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Abstract. Vizing conjectured that y(G)y(H) < 4(GOH) for
all graphs G and H, where 7(G) denotes the domination num-
ber of G and GOH is the Cartesian product of G and H. We
prove that if G and H are §-regular then with only a few possi-
ble exceptions Vizing’s conjecture holds. We also prove if §(G),
A(G), 6(H) and A(H) are in a certain range then Vizing’s con-
jecture holds. In particular, we show that for graphs of order at
most n with minimum degrees at least 1/nlnn, the conjecture
holds.
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1 Introduction

In 1963 Vizing [9] conjectured that

(1.1) Y(G1)7(G2) £ v(G10G?)
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for all graphs Gy and G, where (G) denotes the domination number of a
graph G and G10G; is the graph with vertex set

V(G10G2) = {(z1,%2) |71 € G1,22 € Gq}

and adjacency relation ~ defined by (z1,z2) ~ (v1,92) if either z; = y;
and {z2,y2} € E(G2) or z3 = y2 and {z1,11} € E(G1). See [6] for a recent
survey of results on this conjecture.

We shall say that a graph G is an (n,d, A)-graph if G has n vertices,
minimum degree § and maximum degree A. We say that G is an (n, 6)-
graph if it has n vertices and minimum degree . If Gy is an (ny,01,41) -
graph and G3 is an (na,82,A2) - graph, then G10IG2 is an (min2, 6 +
82,1 + Ag)-graph. This is the only property of the graph G10G2 our
proofs require. Our method is quite simple: It is easy to see that

ning

—= | <v(G10G?).
[A1+A2+1-| <1(6:0G)

Hence, if we have an upper bound, say, U(n,é, A) for the domination num-

ber of an arbitrary (n, d, A)-graph, and if

mn
(12) U@MmmmmmAnshﬁiiﬁ]
then (1.1) holds whenever G; is an (n1,61,A1) - graph and G2 is an
(ng,82,A2) - graph. Surprisingly, (1.2) holds for many values of the pa-
rameters for known bounds.

In Section 2 we briefly review a number of different upper bounds that
we will apply in the following sections. In Section 3 we prove that Vizing's
conjecture holds for all pairs of é-regular graphs G1,G2 if § > 27, 6 £ 3,
or both graphs have order at most 15. In Section 5 we show that for all n,
if G; and G2 have orders at most n and minimum degrees at least y/ninn
then the pair of graphs Gp,Ga satisfies Vizing’s conjecture. In Section
5 we describe certain pairs of triples (ni,d1,4A1), (n2,02,A2) for which
¥(G1)7(G2) < v(G10G2) holds whenever G, is an (n1,01,41) - graph and
G, is an (ng, 02, Az) - graph. In Section 6 we study the asymptotic behavior
of two roots of a transcendental equation which arises from the use of the
lower bounds in (2.1). This transcendental equation and the asymptotics
of its roots may be of independent interest.

2 Upper bounds for the domination number

We recall two upper bounds that depend only on the order n and the
minimum degree § of a graph G. The first is the Arnautov bound [1):

(1) ﬂms(ﬂ%gﬁﬁ)
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The second is an improvement on (2.1) from [5]:

6+1 k
2.2 G)<(1- —_—|n
(22) 0 ( gHW)

As in [2] we say that a graph is an (n,d)-graph if it has order n and
minimum degree 4, and we define

7(n,6) = max{y(G) | G is an (n, §)-graph}.

We use the following table from [2] which gives the exact values of y(n,d)
for n < 16 with the three exceptions marked by an asterisk. Actually there
were 6 undecided entries in [2], but three of them were decided in [3]. In
any case, the table gives the best known upper bounds for y(n, §)-graphs
when n < 16. [Added in Proof: From [4] we now know the correct values
of the other three, namely, (15, 6) = 4, ¥(16,5) = 4 and ¥(16,7) = 3.]

Table of Values of y(n,0) for 1 <n < 16
nfd[1]2[3]4 5 6 7181911011 ]12]|13 14|15
1
211
3111
4121211
51]212]1]1
61312(2]2 1
7131312}2 1 1
8|14|1413]2 2 2 1
914|1413}3 2 2 111
10[5]1413]3 2 2 21211
115|543 3] 3| 2|2]1] 1
126|644 3 3 21212 2 1
1366|414 3 3 31212 2 1 1
1417]16|5]|4 4 3 313]2 2 2 2 1
157171515 41 *4 3133 2 2 2 1 1
16 | 8|86 |5]|*5 4]1*4 3|3 3 2 2 2 2 1

3 When (51=52=A1=A2

In this section G; and G2 will be d-regular graphs of orders n; and ns,
respectively. We emphasize that the orders of G; and G3 may be different,
but both are §-regular for the same 4. In Section 5 we will show that there
are many cases when Vizing’s conjecture holds when G is d;-regular and
G> is do-regular and 6, # 5.
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Theorem 1 If G and Gy are d-regular graphs with § > 27 or 6 < 3 then
Vizing’s conjecture holds for the pair Gy, Ga.

