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Abstract

The study of the maximum size ex(n; K;:) of a graph of order
n not containing the complete bipartite graph K, . as a subgraph is
the aim of this paper. We show an upper bound for this extremal
function that is optimum for infinity related values of n and ¢. More-
over, we characterize the corresponding family of extremal graphs.

1 Introduction

We deal with the task of finding out solutions for the extremal problem
consisting in determining the maximal number of edges in a graph of order
n that does not contain a complete bipartite graph K;; as a subgraph,
denoted by the extremal function ez(n; K; ). Likewise, we characterize the
corresponding family of extremal graphs EX (n; K3 ), that is, the family of
graphs of order n and size ez(n; K;,) not containing K, . as a subgraph.
Related with this problem, we have the known extremal problem by
Zarankiewicz [9, 8, 12]. Given G2(n) a bipartite graph with n vertices in
each vertex class, the extremal function z(n, t) denotes the maximal number
of edges in G2(n), in such a way that G2(n) does not contain a copy of the
complete bipartite subgraph K ;.

The functions ex(n; K; ;) and 2(n;t) are intimately connected. For any
fixed value of ¢, it is easy to check that

26.’1,'(17,; Kt,t) < Z(n, t) < 312(271; Kg’g). (1)

Combining expression (1) with certain upperbounds for z(n;t), proved
in [9], we have the next assertion.
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Theorem 1 (See [9]) Given n and t two positive integers, with2 <t <m,
we have that
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Taking into account asymptotic results regarding to z(n; 2) by P. Kovari,
V.T. Sés and P. Turén [10] and by I. Reiman [11], we have that ez(n; K2,2)
is of n3/2. These results, joined to inequality (1), imply that

ezx(n; Ko2) < % (1 +v/4n —3). P. Erdés, A. Rnyi and V.T. Sés [6] no-

ticed that certain graphs constructed by Erdés and Rényi (5] show that
inequality (1) is asymptotically the best possible. This was also proved in-
dependently by W.G. Brown [2]. Finally, Z. Fiiredi [7] determined
ex(n; K2,2) for infinitely many values of n.

Theorem 2 (See [7]) For every natural number q we have that

1
ez(q’ +q+1;K22) < alg +1)*.
This bound is optimum when q is a prime power.

By applying a result of W.G. Brown [2] regarding to z(n;3), we also
have that ex(n; K3 3) has order n%/3.

In the remaining non mentioned cases, exact values of ez(n; K; ;) and
extremal graphs are unknown. Our purpose in this work is to analyze what
happens when n and ¢ are related and the difference n— 2t is a small value.
Inequality (1) is best possible asymptotically, but however, it is very far
from the exact value for the extremal function when n — 2t is not large.
For this reason our goal is to prove another upperbound for the extremal
function that approaches the exact value for infinitely many pairs of values
(n,t). In fact, we will deduce that this bound is optimum for n = 2t and
n = 2t + 1. Moreover, we will characterize the corresponding family of
extremal graphs.

2 Definitions and Notations

As usual, it is said that a graph G contains the complete bipartite K¢ as
a subgraph, if it is possible to find out two disjoint subsets of t vertices, U
and V, in the set of vertices of G, in such a way that every vertex of U is
adjacent to each one of V.
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For a graph G, we denote by E(G) the set of edges of G and by e(G)
the cardinality of this set; we also denote by v(G) the cardinality of the set
of vertices of G. We denote by dg(v) the degree of v in the graph G, for
any vertex v of G, and by A(G) the maximum degree of G. We also denote
by C, the cycle with s vertices.

In order to avoid excessive repetitions, given a graph H, we will say that

{v1,...,vr} is a decreasing sequence of vertices in H, when it is verified
that
0m;_,(v;) = 1,e‘r,r(lia;{)jc-1){6;;,._,(v)} foreach j=1,...,r,

where Ho = H and Hj is the resultant graph from H by removing the set
{‘Ul, . ,‘Uj}.

Using terminology defined in [3], we say that a graph is bisectable when
its vertex set can be partitioned into two parts of equal size such that there
are no edges between these two parts.

Notations and terminologies not explicitly given here can be found in [1].

3 Main results

Our purpose in this section is to show a sufficient condition to guarantee
that a graph contains the complete bipartite graph K;; as a subgraph.
This result will take us to deduce an upperbound for the extremal function
ez(n; K, ;) that approaches the exact value when n and ¢t are related and
the number n — 2t is not very large. In fact, we will check that the bound
is optimum in the cases n = 2t and n = 2¢ + 1. Finally, for these cases
we will also characterize the corresponding family EX (n; K; ;) of extremal
graphs.
In order to get these goals, we will use this result shown in [4]

Lemma 1 Let k be a nonnegative integer and H a graph with mazimum
degree 2 and at least 3k + 1 vertices of mazimum degree. Then, at least
k +1 of them are independent.

For any graph G with certain order and certain size, the following two
results provide an upper bound for the maximum size of every subgraph of
G of order 2t.

