point-core): P is a point-core bitolerance order (or point-
core order) if it has a bounded bitolerance representation (Z, p, q) in which
p(v) = g(v) for all v € V. In this case we call this point the splitting point
of I, denote it by f(v) = p(v) = g(v), and denote the representation by
(Z, 1)

Definition 5. (Totally Bounded): P is a totally bounded bitolerance
order if it has a bounded bitolerance representation (Z, p, g) in which p(v) <
gv)forallve V.

Restrictions on Left and Right Tolerance

Definition 6. (Tolerance): P is a bounded tolerance order if it has a
bounded bitolerance representation (Z,p,q) in which ¢;(v) = t.(v) for all
v € V. In this case we write £, = £;(v) = t.(v).
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Figure 2: Restrictions which can be placed on bounded bitolerance repre-
sentations.

Analogous to the totally bounded restriction is one in which g(v) < p(v)
for all v. However, this does not place a substantive restriction on bounded
bitolerance representations, as we show in Proposition 8. One can also show
that the definition of a bounded tolerance order given in Definition 6 agrees
with the one presented earlier.

Each of the three categories of restriction is independent. For example,
a restriction on interval lengths (such as “unit”) can be applied with or
without a restriction on p and ¢ (such as “totally bounded”). In addition,
we also have the option of not applying any of the restrictions in a cate-
gory. The chart in Figure 2 summarizes the possible restrictions, where “-”
denotes no restriction in that category.

Choosing one restriction from each category gives a total of 18 classes
of bounded bitolerance orders, some of which turn out to be equivalent.
These classes are listed by their abbreviations in Figure 3, and referred to
by these abbreviations throughout this paper. For example, (1bii) is the
class of unit totally bounded bitolerance orders, while (2ci) is the class of
proper tolerance orders.

Bogart and Trenk [3] consider nine of the classes (in the order listed
below) which arise from allowing one restriction from the first two categories
and one restriction from the third: (1ci), (3ai), (1cii), (2ci), (2cii), (3bi),
(3bii), (3ci), and (3cii). Fishburn and Trotter (6] consider some of these
classes plus point-core bitolerance orders (3aii) which they call split interval
orders and unit point-core bitolerance orders (laii), which they call split
semiorders.

We end this section with a lemma about distinctness of endpoints and
tolerant points and a note afterwards about distinctness of tolerances. In
many previous papers on tolerance graphs and orders it is noted without
proof that one can find a representation with distinct endpoints, tolerant
points and tolerances. This fact is not immediately obvious when additional
conditions such as unit or proper are assumed. Indeed in [6] there is a
lengthy proof of two variants on this comment. Here we provide a short
proof.

Lemma 7. If P = (V, <) is a member of any of the 18 classes of bitol-
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erance orders obtained using the restrictions in Figure 2, then it has a
representation in which all endpoints and tolerant points are distinct. If P
is a unit or proper interval order, then it has a representation in which all
endpoints are distinct.

Proof. Fix a bounded bitolerance representation (Z,p,q) of P = (V,E).
Assume that V = {1,2,...,|V|} and let € be the smallest positive dis-
tance between two distinct points in {L(z), p(z), ¢(z), R(z)|z € V}. Form
a new representation with L'(x) = L(z) — €/10 + ¢/10°+2, p'(z) = p(z) —
€/10% + €/10°*2, ¢'(z) = g(z) + €/10% + €/10°*2 and R'(z) = R(z) +
€/10 + €/10°*2, The following are straightforward to check from the def-
initions of L'(x),p'(z),¢'(z), R'(z) and the use of terms involving e: the
prime representation has all endpoints and tolerant points distinct, if the
original representation was proper or unit or totally bounded or satisfied
the ‘tolerance’ property then so is the prime representation. It remains to
check that the prime representation also represents P. If p(y) — R(z) > 0
then by the choice of ¢, p(y) — R(z) > € and thus p'(y) — R'(z) = (p(y) —
€/10% + €/10v+2) — (R(x) + €/10 + €/10%*2) > 0. If p(y) — R(z) < 0 then
P'(y)—R'(z) = (p(y) — €/102+¢€/10¥*2) — (R(z) +¢/10 +¢/10%*2) < 0 since
(—€/10%+€/10v+2)—(/10+¢€/10°+2) < 0. So R(z) < p(y) & R'(z) < p'(y).
Similarly g(z) < L(y) & ¢'(z) < L'(y).

