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Abstract

The classification of Hadamard matrices of orders n > 32 is still
remains an open and difficult problem. The definition of equivalent
Hadamard matrices gets to have huge complexity as n is getting
bigger. One efficient criterion (K-boxes) used for the construction of
inequivalent Hadamard matrices in order 28.

In this paper we use inequivalent projections of Hadamard ma-
trices and their symmetric Hamming distances to check inequivalent
Hadamard matrices. Using this criterion we developed two algo-
rithms. The first one achieves to find all inequivalent projections in
k columns as well as to classify Hadamard matrices and the second,
which is faster than the first, uses the symmetric Hamming distance
distribution of projections to classify Hadamard matrices. As an
example, we apply the second algorithm to the known inequivalent
Hadamard matrices of orders n = 4, 8,12, 16, 20, 24 and 28.
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1 Introduction

An n-dimensional Hadamard matrix is an » by n matrix of 1’s and —1’s
with HHT = nl,. A Hadamard matrix is said to be normalized if it has
its first row and column all 1’s. If not we can normalize the Hadamard
matrix by multiplying rows and columns by -1 where is needed. In these
matrices, n is necessarily 2 or a multiple of 4. Two Hadamard matrices H 1
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and H, are called equivalent (or Hadamard equivalent, or H-equivalent) if
one can be obtained from the other by a sequence of row negations, row
permutations, column negations and columns permutations.

The discussion of Hadamard equivalence is quite difficult, principally
because of the lack of a good canonical form. The exact results which
have been discovered are as follows : Hadamard matrices of orders less
than 16 are unique up to equivalence. There are precisely five equivalence
classes at order 16, and three equivalence classes at order 20, see [3, 4].
There are precisely 60 equivalence classes at order 24, see [5, 6]. There are
precisely 487 equivalence classes at order 28, see [7, 8]. The classification of
Hadamard matrices of orders n > 32 is still remains an open and difficult
problem since an algorithmic approach of an exhaustive search is an NP
hard problem.

Given two Hadamard matrices of the same order, it can be quite difficult
to tell whether or not they are equivalent, as their order increases.

In this paper we use inequivalent projections of Hadamard matrices to
check inequivalent Hadamard matrices. Using this criterions we developed
two algorithms. The first one achieves to find all inequivalent projections
in k columns and classify the Hadamard matrices of that order. The second
uses the symmetric Hamming distance distribution of their projections to
classify the Hadamard matrices. As an example we apply this criterion to
orders 16 and 20.

In the next section we describe some of the known criterions for the
equivalence of Hadamard matrices. The following criterion (profile) was
given in [1].

2 The profile criterion

Cooper, Milas and Wallis in [1] suggested the profile criterion to investigate
the equivalence of Hadamard matrices. Later Lin, Wallis and Zhu in [11, 12,
13) proposed some modifications of this criterion. Suppose H is a Hadamard
matrix of order 4n with typical entries h;;. We write Pjjxe for the absolute
value of the generalized inner product of rows i, j, kand £:

4n

Pijke = IZ hizhjzhizhez|

z=1

As we said before this criterion does not work in the case of Hadamard
matrices of order n = 20 because it gives the same profile for all three
equivalent classes of Hadamard matrices of this order.

Proposition 1 (see [1]) Pijke = 4n (mod 8).
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We shall write w(m) for the number of sets {3, j, k, £} of four distinct
rows such that Pjjx¢ = m. From the definition and the above we have that
m(m) = 0 unless m > 0 and m = 4n (mod 8). We call m(m) the profile (or
4-profile) of H.

The (unique) matrices of order 4,8 and 12 have profiles

m(4)=1
m(0) =56, w(8)=14
m(4) =495, w(12)=0

respectively.
The five inequivalent classes of order 16 gave four distinct profiles.

class Ho: n(0)=1680, =(8)=0, =(16) =140
class Hy : =(0) = 1488, =(8) =256, =(16) =176
class Hy: =(0) = 1392, m(8) =484, m(16) =44
class Hy : =(0) = 1344, =(8) =448, m(16) =28
class Hy: =(0) = 1344, =(8) =448, =(16) =28

The matrices of class H, are the transposes of the matrices of class Hs.
The three classes of order 20 all gave the same profile:

(4) = 4560, =(12) = 285, 7(20) = 0.