Lemma 2 Let n and t be two positive integers, with n > 2t. Let H be
a graph with n — i vertices and, at most, 2n — 2i — 3t — 1 edges, for
i € {0,...,n — 2t}. If the mazimum degree of H is, at most, 2, then
there exists a subset of n — i — 2t vertices of H, {v1,.. . VUn—i—2¢} in such a
way that the resultant graph of H by removing these vertices has, at most,
t—1 edges.
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Proof.

Let m be a nonnegative integer such that e(H) =2n —2i -3t —1—-m.
For i = n — 2¢, the result is evident, because e(H) = t — 1 — m. Suppose
i < n— 2t — 1. In this case, two cases are possible:

If 2¢(H) — v(H) > 0 then A(H) = 2 and H has, at least,
3(n —i— 2t — 1) + 1 vertices of degree 2. So, by applying Lemma 1,
at least, n — i — 2t of them are independent. But in this case, denoting by
H* the resultant graph by removing these n — i — 2¢ vertices, we deduce
that

e(H*)=e(H)-2(n—i-2t)=t— 1

If 2¢(H) — v(H) < 0 then 2m > 3(n — i — 2t — 1) + L. Thus, if

{v1,...,Vn—i-2¢} is a decreasing sequence of vertices of H and H* is the
resultant graph by removing these vertices, we have that

e(H*)

IN

e(H) - (n—i—2t)
n—i1—t—1-2m
—2n+2i+5t+1
“n+(2n—-4t-2)+5t+1=¢t—-1

INIA I

0

Lemma 3 Let n and t be two positive integers, with n > 2t. Let H be a
graph with n vertices and 2n — 3t — 1 edges. Then there ezists a subset of
n — 2t vertices of H, {v1,--.,Vn-2t} in such a way that the resultant graph
of H by removing these vertices has, at mostt —1 edges.

Proof.

If the maximum degree of H is, at most 2, then, by applying Lemma 2
for i = 0, the result is immediate. Suppose that A(H) > 3.

Let {v1,...,Un—2:} a decreasing sequence of vertices of H.

If A(H;) > 3, for each j € {1,...,n— 2t}, then

e(Hpn-2t) < e(H)-3(n—-2t)=3-n-1<t-1L

If there exists j € {l,...,n — 2¢t — 1} such that A(H;_;) = 3 and
A(H;) < 2, then the graph Hj has v(H;) = m — j vertices and
eH;) <2n—-3t-1-3 <2n—-3t-1-2j edges. So, by applying
Lemma 2, there exists a set of vertices of Hj, {wy,..., Wn—2t—5}, such
that e ((H;j)n—2¢-3) < t — 1. Thus, the resultant graph of H obtained by
removing the set of vertices {v1,...,v5,w1,..., Wn—2¢—;} has, at most £ —1
edges. ) O

The following step consists in showing that every graph of order 2t and
size, at most, t — 1, is always bisectable. This is the goal of the next result.
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Lemma 4 Given a positive integer t, every graph H of order 2t and size,
at most, t — 1, is bisectable.

Proof. We denote by Hi,..., Hg, with k € {1,...,t—1}, the connected
components of H with size, at least, 1. We can suppose that

U(Hl) < 'U(Hz) <...Z5 U(Hk).

If k = 1 the result is trivial, because v(H;) < e(H;) +1 < t. Then,
suppose that k¥ > 2. We consider the following disjoint subsets of vertices
of H:

[%) k
Ut=|JV(H)and V' = | ] V(H)).
i=1 |4+

It is clear, by construction, that |[U*| < |V*|. So, it suffices to show that
V<t
For that, we suppose that |[V*| > ¢ + 1. We know that

k
t—1 > Y e(H)
i=1
> > (v(H)-1)
i=1 -
= U+ Ve —k
> |Uf|+t+1—k.

Thus, k=22 (071> | £| -o(en) 2 25
and this is not possible, because e(H;) > 1.
Hence, |V*| < t and this proves the result. o
The previous results permit us to deduce the following upper bound for
the function ex(n; K; ).

1v(Hl). Therefore, v(H;) £ 1

Theorem 3 Given n and t two positive integers, with n > 2t, it is verified
that
n
: < - (2n - 3t).
ex(n; K z) < (2) (2n - 3¢)

Proof. Let G be a graph of order n and size, at least, (727') —(2n-3t)+1

and we denote by H = G its complement graph. H has order n and size,
at most, 2n — 3t — 1. So, by applying Lemma 3, there exists a subset of
n — 2t vertices of H, {v1,...,Vn—2:}, in such a way that the resultant graph
H,,_3; of H by removing these vertices has, at most, ¢ — 1 edges. And, by
applying Lemma 4, the graph H,,_s; is bisectable.
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Figure 1: Structure of H for n =10 and t = 5.

Hence, G contains K, as a subgraph and the result follows. (m}

Let’s consider the graph G with 2¢ vertices whose complement graph
H is formed by a path with (¢ + 1) vertices and t — 1 isolated vertices
(see Figure 1). It is evident that the graph G does not contain K;, as a
subgraph, because H is not bisectable.