For point-core representations do as above but omit the terms ¢/102
from p'(z) and ¢'(z) so that p(z) = ¢(z) = p'(z) = ¢'(z). Finally, suppose
P is a unit or proper interval order with a representation in which v € V
is assigned the interval I, = [L(v), R(v)]. Define L'(x) and R'(x) as above.
The prime representation has all endpoints distinct and it is straightforward
to check that the unit or proper property is maintained. In a manner similar
to above we can check that R(z) < L(y) & R'(z) < L'(y) and hence the
prime intervals also represent P. O

Note that if two tolerances are equal the transformation in Lemma 7
maintains this. If in addition we want distinct tolerances, consider the
following additional changes. Let § be the smallest positive distance be-
tween two distinct points in {L'(z),p'(z), ¢ (z), R'(z)|z € V}. Let L"(z) =
L'(z) — 6/10° and R"(z) = R'(z) + 6/10° and let p"(z) = p'(z) and
q""(z) = ¢'(z). This preserves the distinct representation and yields distinct
tolerances. However it does not preserve the unit property. For unit orders
let p"'(z) = p'(x) ~ 6/10% and ¢"'(z) = ¢'(x) +6/10% and let L"'(z) = L'(z)
and R"(z) = R'(z). This preserves the distinct representation and yields
distinct tolerances. However it does not preserve the point-core property.
All of the classes we have considered fit into at least one of the represen-
tations above except for unit point-core tolerance representations which by
defintion have all tolerances equal.
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2 The Hierarchy of Classes

As discussed in the introduction, Figure 3 shows 18 classes of bounded
bitolerance orders listed by their abbreviations from the table in Figure 2.
For easy referral, the table in Figure 2 is repeated at the bottom of Figure 3.
A few additional classes appear in Figure 3 as well. Point-core tolerance
orders (3ai) are also known as 50% tolerance orders since they have rep-
resentations in which the tolerance is half the interval length. The terms
“unit” and “proper” can be applied to interval orders in the natural way.
A unit interval order is a poset that has an interval order representation in
which each interval has the same length. Similarly, a proper interval order
is a poset that has an interval order representation in which no interval
properly contains another.

We first observe that the classes of bounded bitolerance orders in Fig-
ure 3 are ordered by inclusion so that a downward edge from class S to class
T means that class S contains class T. The restrictions in each category
of the table in Figure 2 are listed from most restrictive to least restrictive.
For example the “unit” restriction implies the “proper” restriction, thus we
immediately get inclusions of the type (lai) C (2ai). Each of the inclusions
shown in Figure 3 can be explained in this way and we know of no other
inclusions.

The posets that appear along edges in Figure 3 will be shown to be sep-
arating examples. Their Hasse diagrams appear in Figure 4. Some of these
examples also appear as separating examples in [3] where one separating
example appears along each edge of the diagram in that paper. In this
paper, besides including more classes, we also show the complete cut for all
but one of the separating examples, that is, for each class in Figure 3, one
can see exactly whichof 24+2,3+2,3+3,4+1, A, and B is a member
of that class. The edge between classes (1bi) and (2bi) is the only one for
which we have no separating example.

In the remainder of this section, we justify the claims that are implied by
Figure 3: (1) classes within a box are equivalent, and (2) any example that
appears along an edge between two classes provides a separating example
between those two classes. In section 3 we restrict attention to bipartite
orders. In that setting, we prove that 16 of the 18 classes are equivalent,
generalizing results from (3] and [6].

2.1 Equivalent Classes

The classes that appear together in a box in Figure 3 are equivalent classes.
In Proposition 9 we show that the classes (1aii) and (2aii) are equivalent,
and the classes (1bii) and (2bii) are equivalent. The former was observed
by Fishburn and Reeds [5]. In Theorem 10 we prove the equivalence of the
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Figure 3: Some inclusions and separating examples between classes of bitol-
erance orders.
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classes in the bottom box in Figure 3. The following chart shows where the
proofs of the other equivalences can be found.

Equivalence of classes ... ... proved in
idim < 2/Trapezoid [4]

idim < 2/(3cii) [11]
(1cii)/(2cii)/(3aii) [2] and [11]
(1ci)/(3ai)/50% tolerance [1] and [11]

We begin by proving that bounded bitolerance orders can be represented
so that g(v) < p(v) for each element v as discussed in the introduction. The
transformation used in the next proposition has been used by other authors
for different purposes. In [1] and [11] it is used to show that the class of unit
tolerance orders is equivalent to the class of 50% tolerance orders, and in
[9] the authors use this same transformation to show that tolerance graphs
have representations in which all the intervals in the representation have
a common intersection point. While this transformation is well-known, we
believe that Propsition 8 has not appeared in the literature before.