Proof Here we use (1.2) and the two bounds (2.1) and (2.2). Since both
of these upper bounds have the form

7(G) < (Co)n

where G is an (n, §)-graph, and Cs depends only on 4, it suffices to verify
that

1
(3.1) (Cs)? < STl

for § > 27 for one or the other of the two bounds.
For § = 27,28,...,100 one may use the sharper bound in (2.2) and
verify by computer calculation that (3.1) holds for

§+1
ook

C“=1_k1;11k+1/6'

For § > 100 we use Arnautov’s bound (2.1). Then we must verify that

1+1n(s +1)\? 1
< .
(3.2) ( T4l ) S %TT when ¢ > 100

To verify this let z = § + 1, then (3.2) is equivalent to

2
(1 + ln(:c)) < 1 when z > 101,

z “2x—-1’
which holds if
2
(1_+_ln_@) < —1-, when = > 101.
T 2z

This is equivalent to the obvious inequality
(1 +In(z))* < -:2'-:, when z > 101,
and this completes the proof for the case § > 27.

The cases § = 1 and § = 2 are well-known ([6]). If § = 3, then Reed (8]
has proved that

7(G) £ %n-
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So it suffices in this case to observe that

2
(E) <l
8) — 7T

This completes the proof. B

We now consider what happens for small values of n; and ns.

Theorem 2 If G, and G are §-regular graphs of orders ny and ng, respec-
tively, and n1,ne < 16 then Vizing’s conjecture holds for the pair G1,Gs
with the possible exception ny =no =16 and § = 5.

Proof By the previous theorem we need not consider the case when § < 3.
We let 4(n, d) be the upper bound for v(n, d) given in the table in Section 2.
For the cases § > 4 a straightforward Maple calculation yields the desired
inequality

N - nin2
(o, 83, 8) < [ 22|

forny <mg <16and 4 < § < n;—1, except when n; =ny =16 and § = 5.
|

Remark The upper bound (16,5) < 5 given in the table in Section 2
is not known to be tight. If, in fact, ¥(16,5) = 4 then the exception in
the above theorem may be removed. [Added in Proof: We now know that
7(16,5) = 4 [4].] We also note that if the conjecture y(n,4) < n/3 from [2]
is true, then Vizing’s conjecture will hold for all pairs of 4-regular graphs.

4 The effect of minimum degrees

In this section, G; and G, are graphs of orders 7y, n2 and minimum degrees
01 and 62, respectively. If the minimum degrees are large enough then the
domination numbers will be 2 or less and so Vizing’s conjecture will hold
(see [6]). However, we can do much better than this:

Theorem 3 Let Gy and G2 be graphs of orders ny,ny and minimum de-
grees 01 and &2, respectively. If ny,na < n and 8, 62 > +/nlnn then
Vizing’s conjecture holds for the pair G1,Ga.

Proof. Let n = max(n;,n2) and m = min(n;,n2). It is not difficult to
show (see also [6]) that
’Y(Gluaz) 2> m.
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Using Arnautov’s bound (2.1) for ¥(G1) and ¥(G2) and arguing as in (1.2),
we have that the pair Gy, G satisfies Vizing’s conjecture if
1+In(h +1)1+In(@+1) _ 1

6 +1 da+1 = n

Assume next that both é; and J; are at least y/nlnn. Observe that the
function

(4.1)

l1+Inz
T
is a decreasing function for z > 1. Hence, we have

1+1n(é; +1) 1 +In(6 +1)

q(z) =

hH+1 62+1
1+ In(y/nlnn) 2
- ynlnn
1
< -
n

where the last inequality holds for sufficiently large n. In fact, the function
f(z) = ¢(v/ZInz)?z is a decreasing function for z > e. Maple shows that
f(213) < 1. It therefore remains to handle the case when n < 212. For
this, we replace the function

1+In(d+1)
d+1

in (4.1) with

c@ =1~ g7

from (2.2). Direct calculations show that if § = [/nInn] then
1

n
for all n < 212. Since C(4) is decreasing in ¢ the result follows. B

Note that it is feasible to obtain a more accurate asymptotic lower bound
for the minimum degrees. Please refer to Section 6.