Analogously, let G* be the graph of order 2t 4+ 1 whose complement
graph H* is formed by a cycle of length ¢ + 2 and ¢ — 1 isolated vertices
(see Figure 2). It is impossible to remove one vertex v of H* in such a way
that the resultant graph H — v is bisectable. So, G* does not contain K,
as a subgraph.

Hence, we may deduce that inequality shown in Theorem 3 is optimum,
as we express in this corollary.

H

Figure 2: Structure of H* for n =11 and ¢ = 5.

Corollary 1 Let n and t two positive integers, with 2t <n < 2t+1. Then

ex(n; Kee) = (;) - (2n - 3t).
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From now on, our goal in this work is to find out all the graphs with
order n = 2t and n = 2t+1, and extremal size, not containing the complete
bipartite graph K. as a subgraph. In other words, we will characterize
the families EX (2t; K;;) and EX (2t + 1; Ky ).

Theorem 4 For each positive integer t we have that
e Ift is even, then

EX(2t;Ky3) = {T+ K*': T tree of ordert + 1} .
o If t is odd, then
EX(2t;Kyy) = {T+K*™ 2 T tree of order t +1} U {¢K?} .

Proof.

It sufficies to show that if G € EX(2t; Ky.), then its complement graph
H is formed by one tree of order t+1 and £ —1 isolated vertices or is formed
by t disjoint edges (if ¢ is odd), because the other contention is immediate.

Let G be a graph belonging to the family EX (2¢; K;.) and we denote
by H = G its complement graph. Applying Corollary 1, we have that H
has 2t vertices and ¢ edges. We denote by Hy,...,Hg, with k € {1,...,t},
the connected components of H with size, at least, 1. As in the proof of
Lemma 4, we can suppose that v(H;) < v(Hz) < ... < v(Hg).

Since H is not bisectable, if k = 1, then v(H;) > ¢+ 1. But in this case,

t <v(Hy))—-1<e(H) =t

Thus, H; is a connected graph of order ¢ + 1 and size t. So, Hj is a tree
with ¢ + 1 vertices and, therefore, H is formed by a tree with ¢ 4+ 1 vertices
and ¢t — 1 isolated vertices.

Now, we suppose that £ > 2. Let j > 1 be an integer such that
J Jj+1

D u(H)<tand ) v(H:)>t+1.
=t =
' On the one har:d, since H is not bisectable, we have that

k
> u(H)2t+1 ()
i=j+1
On the other hand,
k
|k
iz|3] @
because, otherwise,
L5) j+1
% > Zv(H) > 2211(}1) >2Y v(H)>2(t+1)>2t
i=1 i=1
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and this is not possible.
So, using inequalities (2) and (3), we deduce that

k k ‘
t41< Y o(H) < Y e(H)+k—j
i=j+1 i=5+1
= = (4)
= t-) e(H)+k—j<t+k-2j
i=1

If k is even, then ¢+ k —2j < t and this is not possible by applying (4).
If k is odd, then, by (3) we have that j > -
(4) we deduce that

and, therefore, using

k-1 i (H.)_k_—_l._'and zk: (H) =t+1
J_ 2 3 : € k¥ S 2 _J A v i) = .
i=1 i=j+1
And, since e(H;) > 1 foralli =1,...,k, then e(H)=1,foralli=1,...,5

i.e., H; = K2, for each i € {1,...,u}.

2

i?l

But, since Z’u(Hi) >t + 1, we have that v (Hk_;c_x_) >t+2—kand
=

therefore, !
k E_1 & k
t= Ze(Hi) = -—2— + Z C(Hi) > Z 'U(Hi) -1
i=1 i=£§—l 1'.'-_.'5;i
> i o k-1>¢

2
because k € {2,...,t}.
Thus, kt 1(t+2 — k) — 1 = t. Therefore, k =t and H; = K2, for all

1€ {E—;—l—, ees ,k} . Hence, t is odd and H is formed by ¢ disjoint edges.
O

Theorem 5 For each positive integer t it is verified that
EX(2t + 1; Kt,t) = {C¢+2 + Kt_l} .

Proof. It is sufficient to show that if G € EX(2t +1; K;;), then its
complement graph H is formed by one cycle of order ¢ +2 and ¢t —1 isolated
vertices.
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Let G be a graph belonging to the family EX (2t+1; K, ;) and we denote
by H = G its complement graph. Applying Corollary 1, we know that H
has 2t 4 1 vertices and ¢ + 2 edges.

It is clear that A(H) = 2, because otherwise, we can remove one vertex
of degree, at least, 3 from H and the resultant graph H* has order 2t and
size, at most, £ —1. But in this case, by applying Lemma 4, H* is bisectable
and, therefore, G contains K, as a subgraph, and this is not possible.

Moreover, since G is an extremal graph and the maximum degree of H
is 2, by applying Corollary 1 and Theorem 4, for each removed vertex of
H with degree 2, there are only two possible resultant graphs,

Py U(t—1)K? or tK? if t is odd.