Proposition 8. If P = (V, <) is a bounded bitolerance order then P has a
representation (Z,p,q) in which g(v) < p(v) for eachv € V.

Proof. Fix a bounded bitolerance representation (Z, p, g) of P in which I, =
[L(v), R(v)]. For any constant M > 0 the intervals I;, = [L’ (v), R'(v)] and
tolerant points p'(v), ¢’ (v) defined by L'(v) = L(v) — M, ¢'(v) = g(v) — M,
p'(v) = p(v) and R'(v) = R(v) give a bounded bitolerance representation
of P. By choosing M sufficiently large, we get a bounded bitolerance rep-
resentation of P in which ¢'(v) < p'(v) foreachv e V. O

Note that the transformation in the proof of Proposition 8 increases the
length of every interval by M and thus it preserves the properties of “unit”
and “proper”. In addition, it increases both the left and right tolerances
by M, thus it also preserves the “tolerance” property.

There are several results in the literature comparing “unit” classes of
interval and tolerance graphs to the analogous “proper” classes, for exam-
ple, see [1, 2, 12, 10, 14]. The next proposition gives two additional results
of this type. The latter is noted and used in [5], but we believe that no
explicit proof of it has appeared previously.

Proposition 9. The classes of unit point-core bitolerance orders (1aii) and
proper poini-core bitolerance orders (2aii) are equivalent. The classes of
unit totally bounded bitolerance orders (1bii) and proper totally bounded
bitolerance orders (2bii) are equivalent.

Proof. The inclusions (1aii) C (2aii) and (1bii) C (2bii) are immediate, so
we need only show the reverse inclusions.
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Observe that two bitolerance representations for which the relative order
of the interval endpoints and tolerant points is the same represent the same
order. Using this observation, we next show that a proper bitolerance
representation can be transformed into a unit bitolerance representation of
the same order. Afterwards we note that the transformation perserves the
“point-core” and “totally bounded” properties.

We proceed by induction. Assume that any proper bitolerance represen-
tation (Z, p, g) of an order P = (V, <) with |V| < n can be transformed into
a unit bitolerance representation of P. Furthermore, assume this can be
accomplished so that the relative order of the set of endpoints and tolerant
points is unchanged.

Let P = (V, <) be a proper bitolerance order with |V| = n and using
Lemma 7, fix a proper bitolerance representation (Z,p,q) of P in which
all endpoints and tolerant points are distinct. Let z be the element with
smallest left endpoint. Since the representation is proper, R(z) is also the
smallest right endpoint. By induction, fix a unit bitolerance representa-
tion (Z’,p’,¢') of P ~ = in which the points in {L'(v),p'(v),q'(v), R'(v) :
v € V — z} appear in the same order as the corresponding points in
{L(v),p(v);q(v),R(v) :v € V —z}.

For concreteness, translate and scale the new representation of P —
z so that the smallest left endpoint is L'(y) = 0 and |I}| = 1 for all
v. Now place R'(z) so that its position with respect to the points in
{L'(v),p'(v),¢'(v), R'(v) : v € V — z} matches the position of R(x) with
respect to the corresponding points in {L(v), p(v),q(v), R(v) : v € V — z}.
We know R'(z) will be the smallest right endpoint in (Z’,p’,q'), thus
R'(z) < R'(y) =1. Set L'(z) = R'(z) —1 < 0, thus L’(z) will be the small-
est left endpoint in (Z’,p’,¢’), as desired. Finally, place p’(z) (resp. ¢'(z))
so that its position relative to points in {L(v),p'(v), ¢’'(v), R'(v) : v € V—z}
matches the position of p(z) (resp. g(z)) with respect to the corresponding
points in {L(v), p(v),q(v), R(v) : v € V — z}.

The new representation is unit. Furthermore, it has the same relative
ordering of the interval endpoints and tolerant points as the original, so
by our observation above, it represents the same order. If the original
representation was point-core (p(v) = g(v) for all v) then since the ordering
was maintained, p’(v) = ¢'(v) for all v, and the new representation is point-
core. Likewise, if the original representation was totally bounded (p(v) <
gq(v) for all v) then again since the ordering was maintained, p’(v) < ¢'(v)
for all v, and the new representation is totally bounded. This completes
the proof. O

We conclude this section with a proof that the classes in the bottom
box of Figure 3 are equivalent.

