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Abstract

A vertex-magic total labeling on a graph G is a one-to-one map A from
V(G) U E(G) onto the integers 1,2, - --,|V(G) U E(G)| with the property
that, given any vertex z, A(z) + 3. A(y) = k for some constant k.

In this paper we completely determine which complete bipartite graphs
have vertex-magic total labelings.

1 Magic labelings

All graphs in this paper are finite, simple and undirected. The graph G has
vertex-set V(G) and edge-set E(G), and we denote |V(G)| and | E(G)| by v and
e respectively. A general reference for graph-theoretic ideas is [8].

A labeling (or valuation) of a graph is any map that carries some set of graph
elements to numbers (usually to the positive or non-negative integers). If the
domain is the vertex-set, the edge-set, or the set V(G) U E(G), labelings are
called respectively vertez-labelings, edge-labelings or total labelings. The most
complete recent survey of graph labelings is [2].

Magic labelings are one-to-one maps onto the appropriate set of consecutive
integers starting from 1, with some kind of “constant-sum” property. A labeling
is edge-magic if the sum of all labels associated with an edge equals a constant
independent of the choice of edge, and vertez-magic if the same property holds
for vertices. For example, a vertex-magic edge-labeling has as its range the
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integers from 1 to |E(G)|, and the sum of the labels on edges adjacent to vertex
z equals a constant that is independent of the choice of x. Further discussion
can be found in (4, 7].

In this paper we discuss vertex-magic total labelings (VMTLs). Such a
labeling on G is a one-to-one map A from V(G) U E(G) onto the integers
1,2,---,|V(G) U E(G)| with the property that, given any vertex z,

Mz)+ ) My) =k
y~x
for some constant k, called the magic constant.

Vertex-magic total labelings are discussed in [4]. In that paper, several
classes of graphs are shown to have VMTLs, while they are ruled out for other
classes. One outstanding problem is the existence of VMTLs of complete bipar-
tite graphs. In this paper we resolve that existence question.

2 Concerning vertex-magic total labeling of Kimn

We shall take the complete bipartite graph Ky, » to have vertex-set

{331,1'2,'“,-'Em,yh!lza'”,yn}

and edge-set
{Ty;:1<i<m1<j<n}

So a VMTL X of K » can be represented by an m +1 X n + 1 array

apgo I ap1 Qo2 aon
a0 | 211 Q12 ce Q1n
A= . (1)
Cmo | @ml  @m2 et Cmn
where
ago =0 aio = A(z:)

ao; = A(y;)  aij = A(z:y;)-

The matrix A will be called the representation matriz of \. The magic require-
ment is that all row-sums and column-sums, except for row 0 and column 0, must
be equal (to k say), and that the (m+1)(n+1) entries are {0,1,--- ,mn+m+n}
in some order.

We shall call a K, , unbalanced if its parts differ in size by more than 1. We
observe that an unbalanced Ky, cannot have a vertex-magic total labeling:
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Theorem 1 [4] If K,, ,, is unbalanced, then it has no VMTL.

Proof. Without loss of generality, assume m < n. Suppose K, , has a vertex-
magic total labeling with magic constant k. For this graph v = m + n and
e = mn so the label set is {1,2,---,mn 4+ m + n}. The sum of the weights on
{z1, -+ ,zm} is at least the sum of all but the largest n labels, so

mk > 14+24---+(mn+m)
(mn4+m)(mn+m+1)

= )

2

S (n+1)(m;+m+l) )

On the other hand, the sum of the weights on {y;,---,y.} is at most the total
of all but the m smallest labels:

nk < (m+1)+(m+2)+---+(mn+m+n)
_ (mn+m4n)(mn+m+n+l)—m(m+1)
- 2
(mn? + 2mn+n® + n)(m + 1)
= 5 ;
o< (mn+2m+n+1)(m+1) @)
< 2 .
Combining(2) and (3),
(n+1)(mn+m+1)<(mn+2m+n+1)(m+1),
and on simplifying one obtains m >n -2+ ,%,_2, som>n-—1. O

3 Construction of VMTLs of Ky,

In this section we give constructions for vertex-magic total labelings of complete
bipartite graphs in the cases not eliminated by Theorem 1. (The case of K m
was solved in [4], but is repeated here for convenience.)