But in this case, the unique possible graph verifying this consequence is
H = Cy42U (t — 1)K?, and this proves the result. m]

4 Conclusions

In this work we have studied the extremal function ez(n; K; ;) for related
values of n and ¢ being n — 2t non very large. We have found out the exact
value and characterized the family of extremal graphs when 2t < n < 2t+1.
Moreover, we have proved an upper bound that can be a good approach to
find out new solutions.
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Abstract

A composition of a positive integer n consists of an ordered se-
quence of positive integers whose sum is n. A palindromic composi-
tion is one for which the sequence is the same from left to right as
from right to left. This paper shows various ways of generating all
palindromic compositions, counts the number of times each integer
appears as a summand among all the palindromic compositions of n,
and describes several patterns among the numbers generated in the
process of enumeration.
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1 Introduction

A composition of a positive integer n consists of an ordered sequence of
positive integers whose sum is n. It is well-known that there are 271
compositions of n (see for example [3]). A palindromic composition is one
for which the sequence is the same from left to right as from right to left.
For the remainder of this paper we will refer to such compositions by the
short-hand term palindrome. Compositions can also be thought of as tilings
of a 1 x n board, with 1 x k tiles of integer length k, 1 < k < n. In this
setting, a composition of n with j summands or parts is created by making
j — 1 vertical cuts on the 1 x n board. This viewpoint allows for easy
combinatorial proofs of certain facts and will be used when advantageous.

The question concerning the number of times a particular summand
k occurs in all compositions of n has been answered by one of the authors
in [3]. Furthermore, Chinn et al. showed that the number of times k ap-
pears as a summand in compositions of n is equal to the number of times
k +1 appears in compositions of n + 1. Alladi and Hoggatt enumerated the
number of times the summands 1 and 2 occur in all compositions and palin-
dromes containing only these two summands [1]. Grimaldi has investigated
compositions with odd summands, and expressed the number of times a
1 occurs in all compositions of n with odd summands as a specific linear
combination of Lucas and Fibonacci numbers [4]. Furthermore, the occur-
rence of the number 2k + 1 in all compositions of n with odd summands
equals the number of 1s in all compositions of n — 2k with odd summands.
We will show a somewhat similar result for palindromes, namely that the
number of times the summand k occurs in a palindrome of a specific size
can sometimes be reduced to the number of 1s in all palindromes of a cer-
tain smaller size. In addition, the sequence of values of occurences of 1s
in palindromes of even and odd values of n, respectively, matches known
sequences (A057711 and AG01792 in [7]).

Section 2 contains notation and a few basic observations that will
be used throughout the rest of the paper. In Section 3, we describe two
methods of generating palindromes, and give a formula for the total number
of palindromes. Section 4 contains explicit formulas for R, (k), the number
of times the number k occurs as a summand among all the palindromes of
n. We conclude in Sections 5 and 6 by discussing the various patterns found
within the table of values for R,(k), and give combinatorial or analytical
proofs for these patterns.
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2 Notation and General Observations

Before deriving specific results, we will define our notation, and state a
remark which will be used in later sections. Let

Cr = the number of compositions of n, where Cg := 1

P, = the number of palindromes of n, where Py := 1

R.(k) = the number of repetitions of the integer k in all
palindromes of n.

Remark 1 1. A palindrome of an odd integer n always has an odd num-
ber of summands, and the middle summand must be an odd integer.

2. A palindrome of an even integer n can have an odd number of sum-
mands with an even summand in the center or an even number of
summands and no middle summand.

We will refer to a palindrome of the latter type as having an even split.

3 Generating Palindromes

Palindromes can be created in a number of ways, each of which is useful
for some of the proofs in this section. In addition, these different creation
methods illustrate the multiple ways of thinking about palindromes. The
first method creates palindromes using compositions, whereas the second
method creates palindromes recursively. We start by describing the explicit
method of palindrome creation, which consists of combining all possible
middle summands with a composition of an appropriate positive integer
to the left, and with its mirror image on the right. This method will be
referred to as the Ezplicit Palindrome Creation Method (EPCM):

To create a palindrome of n = 2k (n = 2k + 1), combine the
middle summand m = 2l (m = 2l +1), for I = 0,...,k, with a
composition of 25™ = k —[ on the left and its mirror image on
the right. For those palindromes that result from ! = 0, delete
the middle summand of 0.

The second method creates palindromes recursively; to seed this method,
we define a palindrome of n = 0, namely 0. We will refer to this method as
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the Recursive Palindrome Creation Method (RPCM):

Before applying the algorithm, create a middle summand for
palindromes with an even number of summands by replacing the
“4” sign in the center of the palindrome by “4-0+”. (This arti-
fice simplifies the algorithm and allows the treatment of palin-
dromes having an odd and even number of summands, respec-
tively, using the same instructions.)

1. Creating palindromes of 2k + 1 from those of 2k:
Increase the middle summand by 1.

2. Creating palindromes of 2k + 2 from those of 2k:
Create one palindrome by increasing the middle summand
by 2, and another one by replacing the middle summand
mby (B+1)+ (% +1).