Theorem 10. The following are equivalent statements about an order P.
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1. P is a unit point-core tolerance order (1ai).

2. P is a proper point-core tolerance order (2ai).

3. P contains neither a 242 nor a 3+1 as an induced suborder.
4. P is a unit interval order.

5. P is a proper interval order.

Proof. The implication (1) => (2) follows from the definitions of “unit”
and “proper” restrictions. The equivalence of (3), (4) and (5) is implied
by the work of [13], and written explicitly in terms of graphs in [12]. The
proof also appears in (7] and elsewhere.

(2) == (3) Fix a proper point-core tolerance representation of P = (V, <
) in which v € V is assigned the interval I, = [L(v), R(v)] and the splitting
point f(v). Since this is a tolerance representation, the splitting point f(v)
lies at the center of the interval I, for each v € V, and as a reminder of this,
we denote it by c(v). For z,y € V we have z < y if and only if R(z) < c(y)
and c(z) < L(y). Hence two elements are comparable exactly when neither
contains the other’s center. In particular z || y if and only if ¢(x) € I, or
c(y) € I,. Note, also, in a proper tolerance representation the endpoints
and center points of intervals occur in the same order, i.e. R(x) < R(y) if
and only if L(z) < L(y) if and only if ¢(z) < c(y).

Now, suppose P has an induced 2+2, that is a subset z,y, z,w € V such
that z < y and z < w are the only comparabilities among them. Without
loss of generality we may assume that ¢(z) < c¢(z) and thus R(z) < R(x).
Now z < y hence ¢(z) < L(y) and so ¢(z) < L(y). Also z < y gives
R(z) < c(y) which implies R(z) < c(y). These two inequalities together
imply 2z < y, a contradiction.

Next suppose P has an induced 3+1, that is z,y,z,w € V such that
x < y < z are the only comparabilities among them. Since r <y < z we
have R(z) < c(y) < L(z), also R(y) < ¢(z) and ¢(z) < L(y). Now w || = so
either c(w) € I or ¢(z) € I.

Case 1: If c(w) € I, then c(w) < R(z) < c(y) < L(2). Since P is proper
c(w) < c(y) implies R(w) < R(y). This combined with R(y) < c(2) gives
R(w) < ¢(2). And so we have w < z, a contradiction.

Case 2: If ¢(z) € I, we have L(w) < ¢(z) < L(y). Since P is proper this
implies R(w) < R(y) < ¢(2) and ¢(w) < c(y) < L(z). Together these imply
w < 2, a contradiction.

This completes the proof of (2) implies (3).

(4) = (1) Let T = {I,Jv € V} be a unit interval representation of
P = (V,<). By Lemma 7 we may assume the endpoints of intervals are
distinct. Let M = |I,| for all v € V, and let ¢ equal the smallest positive
distance between any two distinct endpoints in the representation. It is not
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hard to see that the intervals {I, = [L(v), R(v)]|v € V}, and tolerant points
p(v) = L(v) + ¢/2, g(v) = R(v) — ¢/2 for all v € V, give a unit tolerance
representation of P. Furthermore, the quantity core(v) = g(v) — p(v) =
M — € is constant for all v € V in this representation.

Now form a new set of intervals {I,Jv € V} by fixing R(v) and p(v)
and shifting to the left L(v) and ¢(v) by core(v) for all v € V. That is:
R'(v) = R(v), p'(v) = p(v), while L'(v) = L(v) — (M —¢) and ¢'(v) =
q(v) — (g(v) — p(v)) = p(v). Note that this is the same transformation used
in the proof of Proposition 8. These new intervals give a unit point-core
representation of an order @ = (V, <’) and we claim Q = P.

By shifting L(v) and g(v) by the same constant for all v € V they have
the same relative order in Q as in P; namely:

q(z) < L(y) <= q(z) -~ (M —€) < L(y) - (M —¢€) <= ¢'(z) <L'(y).
Similarly, R(v) and p(v) are fixed for all v € V where
R(z) <ply) < R'(z) <p'(y).

Thus z < y in P if and only if 2 <" y in Q. ]

2.2 Separating examples

In this section we provide the details that justify the placement of orders
2+2,8+2,3+3,4+1, A and B as separating examples in Figure 3.
Whenever one of these orders appears along an edge in Figure 3 we prove
it is a member of the larger class and not a member of the smaller class.