Similarly we can define a more general profile criterion based on more
than 4 rows. For some modifications of the profile such as extended profile
and generalized profile we refer the reader to [12]. We now give a modified
version of the one that was given in [1]. We observe that all the facts which
hold for the rows of a Hadamard matrix are also hold for its columns, as
well.

We write @(m) for the absolute value of the generalized inner product
of m columns, say ¢y, ¢, ..., cn and we call this m-column profile.

4n
Q(m) = |Z hsa hza; -+ hza, |

zr=1

We shall write ¢(s) for the number of sets {ay,as,...,am} of m distinct
rows such that Q(m) = s. From the definition and the above we have that
¢(s) = 0 unless s > 0. We call ¢(s) the m-column profile (or m-cprofile) of
H.

This criterion as well does not work in all case of Hadamard matrices.

3 The K-Matrices and K-boxes criterions

Let H = (h;;) be an Hadamard matrix of order n with 0 < 4,5 < n—1. H is
equivalent H' = (h:J) with h:-,o = h",.jl, 0<i,j<n-1 From H we have
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an incidence matrix D(H) of a symmetric 2 — (v, k,A) design associated
with H, wherev=n—1, k= (v-1)/2, A= (k-1)/2:

1, ifhi ;=1

D(H) = (dij), i,§ =1,2,...,n— 1 where d;,jz{ 0. if b= —1
) 1,0 —

For any different four rows ¢,j,k and m of H, we define a;jkm as

follows: 1. if hiohi b b 1
. . —_ ) 1 ",1' j,f' k!r m,r =
@i j,6,m(T) = { 0, if hirhjrhicrhmy = -1

Then a; jx,m(0) + - - + @i,j,k,m(n — 1) is divisible by 4 (see [10]). Let =
be an integer with 0 < z < n/4. For fixed ¢ and j, let k;,j(z) be a number
of pairs, k and m, of rows such that a; jxm(0) + - -+ @i jkm(n — 1) = 4z.
For 0 < z < n/8 put

o k) R (nfd-2), fz#n/i-z
kh](z)—{ J J k"_,j(z)’ lfm=n/8

Then k; ;(z) does not change by multiplication of rows i or j by —1. By a
permutation of coordinates we assume that k; j(z) < ki,m(z) if j < m. Put

o ki), ifi>j
Kc,a(z)—{ kijaa(z), ifi<j.

The rows of the n x (n — 1) matrix K; ;j(z) are ordered lexicographically,
that is, if i < #' then K; j(z) = K j(z) for j = 1,2,...,n—1, or there exist
an integer j such that K; j(z) = Ky j:(2) for j' < j and K; j(z) < K j(z).
The matrix K(H) = (K; j(z)) is called an associated z-th K-matrizof H.
By the construction of K;(H) we have the following:

Theorem 1 ([10]) Let Hy and Hy be Hadamard matrices of order n which
are equivalent, then K (H,) = Ky(H) for all0 <z < n/8.

Proposition 2 Ifn = 4 (mod 8) them Ko(H) is the zero matriz and K(H)
in [9] is Ky (H) for n = 28.

Theorem 2 Let n = 4 (mod 8) and a, b be two integers with 1 < a,b <
(n—4)/8 orn = 0 (mod 8) and a, b be two integers with 0 < a,b < n/8 then
if we know K, (H) for all m # a,b, Ko(H) and Ky(H) can be obtained.

As mentioned in [10] some inequivalent Hadamard matrices of order
n = 28 have the same K-matrices (only 476 inequivalent Hadamard ma-
trices of order 28 can be obtained). Another method of classification of
Hadamard matrices is the K-boxes criterion (a modified version of K-
matrices criterion).
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For any different six rows i, j,#, 5, k' of H we define a; ; ki i k'

. . a2 ( ) —_ 1’ if hi’rhj'rhk’rhil’rhjl'rhk‘,r = 1
al,Jyk,t',J’.k' )= 0’ if h;"rhj,rhk,rhfl,fhj’,rhklyr - —1

Let = be an integer with 0 < z < n. For fixed 7,5 and k let k; ;x(z) be
a number of triples ¢, and k' of rows such that a; ;s k/(0) + -+
a; ki gk (n — 1) = z. For 0 < z < n/2, put

ki o(2)+ ki un—2), fzén—z
. = i,J.k LI A
k"]'k(x) - { k’-,j’k(.‘l.'), if r= n/2c

Then k; j x(z) does not change by multiplication of rows 7, j or k by —1. By
a permutation of coordinates we assume that k; jx < ki jx if k < k'. Put

