Integral Sum Graphs from a Class of Trees
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ABSTRACT. A graph G = (V, E) is said to be an integral sum graph
( respectively, sum graph) il there is a labeling f of its vertices with
distinct integers ( respectively, positive integers) , so that for any two
vertices u and v, uv is an edge of G if and only if f(u) + f(v) = f(w)
for some other vertex w. For a given graph G, the integral sum number
¢ = ¢(G) (respectively, sum number o = a(G) ) is defined to be the
smallest number of isolated vertices which when added to G result in an
integral sum graph (respectively, sum graph). In a graph G, a vertex
v € V(G) is said to a hanging vertex if the degree of it d(v) = 1.
A path P C G, P = zom172- - T4, is said to be a hanging path if
its two end vertices are respectively a hanging vertex zo and a vertex
x4 whose degree d(z¢) # 2 where d(z;) =2 (j = 1,2,---,t — 1) for
every other vertex of P. A hanging path P is said to be a tail of G,
denoted by t(G), if its length |¢(G)| is a maximum among all hanging
paths of G. In this paper, we prove {(T3) = 0, where T3 is any tree
with [#(T3)] > 3. The result improves a previous result for integral sum
trees from identification of Chen(1998).

1. Introduction

All graphs in this paper are finite and have no loops or multiple edges.
We follow in general the graph-theoretic notation and terminology of [1]

unless otherwise specified.
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F.Harary introduced the idea of sum graphs and integral sum graphs
(2] [3]. At first, let N denote the set of positive integers. The sum graph
G*(S) of a finite subset S C N is the graph (S, E) with uv € E if and only if
utv € §. A graph G is said to be a sum graph if it is isomorphic to the sum
graph of some S C N. The sum number o(G) is the smallest nonnegative
m such that G UK, , the union of G and m isolated vertices , is a sum
graph. In the above definition by using the set Z of all integers instead of N
we obtain the definition of the integral sum graph. Analogously, the integral
sum number ((G) is the smallest nonnegative m such that GUmK, is an
integral sum graph. It is easy to see that the graph G is an integral sum
graph if and only if ((G) = 0. It is obvious that {(G) < o(G). Although
some results on sum graphs and integral sum graphs were presented [2-12],
but a considerable number of unsolved problems were remained. One of
them is the conjecture: "Every tree is an integral sum graph”, which was
proposed by Zhibo Chen in 1998 (10]. In order to discuss this problem, here
and now, we briefly summarize some results on tree graph. F.Harary [2] has
conjectured that any tree can be wmade into a suin graph with the addition
of a single isolated vertex in 1990. This conjecture was proved by Ellingham
[5] in 1993. F.Harary (3] found that all paths and stars are integral sum
graphs and conjectured that every integral sum tree is a caterpillar in 1994.
This conjecture was disproved by Zhibo Chen (4] in 1996. Zhibo Chen [10]
has also shown that every generalized star and tree with all forks at least

distance 4 apart are integral sum graphs in 1998,

In a graph G, a vertex v € V(() is said to be a hanging vertez if its
vertex degree d(v) = 1. A path P C G, P = g2 - - - 1y, is said to be a
hanging path if its two end vertices are respectively a hanging vertex zo and
a vertex ux; with vertex degree d(ay) # 2 and d(x;) = 2(j = 1,2,---,t = 1)
for every other vertex of P. A hauging path P is said to be a tail of G,
denoted by ¢t(G), if its length |t(G)| is maximum one among all hanging
paths of G. In this paper, we shall prove ((T3) = 0, where 1% is any tree
with |t(T3)| > 3. A tree is said to be a caterpillar C, if it consists of a

path sgsy - -+ 8y, called the spine of C, with some hanging vertices known
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as feet attached to the inner vertices (an inner verter is a vertex with at
least two adjacent vertices which are not the hanging vertices) of the spine
by edges known as legs . Then s;(i = 1,2,---,1 — 1) was called as the spine
verter of C, sg as tail , s; as head and s;_; as heart and s, as neck (see
Figure 1). The result improves the previous result of integral sum trees

from identification [10].

tail heard neck head
(o) O -
S0 31 82 Sr-2 St St

Figure 1. A caterpillar C

To prove that ((T3) = 0 for any tree whose tail length is not less than 3,
we use a labelling algorithi. The labelling algorithin has two stages. And
the first stage has to depend on the Ellingham's labelling algorithm [5] .