Several of these examples appear in [3]. The eleven element order shown
was proven to separate the classes of unit tolerance orders (1ci) and proper
tolerance orders (2ci) in [1]. The main result of [1], that the classes of
unit tolerance orders and proper tolerance orders are unequal, provides a
contrast to the many “unit = proper” results mentioned prior to Propo-
sition 9. The edge between classes (1bi) and (2bi), for which we have no
separating example, is another instance of comparing classes of unit and
proper tolerance orders.

2.2.1 The Orders 2+2and 3+ 3

Theorem 11. The orders 2 + 2 and 3 + 3 in Figure 4 separate the classes
indicated in Figure 3.

Proof. 1t is easy to check that the order 2 + 2 is a member of the classes
(1aii/2aii) and (1bi), however it is not a member of (1ai/2ai) by Theorem 10.
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Figure 4: Orders that appear as separating examples in Figure 3.

We next show that whenever 8 + 3 appears on an edge between two
classes in Figure 3, it belongs to the larger class but not to the smaller
class. First we show that 3 + 3 belongs to the classes (3ci) and (3cii).

The following bounded tolerance representation of 3 + 3 uses the label-
ing in Figure 4 and assigns I, = [L(v), R(v)], p(v) = R(v) and g(v) = L(v)
forallve V: I, = 1,10], I = [2,11], I = [3,12], I = [4,5], I, = [6,7],
I, = [8,9]. By containment, it then follows that 3 + 3 is a bounded bitol-
erance order (3cii).

In [3] it is shown that order 3 + 3 is not a totally bounded bitolerance
order (3bii). It then follows that 3 + 3 is not a member of the more restric-
tive classes (3bi) and (1cii/2cii/3aii). The latter in turn implies that 3 + 3
is not a member of the class (2ci). ]

2.2.2 The Order 3+ 2

Lemma 12. The order 3 + 2 is not a proper totally bounded bitolerance
order (2bii).

Proof. Suppose we had a proper totally bounded bitolerance representation
(Z,p,q) of the order 3 + 2, labeled as in Figure 4. First we show that the
assumption L(c) < g(z) leads to a contradiction. If L(c) < q(z) then
L(c) < q(z) < L(y) since z < y. Usinga <b<¢ and the fact that the
representation is totally bounded yields R(e) < p(b) < q(b) < L(c) < L(y).
However this means I, is completely to the left of I, contradicting a || y.

Thus q(z) < L(c). Now z || ¢ so we must have R(z) > p(c) and b < ¢
so R(z) > p(c) > R(b). Since the representation is proper we conclude
L(z) > L(b).

Now a || y so either (i) R(a) > p(y) or (ii) L(y) < g(a). We show that
each of these leads to a contradiction. If (i) holds then R(a) > p(y) > R(z)
since 2 < y. Using L(z) > L(b) from above and a < b we have L(a) <
g(a) < L(b) < L(z). Together these imply I C Io, contradicting the fact
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that the representation is proper. If (ii) holds then L(y) < g(a) < L(b) <
L(z) < gq(z) < L(y), a contradiction. O

Theorem 13. The order 3 + 2 separates the classes indicated in Figure S.

Proof. The order 3 + 2, labeled as in Figure 4, is a unit tolerance order (1ci)
using the following representation: I, = [2,12], I, = [3,13], I, = [4,14],
I; = 10,10}, I, = [6,16], and ¢, = |I,| for v = a,b,c and t, = 1/2|],| for
v = z,y. Therefore 3 + 2 is also a member of the larger classes (2ci) and
(1cii/2cii/3aii). In addition, the classes (1ci) and (3ai) are equal and (3ai)
is contained in (3bi), thus 3 + 2 is also a member of (3bi).

It remains to show that 3 + 2 is not a member of the classes (1bii/2bii),
(2bi), and (1bi). Since each of these classes is contained in (2bii), it suffices
to show that 3 + 2 is not a member of (2bii), which is done in Lemma 12.

O

2.2.3 The Order 4+1

Lemma 14. The order 4+ 1 is not a proper point-core bitolerance order
(1aii).

Proof. Suppose we had a proper point-core bitolerance representation (Z, f)
of the order 4 + 1, labeled as in Figure 4. Since @ < b < ¢ < d we have
the inequalities: f(a) < L(b), R(a) < f(b) < L(c), R(b) < f(c) < L(d),
R(c) < f(d).