' _ k,',j'k(:c), ifi>j
K”J‘k(z) - { ki)j""llk(z)’ if i S j'

Next put

K;;p(®), ifi>k
Kijp(z) = Kijppi(2), fi>k>j ori<k<j
(), ife,j<k

r

Ka',j,k+2

Then, for 0 < i < n — 1, the matrix K; . (H) = (Ki;jx(z)) is of type
(n = 1) x (n — 2). For i we rearrange the matrix K; ;(H) as in the case
of K-matrices. We rearrange the collection of matrices K; o(H) with 0 <
i < n—1 in the following: if i < i/, then matrix K;o(H) equals the
matrix Ki »(H), or there exist integers s and ¢ such that if j < s, then
Kiji(z) = Ky j k() for all &, if k < ¢, then K;,x(z) = Kii s k(z) and
K;i s ¢(z) = Kir 5 ¢(z). We call this collection K B; (H) of n matrices K; - (H)
K-boz of degree z associate with H.

Theorem 3 ([10]) If H, and H, are equivalent Hadamard matrices of
order n then K B,(H,) = KB:(H3) for all0 < z < n/2.

In the next section we present two new criterions to test inequivalence
in Hadamard matrices of order n which are based on their projection prop-
erties and their Hamming distances.

4 The new criterions and the algorithms

In this section we describe two new criterions that can be used to decide if
two Hadamard matrices are inequivalent.
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The idea of the first criterion is that if two Hadamard matrices of order
n are inequivalent then these matrices should have at least one different
projection for some k < n and vice versa (if there exist a k¥ < n such that
the two Hadamard matrices give some different, inequivalent projections,
then these Hadamard matrices are inequivalent).

Now we give in brief the description of our algorithm that can be used
to determine all inequivalent projections for n and k.

First we give the definition of inequivalent projections of a Hadamard
matrix of order n.

Definition 1 Two projections, in k columns, of Hadamard matrices of or-
der n are equivalent if one can be obtained from the other by one or more
of the following transformations

(a) Sign changes in the columns (multiply one or more columns by —1).
(b) Sign changes in the rows (multiply one or more rows by —1).
(¢) Permutations of the columns

(d) Permutations of the rows.

The next algorithm gives us all the inequivalent projections of Hadamard
matrices and through them the inequivalent Hadamard matrices.

The inequivalent projections algorithm:
(i) Set k= 3.

(ii) Find all projections for each Hadamard matrix of a given order n
and k columns by taking all possible & columns of the entire n x n
Hadamard matrix. These are (}) projections in total.

(iii) From the projections found in step (ii) find the inequivalent ones using
definition 1.

(iv) Check if the set of all projections of the first Hadamard matrix is
different (non equivalent) w1th the set of all projections of the second
Hadamard matrix.

(v) If the answer in step (iv) is true then stop and say that these two
Hadamard matrices are inequivalent, otherwise increase k by 1.

(vi) If now k < n then go to step (ii) and continue, otherwise stop and
say that these Hadamard matrices are equivalent.
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In what follows by log(z) we mean loga(z), a > 1.

Lemma 1 Let hy be a projection, in k columns, of a Hadamard matriz of
order n. Then hi cannot contains a full 2 design if k > l,%%%‘%.

Proof. A full 2 experimental design has 2% rows. A Hadamard matrix
of order n has n rows. So if 2¥ > n there cannot be a full 2* design in a &
column projection of this Hadamard matrix. We have that

log(n)

k .

2" >n=>k -log(2) > log(n) = k > log(@) "

Now if k is not an integer we take the next integer number. Thus, if & is
not an integer we have that k > [',:’,g'; ] +1. o

Remark 1 If H;, H; be two inequivalent Hadamard matrices of order n.
The first Hadamard matrix H; will give at least one projection different

(inequivalent) from all the projections of H; for some k > i‘; v 5

Example 1 We give some orders of Hadamard matrices and the bound for
k.

o For n = 2™ we obtain k > m+ 1.
o For n = 12 we obtain & > 4.
o For n = 20 we obtain k > 5.
e For n = 24 we obtain &£ > 5.

o For n = 28 we obtain & > 5.