Lemma 2  Both the EPCM and the RPCM create all palindromes of n
forn > 1.

Proof: Clearly, the EPCM creates all palindromes of n, without dupli-
cates or omissions. For the RPCM, we need to work a little harder to
show that indeed no duplicates are created, and also that all possible palin-
dromes are created by the algorithm. For easier readability we will refer to
the middle summand(s) of a palindrome of n as m,,. Furthermore, we will
only concentrate on the middle summands, as all other summands remain
unchanged when creating the palindromes of 2k +1 and 2k + 2, respectively,
from those of 2k.

o Palindromes of 2k + 1: Every palindrome of 2k + 1 with middle sum-
mand mgy 4 1 corresponds to a palindrome of 2k whose middle summand
i8 mog 41 — 1. (If mog 4 1 = 1, then the corresponding palindrome of 2k is
the one where the dummy 0 summand is deleted.)

o Palindromes of 2k + 2: No duplicates are created as distinct palindromes
of 2k lead to distinct palindromes of 2k + 2 for each instruction. Fur-
thermore, the first instruction creates palindromes with an odd number
of summands, whereas the second instruction creates palindromes with an
even number of summands. Thus, if a palindrome of 2k + 2 has an odd
number of summands, then it is created from the palindrome of 2k whose
middle summand is moi 2 — 2. If, on the other hand, the palindrome of
2k + 2 has an even number of summands, then it is created from the palin-
drome of 2k whose middle summand is 2 - (mgg 4. 2 — 1). (If moi = 0, then
delete the dummy 0 summand.)
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o Initial conditions: This algorithm creates the one palindrome of n = 1,
namely 1, and the two palindromes of n = 2, namely 2 and 1 + 1, from the
initial condition. a

The recursive method immediately shows some of the structure within
the palindromes.

Remark 3 1. The first rule of the RPCM demonstrates that half of the
palindromes of an odd integer n have a 1 as the middle summand
(since half of the palindromes of n — 1 had @ dummy zero summand).

2. The second rule of the RPCM illustrates that half of all the palin-
dromes of an even integer n have an even number of summands.

Using either the RPCM or the EPCM, we can easily determine the
total number of palindromes of n.

Theorem 4 For k> 0, Py, = Pary1 = 2F, where Py :=1.

Proof: In the RPCM, the number of palindromes stays the same when
creating the palindromes of 2k + 1 from those of 2k, and the number of
palindromes doubles when creating the palindromes of 2k + 2. Thus,

Pory1 =Py and Py =2Py;_1) = 22Py_g) = ... =2¢"1P = 2F

which completes the proof. o

4 The Frequency of k in Palindromes of n

The question regarding how many times the summand &k appears among
all the palindromes of n is motivated by the comparable question regarding
compositions as explored in [3]. The following theorem is proved in that
paper.

Theorem 5 The number of repetitions of the integer k in all of the com-
positions of nis(n—k+3)-2" %2 forn>kand I forn =F.
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The following theorem states the corresponding result for palindromes.
We need to consider different cases according to whether or not » and k
have the same parity, and also according to the relative size of » and k. In
particular, we get a different pattern when n is too small to accommodate
two summands of k within a single palindrome.

Theorem 6 For n < k, R,(k) =0. Ifn and k have different parity, then

k<n<2k
Ra(k) = { zln/zj—k(2 + [ﬂJ k) n>2k

If n and k have the same parity, then

1 n=k
R, (k) = 9(n—k)/2~1 k<n<2k .
gln/2l—k(2 4 | 2| —k+2l5-U) n> 2k

Proof: Let n = 2i or n =2i+1, and k = 24 or 2j + 1, respectively. For
n < k, the palindrome cannot contain the summand k. If n = k, then there
is exactly one palindrome that contains the summand k, namely just k by
itself. If k < n < 2k, then the summand k can occur at most once in any
palindrome, and hence has to occur in the center. This is only possible if n
and k have the same parity (by Remark 1), which implies that Rn(k) =0
if n and k have different parity. If they have the same parity, then the
palindromes that have the summand k in the center can be created using
the explicit method. Thus, the number of repetitions of k is given by the
number of compositions of size (25%) = i — j, which gives R, (k) = 271

If n > 2k, then the summand k can occur in the center, or in symmet-
ric pairs at other positions within the palindrome. To count the different
cases, we will think of the palindrome as a 1 x » board as illustrated in
Figure 1.

1 2 3 4 5 6 7 .. n-l n
Figure 1: Palindrome as a 1 x n board

We will count according to whether a tile of length k starts at position
s, forl < s £ i—k+1, as we will only look at the left half of the
tiling. Tilings that contain a tile of size k starting at position s can be
created by combining the tile of size k¥ with any tiling (i.e., composition)
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of length s — 1 on the left, and a symmetric tiling (i.e., palindrome) of
length n — 2(s — 1) — 2k on the right, and then completing the remainder
of the tiling symmetrically. If n and k£ have the same parity, we also get
occurrences of k in the center.