First consider the case in which L(z) > f(a). Since z || a we must
have f(z) < R(a). Using the inequalities above and L(c) < f(c), we obtain
f(z) < L(d). But z || d so we must have R(z) > f(d). Now we have
R(z) > f(d) > R(c) and L(z) < f(z) < R(a) < L(c), which implies that
I, is a proper subset of I, a contradiction.

Therefore we must have L(z) < f(a). Using the inequalities above, we
have L(z) < L(b), and since the representation is proper we must have
R(x) < R(b) which in turn implies R(z) < L(d) < f(d). Since z || d
we must have L(d) < f(z) which implies L(d) < f(z) < R(z) < L(d), a
contradiction. a

Theorem 15. The order 4 + 1 separates the classes indicated in Figure 3.

Proof. The order 4 + 1, labeled as in Figure 4, is a unit totally bounded
tolerance order (1bi) using the following representation: I, = [0,20}, I, =
[11,31), I, = [22,42], I; = [33,53], I, = [17,37], and t; = 1 and t, = 10 for
v = a,b, ¢,d. Therefore 4 + 1 is also a member of the larger class (1bii/2bii).

In Lemma 14 we show that 4 + 1 is not a member of the class (1aii/2aii)
and therefore it is not a member of the smaller class (1ai/2ai). O
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Figure 5: A unit point-core bitolerance representation of order A.

2.2.4 The Order A
Lemma 16. The order A in Figure 4 is not a proper tolerance order (2ci).

Proof. Suppose A = (V, <) were a proper tolerance order and fix a proper
tolerance representation of A in which v € V is assigned the interval I, =
[L(v), R(v)] and the tolerant points p(v),g(v) € I,. By symmetry we may
assume L(b) < L(y), and thus, since the representation is proper, R(b) <
R(y).

First we show ¢, < t,. Since y < z we have R(y) < p(z) thus R(b) <
R(y) < p(z). But b || z so we must have L(2) < g(b). In addition, q(y) <
L(z) (since y < 2) so g(y) < q(b). Hence t, = R(b)—q(b) < R(y)—q(y) =1y
as desired.”

Next we show the opposite inequality t, < ¢, must also hold, a contra-
diction. Since a < b we have g(a) < L(b). Combining this with our original
assumption L(b) < L(y) yields g(a) < L(y). But a || y so p(y) < R(a).
Now R(a) < p(b) (since a < b) so p(y) < p(b). Using this last inequality
and our assumption L(b) < L(y) gives ty = p(y) — L(y) < p(b) — L(b) = t»,
a contradiction. m}

Theorem 17. The order A in Figure 4 separates the classes indicated in
Figure .

Figure 5 shows a unit point-core bitolerance representation of order A
in which the oval and rectangle in interval I; mark the location of the
splitting point f(i) = p(i) = ¢(i). Thus A is a member of the class (1aii),
and therefore is also a member of the larger class (1bii/2bii).

The order A is a totally bounded tolerance order (3bi) using the rep-
resentation: I, = [1,11] p(a) = g(a) = 6, I = [7,17] p(b) = q(b) = 12,
I, = [13,23] plc) = qlc) = 18, I, = [7,9] p(z) = q(z) = 8, I, = [9,15]
p(y) =10 g(y) = 14, and I, = [15,17] p(z) = g(z) = 16. Thus A is also a
member of the larger class (3ci).
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In Lemma 16 we proved that order A is not a proper tolerance order
(2ci). Hence is not a member of the smaller classes (2bi), and (2ai). This
completes the proof.

2.2.5 The Order B

Lemma 18. The order B in Figure 4 is not a point-core bitolerance order
(3aii).

Proof. For a contradiction, suppose B were a point-core bitolerance order.
Fix a point-core bitolerance representation of B in which element w is
assigned interval I,, = [L(w), R(w)] and splitting point f(w). Recall that
i < j if and only if R(:) < f(j) and f(i) < L(j). Thus if i | j and one of
these inequalities holds, then the other must be reversed.

By symmetry, we may assume that

f() < fv). 1)

Claim 1: f(2) < f(¢).

Since y < z we know f(y) < L(z). Combining this with (1) yields
f(b) < L(z). But b || z so f(2) < R(b). Now b < ¢ so R(b) < f(c), which
combined with the previous inequality yields f(2) < f(c) as desired.
Claim 2: f(z) < f(a).