31 Kmm

Theorem 2 For every m > 1, K, m has a vertez-magic total labeling with
magic constant 3((m + 1)3 — (m + 1)).
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Proof. Labelings for K32 = Cy are presented in (4] (and will be enumerated
in Section 4), so we assume m > 2. Let S = (s;;) be any magic square of order
m + 1 on the numbers {1,:--,(m + 1)2}. (For convenience, assume that the
rows and columns of S are numbered 0,1,...,m.) Each row and column sums
to the magic square constant 4(m+1)(m?+2m+2). Form the matrix A = (a;;)
where a;; = si; — 1. Since S is magic, the rows and columns of A will each sum

to the constant
k=3i(m+1)(m?+2m+2)—(m+1) (4)

and the entries of A will be the numbersin {0,---,(m + 1)2 — 1}, once each.
There are standard constructions ([1], [5]) for magic squares of all orders greater
than 3. We shall assume that the rows and columns of A are permuted so that
ago = 0. (This may mean the diagonals no longer sum to the magic constant,
but they are not required for the construction.) Then A is the representation
matrix of a vertex-magic total labeling A with k given by equation (4). The
magic constant is easily checked. O

3.2 Ky ms1, modd

A solution for K 7 is easily constructed. So let us write m = 2n—1 wheren > 1.
The construction proceeds for a given n by defining two 2n — 1 X 2n matrices,
A = (ai;) and B = (b;;), and then using them to construct a 2n x 2n + 1
representation matrix C. For consistency with the earlier notation, C has first
row and column indexed with 0.

The value of a;; depends on the parity of ¢ and j, as well as their values.
The formula is

aj = m+1-j if i+jisodd, j+i<m+1
or i+jiseven,j+i>m+1,
a; = j—1 otherwise.

We shall need the row and column sums of this matrix. If i is even, say
i = 2t, the sum of elements in row i is

2n n
Z aij; = z ai2k-1+ Gi2k
i=1

k=1
n—t n
= Z(ai,2k—l + ai k) + Z (ai2k—1 + ai2k)
k=1 k=n—-t+1
n—t n
= D (@n-2k+1)+(2%k-1))+ 3 ((2k—2) + (20— 2k))
k=1 ) k=n—t+1
n~t n
= Z 2n + z (2n—2)
k=1 k=n—t+1
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= 21?2 —i.

Ifiis odd, say i =2t + 1,

2n

>a,
i=1

= Z ai2k—1+ Qi2k

n—t-1
= ZG:Qk 1+ Z a2k + Z ai2k—1 + Z ai2k
k=n—-t+1 =n-—t
n—t n—t—1 n n
= Y @k-2)+ > @n-20)+ > (@n-2%k+1)+ ) (2k-1)
k=1 k=1 k=n—t+1 k=n—t

= 2n?—i.

so in either case row i has sum 2n2—:. The column sum is more easily calculated:
column j contains n entries equal to j —1 and n—1 equal to 2n — j. So for each

3
2n—1

Z ai; = n(] - 1) + (n— l)(2n——j)

= 202 —3n+j.

Matrix B has first and last columns 2n — 2,2n — 3, ...,1,0:
blj =b,,.,~=m—i—1.

The second column begins with the odd integers 2n — 5,2n — 7,...,1, then has
the even integers 2n — 2,2n — 4, ...,0 and ends with 2n — 3. The other columns
are formed by back-circulating this column. That is,

bi,j = bit1,5-1
(with subscripts reduced mod(2n, 2n + 1) where necessary).

In each row of B, columns 2 through 2n—1 contain all the integers 0, 1,...,m—
2 except

z; = 2n—1-—2iis missing fromrowi,i=1,...,n—-1,
z; = 4n—2i—2is missing fromrow i,i=n,n+1,...,2n—1.

So the row sums are

m 2n-2
Zbij = 2(2n—z—1)+2k—m,
i=1 k=0
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Mmi4en—-1-2i—ux;

om?—nifi<n-1,

.Ms
&
[

i=1
m
Zb‘j = 2n®—-3n+1ifi>n.
i=1
Since each column is a permutation of {0,1,...,2n — 2}, each column sum

is
2n—

1
b,'j =2n2 -3n+1.

i=1

we now define a 2n x (2n + 1) matrix C by

c0o = 0,
coj = dn?+2n -3, 1<j<2n,
co = i,1<i<n-1,
dn? —2n+i, n<i<2n -1,
cij = a,-j+2nb.-j+n,15i§2n—1,1§j$2n.

Theorem 3 The matriz C is the representation matriz of a verter-magic total
labeling of Kan_1,2n with magic constant 4n3 + 2n?.

Proof. It is necessary to show that the sum of entries in every row and column
of C (except possibly row 0 and column 0) equals 4n® + 2n? and that every
integer from 0 to v+ e = 4n? +2n — 1 occurs exactly once in C. (We know that
0 appears in the (0,0) position, as required.)