Let £(n) be the least positive integer & such that (4.2) holds. Then £ (n)
can replace y/nlnn in Theorem 3. The following table compare §(n) and
[v/nlnn] for a few values of n.

n 10 | 50 | 100 | 1,000 | 10,000 | 100,000
€(n) 7126 | 41| 180 | 711 | 2674
[Vnlnn] | 8] 28| 47| 219 922 3641

(42) C@)?<
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5 When A; And A; Are Known

We observe that when A;+Aj < max(n;,n2), the lower bound nyna/(A; +
Az+1) on v(G10G5) is better than min(n;, n2) used in the previous section.
It is therefore useful to consider the case when A; and As are known.

We say that the pair of triples

(5.1) (n1,61, A1), (n2,82,A2)

satisfies Vizing’s conjecture if v(G1)v(G2) < 4(G10G?2) holds whenever G,
is an (n1,01,A;) - graph and G; is an (ng, d2, A;) - graph.
Now given an upper bound of the form

Y(G) < (Cs)n
for all (n,d)-graphs G, it follows that the pair of triples (5.1) satisfies Viz-

ing’s conjecture whenever

1
. <"
62 Calh < R R
If we use Arnautov’s bound (2.1) then this inequality becomes

1+ln(51+1)) (1+ln(62+1)) 1
. < .
(53) ( 01 +1 02 +1 “ A1 +A+1

Theorem 4 There exist functions ¢1,92 such that for 6; > 48, the in-
equality

(61 +1)(d2 +1)
0 +1n(6, + 1)1 + In(35 + 1))

O+6+1<

is satisfied if and only if

(54)  91(01) < 82 < p2(d1)-

Purthermore, if §; > 48 and 82 satisfies (5.4), then for all A; and A,
satisfying

(61 +1)(d2+1)
5.5 1+0h <A;+A:< -
(55) 1+R2 =81+ 82 = A, +1))(1+ In(6; + 1))
the pair of triples (n1, 81, A1), (n2,d2,A2) satisfies Vizing’s conjecture. The
functions ¢1(8) and @2(8) are given asymptotically by ®1(8) and ®2(3), re-
spectively, where

1,

®,(8) = (1 +1In(6 + 1)) [1 + In(1 + In(8 + 1)) + In(In(1 + In(é + 1)))],

and

d+1
‘1’2(6) = exp [m - 1] .
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Proof The existence of ¢; and @2 will be developed in Section 6. The
second part of the theorem follows directly from (5.3). ®

Here we give a table of values of ¢;(d) and 2(d) for a sampling of small
values of 4.

o | ¢1(8) p2(8)
50 42 10,867
60 38 55,404

70 36 265,046
80 34| 1,220,107
90 33 | 5,457,919
100 33 | 23,844,683

This table shows, for example, that if G; is 50-regular and G is do-regular
where 42 < 62 < 10,867 then Vizing’s conjecture holds for the pair Gy, Gs.
To indicate how much A; and A, can deviate from §; and §5, we give below
a short table of upper bounds of

Eio=A0A1+A2-6,-42

computed using (5.5) for §; = 100. Although the range of values of 4, for
61 = 100 is from 33 to 23,844,683, we only consider values of 2 between 33
and 1007 at intervals of 50.

0 b2 Eip
100 33 1
100 83 94
100 133 174
100 183 248
100 233 318
100 283 384
100 333 448
100 383 509
100 433 569
100 483 628
160 533 685
100 583 741
100 633 796
100 683 850
100 733 903
160 783 955
100 833 1007

For example, according to the above table a pair of triples (n1,d1,41),
(n2,82,Az) with §; = 100 and 4, = 133 satisfies Vizing’s conjecture if
A;+ Ay <100+133+174 = 407. So if, say, n; = ng = 200 then all graphs
with these parameters will satisfy Vizing’s conjecture.
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Remark The number of pairs of triples satisfying Vizing’s conjecture may
be extended considerably using the upper bound (2.2) instead of Arnautov’s
bound (2.1), but qualitatively the results are the same.

6 Asymptotics
In this section we discuss the curves satisfying the transcendental equation
(6.1) F(z,y) =0,

where

1 [1+IknQ+2)1+In(+y)
l+z+y (1+z)(1+y) ’

(62)  Flz,y) =

forz >0,y > 0.
Theorem 5 For fized y, y > 14, the function f,

l1+z  [1+In(l+2)]|[1+In(1+y)
l+z+y 1+y

has two distinct positive critical points. The smallest is a local minimum
and the largest is a local mazimum.