Since @ < b we know R(a) < f(b) which combined with (1) yields
R(e) < f(y). However, a || y so we must have L(y) < f(a). This last
inequality together with f(z) < L(y) (because z < y) gives f(z) < f(a) as
desired.

Now we consider the relative positions of f(u) and f(v). First suppose
f(u) > f(v). Since z < v we have R(z) < f(v) and thus

R(z) < f(u). | 2)

But a < u so f(a) < L(u) and by Claim 2 we have f(z) < L(u). This
last inequality combined with (2) imply = < u, a contradiction.
Otherwise, f(u) < f(v). Since v < ¢ we have f(v) < L(c) which gives

f(u) < L(e). 3)

However, u < z so R(u) < f(z) and combining this with Claim 1 yields
R(u) < f(c). This last inequality together with (3) imply u < ¢, a contra-
diction. O

Lemma 19. The order B in Figure 4 is not a bounded tolerance order
(3ci).
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Proof. For a contradiction, suppose B = (V, <) were a bounded tolerance
order. Fix a bounded tolerance representation of B in which w € V is
assigned the interval I, = [L(w), R(w)] and the tolerant points p(w), ¢(w) €
I,,. Since this is a tolerance representation, we have t,, = p(w) — L(w) =
R(w)—g(w) for each w € V. By definition, s < w if and only if R(s) < p(w)
and g(s) < L(w). Thus if s || w and one of these two inequalities holds,
then the other inequality must be reversed. We use this line of reasoning
repeatedly.

Without loss of generality we may assume g(e) < ¢(z).
Claim 1: t, <tp

Since z < y we have g(z) < L(y) so g(a) < L(y). But a || y so we must
have

_ p(y) < R(a). (4)
We also know R(a) < p(b) because a < b. Combining this with (4) yields
p(y) < p(b). (5)

Now R(z) < p(y) because z < y so using (4) gives

R(z) < R(a). (6)

Combining (6) with R(a) < p(b) above we get R(z) < p(b). But z || b
so we must have L(b) < g(z). This together with g(z) < L(y) (because
z < y) yields

L(b) < L(y). (M

Now using (5) and (7) we have, t, = p(y) — L(y) < p(b) — L(b) = t5 as
desired. This proves claim 1.

Claim 2: ¢, <ty

The proof is the same as that of Claim 1 with v in place of y and v in
place of b.

We can obtain a bounded tolerance representation of the dual of the
order B by reflecting our representation about the y-axis. More precisely,
the intervals I, = [L'(w), R'(w)] and tolerant points p'(w),q (w) € I'(w)
form a bounded tolerance representation of the dual of B where

L'(w) = —R(w), R'(w)=-L(w), p'(w)=—g(w), and ¢'(w) = —p(w).

Note that all tolerances remain the same. Since B is isomorphic to its
dual, the proof of claim 1 can be applied again. Thus qd(c) £ ¢(z) =
ty < tp and t, < ty, the latter of which contradicts claim 2. Similarly,
q'(2) < ¢'(c) = ty < ty and t, < ty, the former of which contradicts claim
1. In either case we get a contradiction. O
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i | L@) | p() [ a(i) [ R()
x] 1] 2] 5| 14
y| 7 |15 16| 24
z| 17 | 25 | 27 | 28
al 3| 4| 8|1
b| 9 | 12|19 21
c| 20 222 |27
ul 10|13 ] 16 | 23
vl 6 | 15] 18| 21

Figure 6: A totally bounded bitolerance representation of order B.

Theorem 20. The order B in Figure 4 separates the classes indicated in
Figure 3.

Proof. Figure 6 gives a representation of the order B as a totally bounded
bitolerance order (3bii), thus B is also a member of the larger class (3cii).

It remains to show that order B is not a member of the classes (3ci),
(3bi) and (1cii/2cii/3aii). In Lemma 18 we showed that the order B is not
a member of the class of point-core bitolerance orders (3aii/1dii/2dii), and
in Lemma 19 we showed that the order B is not in the class of bounded
tolerance orders (3ci), thus B is not a member of the more restrictive class
(3bi). This accounts for all occurrences of B in Figure 3. O

3 The Bipartite Order Setting

An ordered set P = (V, <) is bipartite (also called height 2) if there are no
three elements z,y,z € V with £ < y < 2. In Figure 3, all the separating
examples shown (except for the copies of 2+ 2 at the bottom) are not
bipartite orders. Indeed the following theorem shows that there are no
bipartite separating examples because all of these classes (except the four in
the bottom box) are equivalent in the bipartite domain. Figure 7 illustrates
this result by showing the classes in Figure 3 in the case that only bipartite
orders are considered.