Lemma 2 For a Hadamard matriz of order n we have that if 2™ < n <
2m+! then k> m+ 1.

Proof. We know that logs(z) function is continuous, and increasing (since
a > 1) function. Moreover, ',—“’,%%% = loga(n). Thus since log,(2™) = m, we

have that if 2™ < n < 2™*! then m < log2(n) < m+1andso k > m+ 1.
o

Theorem 4 If two Hadamard are equivalent then their projections for all
k=2,3,...,n—1 are equivalent as well.
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Proof. Suppose that H; and H, are two equivalent Hadamard matrices
of order n. Then, for a given k, both of them have (;:) projections in total.
From the equivalence of the Hadamard matrices we have that each projec-
tion of the first Hadamard matrix is equivalent with one projection of the
second Hadamard matrix and vise versa. m}

We will now check the complexity of the first new algorithm. First, we
observe that all possible projections of a Hadamard matrix of order n in
k columns are (7). We note that the finding of inequivalent projections is
computationally-intensive work, if we apply the definition of inequivalent
projections. This is an NP hard problem when n and k increase. The sign
changes in the columns (multiply one or more columns by —1) required ok
possible multiplications and the sign changes in the rows (multiply one or
more rows by —1) required 2" possible multiplications. The permutations
of the columns and rearrangements of the rows need k! possible permuta-
tions. That is in total we have 2¥+" . kl. (}) = %’-;—: cases to check and
that’s a large complexity when k or n increases. So, if we are not interested
in finding all inequivalent projections of Hadamard matrices we can ap-
ply the following algorithm which uses all projections and their symmetric
Hamming distance distribution.

The symmetric Hamming distance of two (1, —1) vectors of length n,
is defined to be the smallest number of positions with the same entries
and different entries. For example, the Hamming distance and symmet-
ric Hamming distance of the two vectors (1,1,-1,1,-1,—1,1,—1) and
(1,-1,1,-1,-1,1,-1,1) are 6 and 2 respectively. It is clear that if we
have a Hadamard matrix H of order n, then the Hamming distance as well
as the symmetric Hamming distance of any two distinct rows is n/2.

The Hamming distance distribution (W (z)) and the symmetric Ham-
ming distance distribution (SW(z)), of a projection in k columns, is defined
to be

Wi(z) = ap +ayz' + ...+ axz* and
(k-1)/2

> (@i +ak-i)at, when k is odd
— i=0
SWi(z) =3 )2
Z (a; + ax—i)z’ + ag_:c%, when k is even
=0
respectively, where a,,; is the number describing how many pairs of rows of
the projection have distance m.

Example 2 Consider the projections for k = 3 and n = 8. A Hadamard
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matrix of order 8 is

1 1 1 1 1 1 1
1 1 -1 1 -1 -1 -1
1 -1 -1 -1 1 1 -1
1 -1 1 -1 -1 -1 1
-1 1 1 -1 1 -1 -1
-1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 1 -1
-1 -1 -1 1 1 -1 1

P el e e et b e

Since k& = 3 the projections are all possible 3-sets of columns. We will
Jjust illustrate with the sets of columns 2, 3, 4 and 2, 3, 5.

1 1 1 and 1 1 1

1 1 -1 1 1 1
1 -1 -1 1 -1 -1
1 -1 1 1 -1 -1
-1 1 1 -1 1 -1
-1 1 -1 -1 1 -1
-1 -1 1 -1 -1 1
-1 -1 -1 -1 -1 1

We now consider the distance between all pairs of rows of these 8 x 3
matrices. The first set has distance 3 (4 times), 2 (12 times) and 1 (12
times) so its Hamming distance distribution and its symmetric Hamming
distance distribution is

Wa(z) = 0+ 12z + 1222 4+ 423, SWs(z) = 4+ 24«

respectively, while the second set has 0 (4 times) and 2 (24 times) so its
Hamming distance distribution and its symmetric Hamming distance dis-
tribution is

Ws(z) =4+ 2422, SWa(z) =4+ 24z

respectively. (m]
The Hamming distance distribution Wy (z) is invariant only to permu-
tations of columns or rows, or negations of columns while the symmetric

Hamming distance distribution SWy(z) is invariant to permutations and
negations of both rows and columns.