(6.3¥(z) = (1 + 2)F(z,y) =

Proof. Clearly

1roN -y/S
(6.4) f(g,-)_(lﬂ)(wﬂy)2 [(A+z+y)? -1 +3)].
where
—_yl+y)
T 1+In(l+y)’

Thus the equation f’(z) = 0 is equivalent to the quadratic equation
(6.5) (z4+1)2 4+ (+1)(2-Q)+y2=0.

The discriminant of (6.5), as an equation in the unknown z+1, is Q(Q2 —4y)
which is positive if and only if Q — 4y > 0. Now
yly =3 —4In(1+y)]

R I M)

H
which is positive for y > 14, since y—3—41In(1+y), is an increasing function

of y fory >3 and y —3—4In(1 +y) > 0 at y = 14. Thus f has two critical
points. At the critical points z + 1 will be positive if Q —~ 2y > 0. But
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Q -2y >Q—4y > 0, for y > 14. The smallest critical point is positive if
and only if

(Q-2y-2)%>(Q-2y)% — 4%, thatis 2 +2y+1>Q,

which holds since y? +y > Q. Observe that (6.4) shows that f’ changes
sign from negative to positive as we go through the smallest critical point
and from positive to negative as we go through the second critical point.
Therefore the smallest critical point must be a minimum while the largest
is a local maximum.

Theorem 6 For fized y, y > 48, equation (6.1) has two positive solutions
T =z(y).

Proof. It is clear that f(0) <0, f/(0) <0, and f(z) - —oc0 as z — +o00.
In view of the previous theorem it suffices to show that f(z) > 0 for some
z > 0. Now f(y) > 0 if g(y) > 0, where g is

_ 14y
g(y)“m

It is easy to see that g'(y) > 0 if y* —6y® — 11y2 — 6y —1 > 0. The left-hand
side of latter expression can be written as

—-1-In(1+vy)

vt — 14y° + 8y® — 11247 + 101y% — 6y — 1

which is positive for y > 14. Thus g increases with y when y > 14 and
g(48) = .083375912 > 0, hence g(y) takes positive values and f(x) > 0
when z = y > 48. This completes the proof.

Throughout the rest of this section we shall assume that y is fixed
and y > 48. Let z;(y) and z2(y) be the two roots of (6.1), and assume
z1(y) < z2(y)-

We now derive asymptotic estimates for z;(y) and z2(y). Consider first
the equation

l1+4lnz 1
(66) a&)=—""2=,

where w > 1 is a constant. Standard method shows there are two solutions
for z. We are interested in the largest solution 2; (because z > z; implies
-q(z) < 1/w), which can be found by the following iterative method. Define

Bo = l+hw
Biv1i = 1+In(wph;), 12> 0.

Then B; increases, as i — 00, to a limit § and f satisfies

(6.7) B =1+ In(wp),
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and z; = wf is the largest solution to (6.6). Observe also that 8/lnw — 1
as w — oco. Hence 2;/(wlnw) — 1 as w — oo. In particular, if we put
w = /n, we see that the asymptotic lower bound for the minimum degrees
in Theorem 3 is 3+/nlnn.

We next give estimates for z; and zo. These estimates lead to the
asymptotic forms of ®; and ®, stated in Theorem 4.

Theorem 7 Suppose that w = w(y) =1+ 1In(1 + y). Let B be defined as
in (6.7). Then for sufficiently large y,

wB < 1+z1(y) € 1+ (Iny)?/y)wp

1+ +1 1+ +1
exp( wy)_(yw)y_l < 1+z2(y)5exp( wy)_(yw)y_

Proof. Let

_(+yfx) 14y l+z
h@) =T R +1) " T+s+y w

In our proof of the previous two theorems, we see that f(z) > 0 (and
fi(z) =2 0) if and only if x; < z < z2. It therefore suffices to show that for
sufficiently large y, the function f; is of the appropriate signs at the lower
and upper bounds of z;, z3. This can be done for the bounds on z; by
noting the properties of 8 observed above. For the bounds on x5, we write

1+ +1
a=exp( y)’ p=@ty

- (1+In(1 +x)).

w w
For the lower bound on z2, we note that for l+z =a -9 -1,

1+y 1+z  1+y
w l+z+y w

_n 27,2
5 TOm’/e%),

and 1+ +1
1+In(l+7)=—2 - ” +O0(1%/a?).
This show that
l+y 142z 1 2, 2
= —_— = = >
fi(z) = w 1tz+y (1+In(1 +z)) o[+0(17 [a®) >0,

where the last inequality holds for all large enough y. This implies f(z) > 0
and hence the lower bound on z2. The proof of the upper bound for z5
follows similarly. B
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