Therefore, in the next section, we shall briefly introduce it.

Since it can easily be shown that ((T) = 0 for |T| < 6, from now on, we

assume |T| > 6.
2. Ellingham labelling algorithin [5]

Suppose that T is a tree with |T| = = and z is an isolated vertex. And
define a shrub S which is a special class of trees with at most one inner
vertex. Then, using the Ellingham labelling algorithm. we can construct
a sequence of caterpillars Cy,Cy, - -, C,, and obtain two different types of

decomposition of T'.

Type 1. T is completely decomposed into some caterpillars, that is
T=CiUC2U---UCp.

199



Type 2. T is decomposed into some caterpillars and a shrub S . Thus
T=CiuCU---UC,US (m>1).

Applying the Ellingham labelling algorithin, we can give a sun labelling
f for the graph T U {z}, no matter what happens. We suppose the vertices
V(T) = {v1,v2,---v.} to be ordered such that 0 < f(v,) < fl) < - <
flva) < f(2).

For type 1, the vertex v, is the head of the last caterpillar C,,. If v,
and v, are the heart and the neck of C,,, respectively, then we have
that f(v,—;) = f(v,) + (k= ) f(vu=s)i = 0,1,---,k = 1) and f(z) =
flo.) + (k+ 1) f(vp—p).

For type 2, without loss of generality, we assume that the shrub S has
k hanging paths with length 2 and its root is v,, of course v, is also the
heart of the last caterpillar C,,,. Then we have that f(z) = f(vy—g—is1) +
fnri)(i = 1,2,--,k), f(v,) < flon-u) and f(v,_pti) = f(v,) +
Fon-ak4i) (i =1,2,-- k). If vgv,-1 € E(T), then we have that

FWnoisi) = Flva) + flon-on) + (i = ) = fop_pgr) + (i = 1)

(i =1,2,-+ k), f(v1) 2 kand |f(v;) = f(v;)] > k for any v;,v; € V(T),i #
Jjand i <n—2k.

3.The integral sum labelling of T}

Now we denote the tree whose tail length is at least 3 by T3. In this
section, we will give an integral sum labelling ¢ of T3. Suppose that
[t(T35)] = b = 3. Therefore we can decompose Ty into T U P, where
P is a tail of Ty, P = wowjawa2wy. w3 is a hanging vertex of Ty and
V(T) = {v1,v2,--+,vn_3}. In order to give an integral sum labelling of
Ty, using the Ellingham labelling algorithm above, we give first a sum la-
belling f of T'U {2z}, where z is a vertex which is not in V(7). Then, we

consider two cases according to the location of xg as follows.

Case 1. iy = v,, in other words i is the heart of the last caterpillar
Cln -
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In this case, let z = x» in the Ellingham labelling f above. Then we
extend from sum labelling f of T U {a2} to a labelling o of T3 by the
following algorithm. Let,

@(v) = fv) for v € V(T U {x2})
plr)) = —p(r2) + p(v,)
<P(1'»'3) = _(P(il:'_)) + 9’(":;) + (P('U,-),

where v, € V(T'), v,v, € E(T) and ¢(v,) < p(v,) (see Figure 2).