Lemma 3 Two equivalent projections have the same symmetric Hamming
distance distribution.
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Proof. Let P, = {a1,as,...,ax}, P» = {b1,b2,...,bx} be two rows in a
given projection in k columns. The result follows from the fact that the
symmetric Hamming distance of these two rows is not affected if we apply
some sing changes or permutations to both rows and columns. O

Lemma 4 All projections of two Hadamard matrices Hy, Hy of order n in
k = 1,2 columns are the same (actually these give only one inequivalent
projection) even thought the Hadamard matrices are inequivalent.

Proof. Since any Hadamard matrix is equivalent to its normalized form,
we can suppose that H, H» are normalized. Thus any column of H), H
have half 1’s and half —1’s. The assertion for £ = 1 follows. For the case
k = 2, since any two columns of a Hadamard matrix are orthogonal, it
is easy to see that any projection in & = 2 columns is equivalent to a
projection which is n/4 times the full 22 design. n]

Lemma 5 Let H be a Hadamard matriz of order n. Any two rows of
the Hadamard matriz have Hamming distace distribution and symmetric
Hamming distace distribution W, (z) = SW,(z) = z"/2.

Proof. Let 7 = {r1,r2,...,7,} and p = {p1,p2,...,pn} be the two rows
of the Hadamard matrix. From the orthogonality of the rows we have that

n
Zr,-p.- = 0. This means that n/2 of the n pairs (r;,p;) € {(1,1),(-1,-1)}
i=1
and the other n/2 pairs (r;,p;) € {(-1,1),(1,-1)}, and thus the Ham-
ming distace distribution and the symmetric Hamming distace distribution
Wa(z) = SWy(z) = z™/2 m]

Definition 2 Let H be a Hadamard matrix of order n and Pi a set of
k columns of H. We define the complementary projection of Py to be the
set of the columns of H which are not contained in P;. Obviously the
complementary projection of Py consist of n — k columns.

Remark 2 Let H;, H2 be two Hadamard matrices of order n. Suppose
r = {r,re,...,7%} and p = {p1,p2,...,px} be two rows of a projection
of H; and ¢ = {q1,92,.-.,9x} and s = {s1,52,...,5x} be two rows of
a projection of Hy. Then SW(z) of rows r,p is equal to SW(z) of rows
g,s if and only if the symmetric Hafnming distance distribution of the
corresponding rows of their complementary projections is equal.
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Example 3 The complementary projections of the projections given in
example 2 are

1 1 1 1 1 1 1 1 1 1
1 1 -1 -1 -1 1 -1 -1 -1 -1
1 -1 1 1 -1 1 -1 1 1 -1
1 -1 -1 -1 1 g 11 -1 -1 1
1 =1 1 -1 -1 % 1 1 1 21 2
1 -1 -1 1 1 1 -1 -1 1 1
1 1 -1 1 -1 1 1 -1 1 -1
1 1 1 -1 1 1 -1 1 -1 1

with symmetric Hamming distance distribution SWs_3(z) = SWs(z) =
4+ 24z,

From Lemmas 3, 4 and 5 it is obvious that:

Corollary 1 All projections of two Hadamard matrices Hy, Hy of order n
ink =1,2 and k = n columns have the same symmetric Hamming distance
distribution.

Using Remark 2 and the above lemmas we can conclude:

Corollary 2 Let Hy,Hy be two Hadamard matrices of order n. We need
only to check the symmetric Hamming distance distribution of projections
for k = 3,4,...,n/2 because if these have the same symmetric Hamming
distance distribution, then the corresponding complementary projections will
have the same symmetric Hamming distance distribution as well.

In this way the modified algorithm (symmetric Hamming distance dis-
tribution algorithm) is much faster than the previous one but it only gives
us an answer to the question if the two Hadamard matrices are equivalent
or not and does not give us all inequivalent projections of the Hadamard
matrices.

The Symmetric Hamming distance distribution algorithm:
(i) Set k = 3.

(if) Find all projections for each Hadamard matrix of a given order n
and & columns by taking all possible & columns of the entire n x n
Hadamard matrix. These are (}) projections in total.

(iii) In the projections found in step (ii) calculate the symmetric Ham-
ming distance distributions for any two rows of the projection. These
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are (3) symmetric Hamming distance distributions and save different
symmetric Hamming distance distributions and how many times each
of them appear.

(iv) Check if the set of all different symmetric Hamming distance dis-
tributions of the first Hadamard matrix is the same with the set of
all different symmetric Hamming distance distribution of the second
Hadamard matrix.