We look first at the case where n and k have different parity:

i—k+1 f—k+1
Ro(k) = 2- Y Coct-Pagotk-1)=2- 3 Coo1-Paics-tsn)
s=1 =1
i—k+1 '
= 2:Co-Pop_ry+2- Z 232 . gi-s—k+l
8=2
= 2-1.20%F 4 2.2%1. (k) =224 i k) (1)

which gives the formula for R, (k) for n > 2k where n and k have different
parity.

Lastly, we consider the case where n and & have the same parity and
n > 2k. In this case, the number of occurrences of k is given by off-center
ones (as counted in Eq. (1)), plus those that occur in the center. The latter
is given by C;—; = 2'=7~1 (gee the case k < n < 2k). Altogether,

Ra(k) = 2*(2+i—Fk)+2~1
_ 2 FQ2+i—-k+27Y) ifk=2j
T 22+ -k +2) ifk=2j+1
which proves the formula for the case n > 2k where n and k have the same

parity. These two cases can be written using a single formula by noting
that |&tL — 1| gives the correct powers of j — 1 and j, respectively. D

Table 1 displays the values of R,(k) that arise from the formulas
given in Theorem 6. Examining the values in Table 1 led the authors to
observe a variety of patterns. Some of these follow from combinatorial
arguments while others just seem to be consequences of the formulas given
in Theorem 6. In Section 5 we will present those patterns that hold across
the table, and give combinatorial proofs for them. Patterns that hold only
for specific columns will be discussed in Section 6. As before, we let 7 = 2i
orn=2i+1, and k = 2§ or k = 2j + 1, respectively.

5 General Patterns in the Repetitions of k in all Palin-
dromes of n

The most striking pattern in the table is the equality of certain diagonally
adjacent entries. Furthermore, diagonal sequences that start in column 1
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n\k 1 2 3 4 5 6 7 8§ |9 |10
1 1
2 2 1
3 3 0 1
4 6 3 0 1
5 8 2 1 0 1
6 16 8 2 1 0 1
7 20 6 4 0 1 0 1
8 40 20 6 4 0 1 0 1
9 48 16 10 2 2 0 1 0|1
10 96 48 16 10 2 2 0 1 1]0]1
11 112 40 24 6 6 0 2 0 [11]0
12 224 | 112 | 40 24 6 6 0 2 0|1
13 256 96 56 16 | 14 | 2 4 0 {2]0
14 512 | 256 | 96 56 | 16 | 14 | 2 4 10 2
15 576 | 224 | 128 | 40 [ 32 ] 6 |10 | 0 {410
16 | 1152 | 576 | 224 | 128 | 40 | 32 | 6 | 10 | 0 | 4
17 | 1280 | 512 | 288 | 96 | 72 [ 16 [ 22 | 2 | 8 | O
18 | 2560 | 1280 | 512 | 288 | 96 [ 72 | 16 | 22 | 2 | 8
19 | 2816 [ 1152 | 640 | 224 {160 | 40 | 48 | 6 [ 18] O
20 | 5632 [ 2816 | 1152 | 640 [ 224 | 160 | 40 [ 48 | 6 |18
21 | 6144 [ 2560 | 1408 | 512 [ 352 ]| 96 | 104 | 16 | 38 | 2
22 | 12288 | 6144 | 2560 | 1408 | 512 | 352 | 96 | 104 | 16 | 38

Table 1: The number of occurrences of k among all palindromes of n

for n = 2i are repeated on the diagonal that starts in row 2i + 2, with two
new entries inserted at the beginning of the lower diagonal. Note also that
the values that occur on these diagonals are comprised of the values for
even rows in column 1 (above the starting row for the diagonal), in reverse
order.

Theorem 7

a) R2i41(2j) = Raiy2(2j +1) fori>j 2 1.

b) R2i(2j — 1) = Rai43(2j), fori2j2>1.

c) Roypa(2+1) = Rai—21(1) forl > 1.

Proof: a) To show the first equality, note that a palindrome of an odd
integer n must have an odd middle summand; thus, no copy of 2j occurs
in the center. For ¢ > j, pairs of (2j)s can occur. For each pair of sym-
metrically located occurrences of 2j in a palindrome of 2i + 1, there is a
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corresponding palindrome of 2i + 2 which has a pair of symmetrically lo-
cated occurrences of 2j + 1 and whose middle summand is decreased by
one. Since a palindrome of an even integer n cannot have 2j + 1 as the
middle summand, the number of occurrences of 27 in the palindromes of
2i + 1 equals the number of occurrences of 2j + 1 in the palindromes of
2i4+2.

b) To show the second equality, which together with part a) leads to
the repeated diagonals, we make a similar argument. Since a palindrome
of an even integer n must have an even middle summand (possibly 0), no
copy of 2j — 1 occurs in the center. For i > j, pairs of (25 — 1)s can
occur. For each pair of symmetrically located occurrences of 2j — 1 in
a palindrome of 2¢, there is a corresponding palindrome of 2i + 3 which
has a pair of symmetrically located occurrences of 2j and whose middle
summand is increased by 1. Since the palindrome of 2i + 3 cannot have an
even summand in the center, there is a one-to-one correspondence between
the occurrences of the (2j — 1)s in the palindromes of 2i and the (25)s in
the palindromes of 2i 4 3.