-259
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Figure 2. Illustration of Type 1 in Case 1

It is obvious that o(r;) < @) < 0 < @) < () < -+ <
Y(vn-3) < p(r2) and @(v,) + @(v,) < @(v.), where v, satistics vov,_3 €
E(T)(The v, is the neck of the last caterpillar C,, in type 1 and the v,
is equal to v,_3_sp41 in type 2). Now, we shall prove the labelling ¢ is
an integral sum labelling of T3. At first, for any u,v € V(T U {x2}), if
uv € E(T), then we have p(u) + ¢(v) = p(w) for some w € V(T U {x2})
because ¢ = fin TU {2} and f is a sum labelling of TU{z»}. In addition,
we have that

@(x0) + @(x1) = (v,) = p(x2) + (vy) = (a3)

@) + ple2) = o(v,) and

p(x2) + @) = puy) + @(v,) = p(y),
for some y € V(T U {x2}) by v,v, € E(T). Thercfore we have that for any
w,v € V(Ty) and uv € E(T3). p(u) + @(v) = o(w) for some w € V(Ty).
Now, we just need to show that if any u,» € V(T3), u # v and wo € E(Ty),
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then p(u) + ¢(v) # p(w) for any w € V(T3). We may assume without. loss
of generality that p(u) < p(v).
(1) For any u,» € V(T U {72}), u # v and uv € E(T3).

It is obvious that yp(u) + ¢(v) # @(w) for any w € V(T U {z2}) because
¢ = fin TU {z2}. In addition, by the construction of the labeling ¢, we
know that (x,) < ¢(x3) < 0. Thus p(u)+p(v) # @(w) for any w € V(Ty).

(2) For any v € V(T3) and v € E(Ty).
It is obvious that v # g, x», therefore

o) +o(v) < =) + eleg) + W(tn-3)
—p(Un-3) - p(0e) + 9(0g) + P (vns)
—p(ve) + p(vy)

< =p(v,) + o(v,) <0.

In addition, for w = @3 we have only that p(rg) + (1) = p(x3), but it
is not in this case. Thus @(r) + o(v) # @(w) for any w € V(T3) and
sre € E(Ty).

(3) For any v € V/(T3) \ {1} and x3v € E(Ty).
It is obvious that v # x4, therefore

plr) <) + @lv) < plas) + e(vn-3)
= —tp(:l:;z) + ‘p('“r) + ‘p("q) + W(vn—S)
= —p(va-3) — @(v.) + o(v,) + ‘P("tl) + p(vn-3)
= "GP(Ur) + ‘P("’I‘) + ‘P('Uq)
< —p(ve) + p(v,.) = 0.

Thus @(3) + @(v) # p(w) for any w € V(T;) and z3v € E(Ty).

Summarizing the above mentions in Case 1, we obtain that labelling ¢
satisfies the condition of an integral sum labelling of T3 when g = v,..

Case 2. 9 # v,.

At first, let 2 = z, in the Ellingham labelling f above. Then we can
extend from the sum labelling f of T U {&;} to a labelling o of Ty by the
following algorithm. Let

p(v) = f(v) for ve V(TU{x;})

pla) = (1) + 9li0)
pla2) = =) + (o),
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where v, € V(T), vyirg € E(T).

It is easy to see that p(22) < 0 < @(u1) < p(v2) < -+ < P(U,—3) <
e(z1) < ().

It is easy to verify that if w,v € V(T3),u # v and uwv € E(Ty), then
p(u) + o(v) = (w) for some w € V'(Ty). So we just need to show that
for any u,v € V(T3), if uv ¢ E(T3), then there is no w € V(T4) such
that p(u) + (v) = p(w). We may assume without loss of generality that
p(u) < p(v).

At first, if u,v € V(TU{x,}), and uv ¢ E(T3), then g(u) +o(v) # o(w)
for any w € V(T U {1 }) because ¢ = fin TU{x;} and f is a sum labelling
of TU {&}. Next, for p(u) + p(v) = (), v = 2 if and only if u = xq
according to the labeling . Therefore if p(u) + p(v) = @(x3). then there

must be that p(v) < -7, —3). We consider two subcases as follows.

Subcase 1. For p(u) < ¢(v..), where v.v,_3 € E(T), we have that
w(u) + o) < pe.) + p(vn-3) = (1) < p(r3)

Subcase 2. For p(u) > p(v.), where vov,_3 € E(T).