(v) If the answer in step (iv) is false, then stop and say that these two
Hadamard matrices are inequivalent, otherwise increase k by 1.

(vi) If now k < n/2 then go to step (ii) and continue, otherwise stop and
say that this algorithm can not decide for the equivalence of these
Hadamard matrices.

Let us discuss a bit the complexity of the Hamming distance distri-
bution algorithm. First, we observe again that all possible projections in
k columns of a Hadamard matrix of order n is (3). We note that find-
ing the symmetric Hamming distance distribution of all projections is not
computationally-intensive work, because it only needs n(n—1) calculations.
A calculation of the symmetric Hamming distance of two rows in a projec-
tion takes k comparisons and thus we have in total () nen - multiplica-
tions, summations and comparisons. This is not an NP hard problem when
n and k increase and it is much faster than the inequivalent projections
algorithm.

5 Application of the new criterion in Hada-
mard matrices of small orders

In this section we apply our new algorithm in the cases of Hadamard ma-
trices of small orders.

When the Hadamard matrices are equivalent we have to check the
symmetric Hamming distance distributions for all projections into k =

3,...,n/2 columns. As an examples we give all symmetric Hamming dis-
tances of the unique Hadamard matrices of orders n = 8,12 and for all
k=3,4,...,n/2.

If the Hadamard matrices are inequivalent there exist k € {2,3, ..., n/2}
such that the symmetric Hamming distance distributions for the projections
in k columns are different for each Hadamard matrix.
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5.1 Hadamard matrices of order n = 8,12

We know that there exist only one Hadamard matrix of these orders up to
equivalence, see [2] for example. For the order n = 4 we have k <nf2=2
and thus all projection have the same symmetric Hamming distance distri-
bution. The results of the application of the symmetric Hamming distance
distribution algorithm for these orders n > 8 are given in Table 1. Since
there is only one Hadamard matrix in each case we give all symmetric Ham-

ming distance distributions for all projections into k = 3,...,n/2 columns.
Symmetric
Hpame n  k Hammind distance times
Hs 8 3 4,24 56
Hg 8 4 0,16,12 56
Hg 8 4 4,0,24 14
Hy, 12 3 12,54 220
Hi, 12 4 4,32,30 495
Hi, 12 5 1,15,50 792
Hy, 12 6 0,6,30,30 792
Hyp 12 6 1,0,45,20 132

Table 1: Application of the symmetric Hamming distance distribution al-
gorithm for n = 8 and 12

5.2 Hadamard matrices of order n = 16

We know that there are exactly five inequivalent Hadamard matrices of this
order, see [3]. The results of the application of the symmetric Hamming
distance distribution algorithm for this order are given in Table 2. Observe
that for k¥ = 3 the symmetric Hamming distance distributions of all pro-
Jections of all five matrices are exactly the same. For k = 4,5 and 6 we
have four different symmetric Hamming distance distributions (thus four
inequivalent Hadamard matrices) and we have to go up to k = 7 to obtain
all five of them.

5.3 Hadamard matrices of order n = 20

We know that there are exactly three inequivalent Hadamard matrices of
this order, see [4]. The results of the application of the symmetric Hamming
distance distribution algorithm for this order are given in Table 3. Observe
that for k = 3,4 and 5, the symmetric Hamming distance distributions of
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| Symmetric

Hpame p k Hammind diﬂstince times
Higo— Hiea 16 3 24,96 560
Hie.0 16 4 8,64,48 1680
Hie.0 16 4 24,0,96 140
Hi¢1 16 4 8,64,48 1488
Hig 16 4 12,48,60 256
Hisa 16 4 24,0,96 76
Hie.2 16 4 8,64,48 1392
Hig.o 16 4 12,48,60 384
Hig.o 16 4 24,0,96 44
Hig3 16 4 8,64,48 1344
Hisa 16 4 12,48,60 448
Hig3 16 4 24,0,96 28
His.a 16 4 8,64,48 1344
Hig.a 16 4 12,48,60 448
Hig.q 16 4 24,0,96 28
Higa3— Hygqa 16 5 0,40,80 1344
Higs— Higa 16 5 4,28,88 2688
Hyg3— Higa 16 5 8,16,96 336
Hi¢3— Higa 16 6 0,12,72,36 1792
Hi3— Higa 16 6 0,16,56,48 3696
Hy63— Higa 16 6 2,12,54,52 1792
Hig3— Higa 16 6 4,8,52,56 672
Hyes— Higa 16 6 8,0,48,64 56
Hie3 16 7 0,0,48,72 448
Hie3 16 7 0,4,36,80 8064
Hiss 16 7 0,8,24,88 1680
Hiss 16 7 1,7,21,91 1024
Higs 16 7 4,4,12,100 224
Hyg.4 16 7 0,0,48,72 448
Hig4 16 7 0,4,36,80 8064
Hyg.4 16 7 0,8,24,88 2016
Higa 16 7 2,6,18,94 896
His.a 16 7 8,0,0,112 16