The row sums of C are:

2n 2n 2n
qu = cio+Zai,-+2an.~j+2n2
j=0 i=1 i=1
2n
= c,-o+2n2—i+2nz:b,-j+2n2
i=1
= 4n% 4+ 2n?,

after inserting the appropriate values of ci and 2?21 bij, depending on whether
or not i <n — 1. Similarly the column sums are:

2n-1 2n—1 2n-1

ZC;J’ = co; + Za,~5+2n2b¢j+(2n—l)n

i=0 i=1 i=1
= 4n?+2n—j+2n® —3n+j+2n(2n® —3n+1)+n(2n—1)
= 4n® +2n2
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Thus all row and column sums (except the first) equal 4n® + 2n2, as required.

Finally, we prove that each integer from 0 to 4n? — 2n — 1 appears exactly
oncein C. The numbers 0,1,2,...,n—1 and 4n?—n,4n2—n+1,...,4n%+2n—1
appear in the first row and column. The entries in A lie in the (closed) interval
[0,2n - 1] and those of B lie in the interval [0,2n — 2]. Thus the entries in C
outside the first row and column lie in the interval [n,3n — 1 + 2n(2n ~ 2)] =
[n,4n? —n —1). There are 4n% — 2n such integers so it remains to show that the
entries are distinct. To prove this we need to show that the pairs (aij, bij) are
distinct. The first and last columns of A contain only the integers 0 and 2n—1,
the first and last columns of B contain the integers 0, 1, ...,2n — 2 and it is easy
to see that there are no repeated pairs. For the rest of the matrices 4 and B,
note that the entries b;; for a fixed value of i + j mod (2n — 1) are constant,
while in matrix A the equivalent entries take all the values 1,2, ...,2n—2. Thus
all pairs are distinct and so each integer from 1 to 4n% — 2n — 1 appears exactly
once in C. O

3.3 Kmnm+1,In even

In this case we write m = 2n. Then v = 4n 4 1, e = 4n? + 2n, and a total
labeling requires 4n2 + 6n + 1 labels.

Theorem 4 There exists a vertez-magic total labeling of Kop 2n41 with magic
constant (n + 1)(2n + 1)2.

Proof. We construct a representation matrix C = (cij) for a VMTL of Kan 20+1
as follows.

(i) Row00of Cis 0,(2n+1)%,(2n+1)2+1,...,(2n+1)2 +2n, that is cgo = 0
andcg; = (2n+1)24+j-1for1 <j<2n+1.
(ii) cio=(2n+2)i,1 <i < 2n.

(i) f1<i<nand1<j<n+l,orifn+2<i<2nand n+2<j < 2n+1,
then
¢ij =2n(2n+2) — [ + (i - 1)(2n + 2)].

(iviIfl<i<nandn+2<j<2n+l,orifn+l<i<nandl<j<n+l,
then
e =i+ (- 1)(2n+2).

(v) f1<j<n+1, then

enj =n(2n+2)+2n~25+3, chy1;=(n—1)(2n+2) +n + .
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Ifn4+2<j<2n+1,then

j=m-1)(2n+2)+4n-2j+4cup1;=n(2n+2)+j-—n~-1

Part (v) can also be expressed as follows: (except for column 0) rows 0, n
and n + 1 of C are derived from rows of X, where

1 2 3 ... n+l|n+2 n+3 ... 2n+1
X=|2n+1 2n—-1 2n-3 ... 1 2n 2n-2 ... 21,
n+l n+2 n+3 ... 2n+1 1 2 ... n
by adding
(2n+1)2-1
n(2n + 2)

| (n—1)(2n+2) |
to each of the first n + 1 columns and

[ (2n+1)2-1 ]
(n—1)2n+2)
n(2n +2)

to the remainder. It is clear that each row of X is a permutation of {1,2,...,2n+
1}, so rows n and n + 1 between them contain each of (n —1)(2n +2) +1,(n -
1)(2n 4 2) + 2,...,(n + 1)(2n + 2) exactly once. When 1 < i < n, rows i and
2n 4+ 1 — i contain between them all the integers

t+(i—-1)2n+2) : 1<t<2n+2,
t+(2n—-9)2n+2) @ 1<t<2n+2
precisely once each (2n+2+ (i —1)(2n +2) =i(2n +2) = ¢i0, 2n + 2+ (2n -
1)(2n+2) = C2n+1-i,0, and the others are given by (iii) and (iv)). Row 0 provides

0,(2n +1)%,(2n+1)2+1,...,(2n + 1)> + 2n = 4n? + 6n + 1. So C contains
each of 0,1,...,4n% + 6n + 1 exactly once.