(1) If T is decomposed into type 1, namely T = C,UC»U- - - UC,,, then

o) + p(v) = P(0—3-;) + P(vn-s-i) (i<j3i,j=0,1,2,---,k=1)

= 299("1:—3) - (’ + /)Q(H,)

= @(vn-3) + 99(-"”) —-(i+j+ 1)(9('"4')

= @(vn-3) + @(a3) — ©lro) — (i +j + Do(ve)

= (v,) + p(irz) — () + (k=i = j — 1)p(v.).
Therefore now if p(u) + p(v) = (x3), then @(xg) — p(v,) = (k- i -
7 — Dp(v.). But since zg # v,. we have (k-4 —j — 1) # 0. Hence if
(k—1i—-j—1) <0, then we obtain ¢(v,) < ¢(v,.), which is a contradiction
with the Ellingham labelling of the last caterpillar C,, in type 1. If (k—i -
Jj —1) >0, then we obtain ©(irg) > @(v,) + p(v.) = P(vp—3-t+1), which is

a contradiction with the supposition of [#(T3)| = 3.

(2) If T is decomposed into type 2, namely T = CyUC,U---UC,, US.
then
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when p(u) < p(vn—3-k),

p(u) +o(v) < p(vn-3-k) + ©(Vn-3)
= @(vn—s—t) + oltn—s—k+1) + (k- 1)
= p(x1) + (k= 1) < o(x1) + p(x0) = @(x3);

when o(u) > p(vp-3-1).

o(u) + p(v) = o(v,_3—;) + @(en_a-i)
= 2p(vn-3) = (i + j)
= ((vn-s-r+1) + (k = 1)) + (o(x1) — @(ve)) — (i + j)
=o(v) +o(ve) + olra) — p(x0) —p(v) + (k—i -7 1)
= (v} + p(as) — @lre) + (k=i —j5 = 1).
(i<341,7=0,1,2,---,k —1). Therefore now if p(u) + ¢(v) = ¢(z3), then
we have that p(zg) = p(v,) + (k =i — j — 1), that is |p(xn) — w(v,.)] =
|k —i—3j—1| < k-2, which is a contradiction with the Ellingham labelling
of the shrub S in type 2.

Sumnmarizing the above mentions in Case 2, we obtain that the labelling

 satisfies the condition of an integral sum labelling of T5 when zq # v,.

Finally, since ¢(z3) is the maximum label of T3, for any v € V(T), we
have that o(v) + ¢(z3) > ¢(z3). Hence, there is not w € V(T3) such that
w(v) + ¢(r3) = p(w) for any u,v € V(T3), u # v and wv € E(T3).

Summarizing the above mentions. we can conclude that the labelling 2

is an integral sum labelling of the tree Ty with |#{T3)] = 3.

When [((T3)} = b > 3, namely P = rqey -y, is a tail of Ty . it need
only to take T = Ty \ {wp, 24—y, 2-2} and P* = w_gwp_omy— . And let
T3 =TUP* and {a-3} = T N P~. We choose the hanging vertex x,_3 to
be the head of the first caterpillar C; of T (take the other end of the most
longest. path in T started from here as the tail of C)) and then decompose T
outright or partially into a sequence of caterpillars C,Cs, -+, C,,. Finally,
using the above complete labeling algorithm, we can obtain an integral
sumn labeling ¢ of T3 with the tail length more than 3. Thus we obtain the
following result.

Theorem 1 If T3 is a tree with tail length at least 3, then ((T3) = 0.
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4. Remarks

Recently, Zhibo Chen [10] proved that any tree T with all forks at least
4 apart is an integral sum graph. Although our result is not the final
solution on integral sum trees, it improves the previous result and is very
close to completion. We try hard to explore a method into the study of
integral sum graphs in this paper. This method can connect the sum graph
with the integral sum graph. That is, we extend from a sum labelling to
the integral sum labelling. We believe that this method can be applied in

elsewhere with similar problems, such as general graphs with tail.
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