Table 2: Application of symmetric Hamming distance distribution algo-
rithm for n = 16
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all projections of all three matrices are exactly the same. For k = 6 all
three have different symmetric Hamming distance distributions and thus
we obtain all three inequivalent Hadamard matrices.

Symmetric
Houame n k Hammind distance times
Hopo—Haos 20 3 40,150 1140
Hyo—Hyo 20 4 16,96,78 4560
Hogo—Hogs 20 4 24,64,102 285
Hopo—Hopo 20 5 5,565,130 10944
Hogo—Hapo 20 5 943,138 4560
Hy o 20 6 0,30,90,70 6270
Hyg 0 20 6 1,24,105,60 4560
Haop 20 6 2,26,88,74 15390
Hoypp 20 6 3,20,103,64 6840
Hoo o 20 6 4,22,86,78 5130
Hso0 20 6 6,18,84,82 570
Hyp 20 6 0,30,90,70 4320
Hyp 1 20 6 1,24,105,60 5760
Hap1 20 6 2,26,88,74 19440
Hyoy 20 6 3,20,103,64 5040
Hyoa 20 6 4,22,86,78 2880
Hypq 20 6 6,18,84,82 720
Hyp 20 6 7,12,99,72 600
Hog o 20 6 0,30,90,70 5600
Hog.o 20 6 1,24,105,60 4960
Hyp o 20 6 2,26,88,74 16800
Hyg 9 20 6 3,20,103,64 6240
Hao.2 20 6 4,22,86,78 4320
Hyg o 20 6 6,18,84,82 640
Hyg o 20 6 7,12,99,72 200

Table 3: Application of the symmetric Hamming distance distribution al-
gorithm for n = 20

5.4 Hadamard matrices of order n = 24

We know that there are exactly 60 inequivalent Hadamard matrices of this
order, see [5, 6]. For Hadamard matrices of order 24 it is not convenient
to give all different symmetric Hamming distance distributions for all k.
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We shall only discuss the results our algorithm gives. For k = 3 all sixty
matrices give the same symmetric Hamming distance distributions thus we
obtain only one of the sixty inequivalent Hadamard matrices. For k = 4
and k = 5 the algorithm finds 35 different symmetric Hamming distance
distributions and thus 35 of the sixty inequivalent Hadamard matrices.
Finally for k = 6 we obtain 60 different symmetric Hamming distance
distributions and thus all 60 inequivalent Hadamard matrices.

5.5 Hadamard matrices of order n = 28

In the case n = 28 there are 487 inequivalent Hadamard matrices, see (7, 8}.
If we apply our algorithm to this case we obtain the following results. For
k = 3 all 487 matrices give the same symmetric Hamming distance distribu-
tions thus we obtain only one of the 487 inequivalent Hadamard matrices.
The algorithm moves to k¥ = 4 and finds 60 different symmetric Ham-
ming distance distributions and thus 60 of the 487 inequivalent Hadamard
matrices. Also for ¥ = 5 we obtain 60 different symmetric Hamming dis-
tance distributions and thus 60 of the 487 inequivalent Hadamard matrices.
Finally for k = 6 we obtain 487 different symmetric Hamming distance dis-
tributions, and thus all 487 inequivalent Hadamard matrices.

We do not now the exact number of inequivalent Hadamard matri-
ces of order > 32. However, it is known that the number of inequivalent
Hadamard matrices of order 32 is > 66000, see [2] and of order 36 is > 192
see Seberry’s home page http://www.uow.edu.au/ ~jennie. The study of
inequivalent Hadamard matrices of order 36 will be in a forthcoming paper.
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