From (iii) and (iv) it also follows that
Cij+Cont1—ij = J+(E—1)(2n+2)+2n(2n+2) = [j + (i - 1)(2n+2)] = 2n(2n+2)

for 1 < i < n. Each column of X has sum 3n + 3, so ¢cnj + ¢nt1,5 + €05 =
(n+1)(8n+1) for 1 £ j < 2n + 1. Therefore the sum of column j is

2n
e

=0

(n—1)2n(2n +2) + cpj + Cn41,5 + 00,

(n—1)2n(2n+2) + (n+1)(8n+1)
(n+1)(2n + 1)
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Ifi<n,

2n+1 2n+1
Z cij = Z j+cio+n(E—1)(2n+2)+ (n+1)(2n —i)(2n + 2)
j=0 i=1

(2"2* 2) +(2n +2)i + (20 + D[ni — 1) + (n + 1)(2n — 3)]

(n+1)2n+1)+2(n+1)n(2n+1)
= (n+1)(2n+1)%

and a similar calculation gives the same sum if If i > n + 1. 0

Remark. The array X was constructed by Kotzig and is found in the unpub-
lished technical report [3]. He produced the array in solving a magic labeling
problem. However, the problem was one of edge-magic total labeling, and does
not even remotely involve complete bipartite graphs. This surprising connection
was not noticed until after Theorem 4 had been proven, when one of us realized
that Kotzig’s array had the required properties.

As (3] is not readily available, the interested reader may wish to consult [6],
where the original application of the array is presented.

4 The spectrum of VMTLs

In those cases where magic labelings are known to exist, it is interesting to know
the set of values k such that there is a magic labeling with magic constant k.
This is the spectrum of the labeling problem.

Suppose G has a vertex-magic total labeling A. Write Sg for the sum of edge-
labels: Sg = 3 cp(e) Mz). Then, counting the sum of labels at all vertices,
we have

SE+(U+;+1)=vk. 5)
Clearly,
e v+te
i=1 i=v+l
or 1 1
(e; )ssgs(e; )+ve. (6)

These equations can be used to put bounds on the spectrum of VMTLs. For
K m, (5) and (6) give

$llm+1)° —m?) <k < Flm 4+ 1)° + 2], (7
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As Ky m is regular, the duality Theorem ([4], Theorem 1) applies, so there will
be a VMTL with magic constant 1{(m + 1)® 4z} if and only if there is one with
k=3%[(m+1)*-a]

For Ka,2, (7) yields 12 < k < 15, and a complete search shows that every
value can be realized. In fact, there are exactly six vertex-magic total labelings
of K35 (up to isomorphism). The representation matrices are:

k=12: k=13: k=13:
0|5 7 0|7 3 0|4 6
8{1 3 811 4 711 5
416 2 215 6 318 2

k=14: k=14: k=15:

0|6 2 0}5 3 0|4 2
713 4 611 7 513 7
115 8 2|18 4 118 6

For K33, the bounds are 28 < k < 36, and all these values can be realized.
There are 35 isomorphism classes with k = 28 and with k = 36, 70 with & =29
and with k = 35, 477 with k = 30 and with k = 34, 250 with k = 31 and with
k = 33, and 882 with k = 32.

In view of the ease with which examples are found for small m, we conjec-
ture that every value of k allowed by (7) can be realized, but this is far from
established.

In the case of Km m+1We can improve on (6) by an argument similar to that
used in the proof of Theorem 1. Write S; and Sa for the sums of the labels on
the m-set and (m + 1)-set of vertices respectively, and Sg again for the sum of
the edge-labels. Then every edge is adjacent to exactly one of the vertices in
each set. Adding all labels on or adjacent to all vertices in the m-set, we get

SI+SE

km =
> 1+2+...+(m+m(m+1)),

so
k> i(m+1)*(m+2) (8)
while the larger set of vertices yields
k(m+1) = S+ Sk .
< Mm+1)+(m+2)+...+((2m+1) +m(m+1)),
whence

k < 3(m +1)(m? + 4m +2). (9)
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For K, 2, (8) and (9) yield 6 < k < 7, and both values can be realized.
In fact there are exactly two labelings up to isomorphism, with representation
matrices

k=6: k=17:

0j4 5 015 3

312 1 112 4 |°
However, for K33, the bounds are 18 < k < 21, but only 18, 19 and 20 can be
realized. There are four labelings up to isomorphism:

k=18: k=19: k=19: k=20:

0|11 10 9 0j11 9 8 0J11 9 8 0|11 9 6
714 6 1 75 6 1 56 7 1 17 8 4].
513 2 8 2|3 410 4] 2 310 5/ 2 310

For K> 3, labelings are easily found for each k satisfying the bounds (40 < k <
46.

An obvious open question is: for which & satisfying (8) and (9) do vertex-
magic total labelings exist? We lean toward the view that the case m = 2,k = 21
is a “small numbers” anomaly, and that all other possible magic constants can
be realized.
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