¢) Both 2i + 2! and 2i — 2! are even, and we are counting the number
of occurrences of 21 + 1 and 1, respectively. Neither of these can occur
in the center of the palindromes. To make the association between the
palindromes of the two sizes, we think of the palindrome as a symmetric
tiling. For a tiling of length 2i — 21 which has at least one pair of 1 x 1
tiles, replace one pair of 1 x 1 tiles with a pair of 1 x 2! tiles. This increases
the length of the tiling to 2i — 2 + 2(2!) = 2i + 2I, and each pair of 1s in
the shorter tiling has an associated pair of (2! + 1)s in the longer tiling.
Thus, the number of 1s in the palindromes of 2i — 2 equals the number of
(2 + 1)s in the palindromes of 2i + 2I. Figure 2 illustrates this process for
i = 3 and ! = 1 to show that Rg(3) = R4(1). There are two palindromes
of 4 that contain 1s: 1+1+1+1 and 1+2+1, and 3 palindromes of 8 that
contain 3s: 14+3+3+1, 3+1+1+43, and 3+2+43.

11111111 -— 3 111 3
11111 -~ 1 3 3 1
1 2 1 -~ 3 2 3

Figure 2: Replacing pairs of 1s by pairs of (21 + 1)s
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Note that a palindrome of 2¢ — 2! with j pairs of 1s will have j palindromes
of 2i + 21 associated with it. However, the correspondence of the pairs is
one-to-one. O

For diagonals that start in column 1 in a row for odd n, we only
get equality of adjacent pairs, but not a repetition of the whole diagonal
sequence.

Theorem 8 Rgi4+1(25 — 1) = R2i2(2§) fori>j 2> 1

Proof: A palindrome of an odd integer must have an odd middle sum-
mand. If this middle summand is 25 —1, increase it by 1 to get a palindrome
of 2i + 2 with middle summand 2j. For i > j, we also get symmetric pairs
of (25 — 1)s. Increase each 2j — 1 by 1 to 2j, and decrease the middle
summand by 1. Thus, there is a one-to-one correspondence between the
occurrences of 2j — 1 in the palindromes of 2i + 1 and the occurrences of
2j in the palindromes of 2i + 2. |

The next pattern is a bit more complex.

Theorem 9 The sum of two adjacent entries for even n in an appropriate
set of two columns is equal to the sum of the two adjacent entries below
them: ’

R2i(2j) + R2i(2j + 1) = R2i41(2§) + R2i41(25 + 1) fori > j > 1.

Proof: Consider any even palindrome. Using the RPCM, the palindromes
of the next odd integer are generated by increasing the middle summand
by 1. Note, however, that in half of the palindromes of 2i this middle sum-
mand is a dummy 0 and the increase therefore does not change the number
of occurrences of any integer greater than 1; in particular the number of
occurrences of 2j and 2j + 1 remains unchanged. In the other half of the
palindromes of 2i, the middle summand is even and at least 2. Increasing
a middle summand of size 2 leads to a loss in the count of (25)s, which is,
however, compensated for by an increase in the number of (2j +1)s. O

Before stating patterns that are specific to particular columns of
Table 1, we will focus on the values of R,(1) for even and odd values
of n, respectively. For k = 1, the formulas given in Theorem 6 simplify
to Ry(1) = (i +1) - 2! and Rp; (1) = (i+1) - 2°*! for i > 1. For
even n, the sequence of values Ryp;(1), given by {2, 6, 16, 40, 96, 224,
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512, 1152, 2560, 5632, 12288,....}, matches the sequence a(i) defined in
A057711 of [7] (with Rg(1) = a(i — 1)), which arises as the number of
states in a ferry problem [5]. For odd n, the sequence of values Ry;_;(1),
given by {1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144,...}, matches
the sequence a(i) defined in A001792 of [7] (with Ry (1) = a(i)). This
sequence arises in several different contexts, for example in generalizations
of the Stirling number triangles [6] and as a realization of oligomorphic
permutation groups [2].

Now imagine that we “color” all the values that belong to a known
sequence. Due to the repeated diagonals, the sequence for Ry;(1) occurs
in all columns. If k is odd, the sequence occurs in the even rows, and if k
is even, it occurs in the odd rows. The first non-zero value, 2, occurs for
n = 2k+1 when k is even, and for n = 2k when k is odd. If the preceeding
zeros are included, then these values fill all the diagonals that start in an
even row in column 1, giving a checker-board coloring of the table.