Theorem 21 generalizes the results in [3] and [6], where fewer classes
were considered. The proof of Theorem 21 involves the following condition
from (3] on indexing the maximal and minimal non-isolates in a bipartite
order.

A bipartite order P satisfies the Indexzing Condition if the minimal non-
isolates can be indexed {z;,232,... ,Zm} and the maximal non-isolates can
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Figure 7: The hierarchy of Figure 3 collapsed in the case of bipartite orders.

be indexed {y1,%2,--- > Yn} so that whenever z; | y; we have either zx | v;
forallk:1<k<iorz;|ysforallk:1<k<j.

Theorem 21. Within the domain of bipartite orders, all the classes in Fig-
ure 8 are equivalent, except for the four classes in the bottom boz. Moreover,
a bipartite order is o member of these equivalent classes if and only if it
satisfies the indexing condition.

Proof. Because of the inclusions in Figure 3, it suffices to prove the following
two results. (A) If idim(P) < 2 then P satisfies the indexing condition.
(B) If P satisfies the indexing condition, then P is contained in each of the
classes (1aii) and (1bi).

Result (A) is proven in [3]. In addition, the authors prove that if P
satisfies the indexing condition then P is a unit tolerance order (1ci). In-
deed, the construction in [3] produces a unit tolerance representation that
is also totally bounded (1bi), however, the authors do not note this. Here
we prove the remaining part of (B).

Let P = (V,<) be a bipartite ordered set whose minimal non-isolated
elements X = {z1,Z2,... ,Tm} and maximal non-isolated elements Y =
{y1,¥2, ... > yn} are indexed according to the indexing condition. Let Z be
the set of isolated elements in P, thus V = X UY U Z is a partition of V.
Finally, let M' = max{m,n} and fix a constant C>4M —1.

We next construct a unit point-core bitolerance representation (Z, f } of
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Figure 8: An ordered set and a unit point-core bitolerance representation
of it.

P in which each interval has length C. The construction is illustrated in
Figure 8 in the case C =4M — 1 = 15.

e For each z; € X, let f(z;) =—-(M+1i-1).
e Foreachy; €Y, let f(y;)=M+j—1.
e For each x; € X, let L(z;) = R(z;) — C where

Rlz:) = fly)—1/2 ifzi <y
¢ flye) —1/2 ifz; <yrandz; ||y foralll:1<I<k.

e For each y; €Y, let R(y;) = L(y;) + C where

L( .)= f(21)+1/2 if < Yj
Yi Flae) +1/2 ifzp <yjanda || y; foralll:1<I<k.

e For each isolate z € Z, let I, = [-C/2,C/2] and f(z) = 0.
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It remains to show that if @ = (V, <) is the unit point-core bitolerance
order with representation above then @ = P. We show v < w if and only
if v <’ w for all v,w € V using four cases.

Case 1: v,w € X:

Let v = z; and w = z;. Since every pair of elements in X is incompa-

rable in P, we must show z; || z; in Q. Note that

L(z;) = R(z;)-C < (2M—-1)—(4M~1) = =2M < —(M+m~1) < g(z:),

so z; A’ z;. By symmetry, z; £ x;, thus z; || z; in Q.
Case 2: v,wE€Y:

The proof is similar to Case 1.
Case 3: veV,w=2¢€2:

Since z is an isolated element of P, we know z || v in P and must show
z || v in Q. We know v £’ z because R(v) > 0 = f(z) and z £’ v because
f(2) =0> L(v). Hence z || v in Q.

Case 4: v=z;€ X,w=y; €Y:

If z; < y; then by the definitions of R(z;) and L(y;), we know R(z:) <
f(y;) and L(y;) > f(z:), so z: <’ y;-

Otherwise, z; || y; in P. By the indexing condition, either (i) z; ||
inPforalll:1<!<j,or(ii)a || yjin Pforalll:1<1!<i. Incase
(i), R(z;) > f(y;) by definition of R(z;), and in case (ii), L(y;) < f(z:) by
definition of L(y;). In either case, z; A’ y;. We know y; A’ z; since

R(y;) = L(y;) + C > (—2M +1) + (4M — 1) = 2M > R(z:) > f(z1).

Thus z; || y; in Q as desired. This completes the proof. ]
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