We consider the remaining “uncolored” sequences in each column.
In the even rows of column 2, we get the sequence for odd rows of column
1, due to the equality of diagonally adjacent entries, thus column 2 is now
completely “colored”. Likewise, the remaining “uncolored” sequences in
adjacent odd and even columns are the same. We tested these “uncolored”
sequences, {4, 10, 24, 56, 128, 288, 640, 1408, 3072,...} (for columns 3 and
4), {6, 14, 32, 72, 160, 352, 768, 1664, 3584,...} (for columns 5 and 6), {10,
22, 48, 104, 224, 480, 1024, 2176, 4608,...} (for columns 7 and 8), {18, 38,
80, 168, 352, 736, 1536, 3200, 6656,...} (for columns 9 and 10), and {34, 70,
144, 296, 608, 1248, 2560, 5248, 10752,...} (for columns 11 and 12), both
with and without the entries for n < 2k, which are described by a different
formula than those for n > 2k, against the On-Line Encyclopedia of Integer
Sequences [7]. (The sequences above list only the values for n > 2k). The
fact that none of these sequences occurs makes it unlikely that sequences
for values of & > 13 are in the encyclopedia; we are therefore in the process
of submitting this family of related sequences to the encyclopedia.

6 Specific Patterns in the Repetitions of k in all Palin-
dromes of n

The remaining patterns are specific to particular columns of Table 1. We
present only analytical proofs for these, rather than combinatorial ones.
The fact that the patterns hold only for specific columns seems to indicate
that no general method similar to those used in the proofs in Section 5 is
applicable. For each of the following theorems, the range indicated for ¢
ensures that for all values of n and k, = > 2k holds.
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Theorem 10
a) Ryi(1) =2 Ryi41(2) + 271 fori > 2.
b) R2i(1) = R2i12(3) + R2i43(3) fori > 2.

Proof: Using the appropriate formula in Theorem 6, we get:

Ry(1) = 27Y(2+i-1)=2"'(i+1),
2- Rpi1(2) + 271 2.(22(2+i-2))+ 21 =2"1(i + 1), and
Rais2(3) + Raiya(3) = 20¥97%(2+(i+1)-3)
o 426032 4 (5 4+1) -3+ 2)
= 27%(i+i+2)=2""1(Gi+1),

which completes the proof. o

Theorem 11  R2i41(1) = R2i4+4(3) + R2iy3(3) — Raiy2(3) fori > 1.
Proof: From Theorem 6 we get:

Rpipa(1) =272+ - 1+2) =2 +2)
and

Rji1a(3) + R2i4+3(3) — Rait2(3)
= 20¥D-3(2 4 (54 2) - 3)+ 204D 32+ (i +1) -3+ 2Y)
—20+)-3(2 4 (i +1) - 3)
= 272(2641)+ (2+1) —i) =222 +2)+i—9)
= 271§ +2),

which proves the statement. (]

Theorem 12  R3i(2) =2- R2i41(3) fori > 3.
Proof: Again, we use the formula for R, (k) given in Theorem 6.

Ryi(2) = 272(2+i-2+2%)=2"%(+1)
= 2[2732+i-3+2")] =2 R2is1(3)

which completes the proof. ]

The next three theorems seem to have a similar structure, but there
is no general underlying pattern. Furthermore, these types of pattern do
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not seem to occur for larger values of k. The second pattern in Theorem 15
also differs somewhat from the ones of Theorems 13 and 14 in that the
values are expressed as a difference rather than as a sum.

Theorem 13
a) R25+1(2) =4. R2¢_1(3) fori>4.
b) R2i41(2) = R2it2(4) + Roiy3(4) fori > 3.

Proof: Using Theorem 6,
R2i41(2) 22(24i-2)=2""2.4,
4-Rua(3) = 4[2607324 (-1 -3+2Y] =272,

and
Ryit2(4) + Raipa(4) = 20HD-424 (i4+1)-4+2Y)
+20+0)-42 ¢ (5 + 1) - 4)
= 273G+ 1)+ (i -1)) =224,
which proves the desired equalities. 0
Theorem 14

a) Rz;(3) =4. R2¢_2(4) fari 2 5.
b) R2i(3) = R2:i(4) + Rai41 (4) fori > 4.

Proof: The formulas for R,(k) in Theorem 6 give
Rxu(3) = 2732+i-3)=2"3(i-1),
4 Rua(d) = 4 [204@4 (1) -4+2Y)] =275~ 1),

and
Roi(4) + Roiy1(4) = 27%(2+i—4+2Y)+2742+i-4)
= 27Y(i+i-2)=2"3(i-1).
This completes the proof. D
Theorem 15

8) R24(4) =4- R2§_1(5) fO‘I"i >6.
b) R2;(4) = Raia(4) — Raiy2(5) fori > 4.
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Proof: Once more we use the formula for R,(k) given in Theorem 6.

Ry(d) = 274Q2+i—-4+2Y) =271
4 24052+ (- 1) -5+ )] =4- Rua(9)

and
Rairs(4) — Raiga(8) = 20¥0-424(i+1)-4)
—26+D)=5(2 ¢ (i +1) - 5)
= 272> -1)—-(i-2)]=2"*4,
which completes the proof. |
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