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Abstract

Let G be a graph and let c be a coloring of its edges. If the se-
quence of colors along a walk of G is of the form a4, ...,a4,0a1,...,aq,
the walk is called a square walk. We say that the coloring c is square-
free if any open walk is not a square and call the minimum number of
colors needed so that G has a square-free coloring a walk Thue num-
ber and denote it by 7 (G). This concept is a variation of the Thue
number introduced by Alon, Grytczuk, Haluszczak, and Riordan in
[1].

Using the walk Thue number several results of [1] are extended.
The Thue number of some complete graphs is extended to Hamming
graphs. This result (for the case of hypercubes) is used to show that if
a graph G on n vertices and m edges is the subdivision graph of some
graph, then 7, (G) < n—2. Graph products are also considered. An
inequality for the Thue number of the Cartesian product of trees is
extended to arbitrary graphs and upper bounds for the (walk) Thue
number of the direct and the strong products are also given. Using
the latter results the (walk) Thue number of complete multipartite
graphs is bounded which in turn gives a bound for arbitrary graphs
in general and for perfect graphs in particular.
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1 Introduction

A sequence a =ajas...a, of symbols from a set S is called non-repetitive
if it does not contain a subsequence a;4+1ai+2 ...@Git2m sSuch that a;; =
@itj+m for j = 1,...,m. Such a subsequence is called a square because
it can be written in the form zz, where x is a subsequence of consecutive
symbols of a. A theorem of Thue [13] asserts that three symbols suffice to
construct non-repetitive sequences of arbitrary length. Thue’s theorem is
a milestone for many applications and generalizations in several different
areas of mathematics. For more details we refer to the introduction in [1]
and references therein; see also interesting recent results in [7, 9, 10].

Suppose that in sequences we wish to forbid the existence of certain
subsequences of length two. Then the problem has the following graph
theoretical interpretation. Let D be a digraph with the vertex set S, does
D contain arbitrarily long nonrepetitive walks? The problem was com-
pletely solved by Currie [4] by providing a certain classification scheme for
digraphs. The corresponding problem for (undirected) graphs has a much
simpler solution: A connected graph G contains arbitrarily long nonrepet-
itive walks unless G is a path on four or fewer vertices [5].

Alon, Grytczuk, Haluszczak, and Riordan recently [1] proposed another
related graph theoretic concept. Their generalization uses the concept of
edge-colorings in such a way that Thue’s theorem asserts that 3 colors
suffice to color the edges of an arbitrary path. Since paths appear as
subgraphs of arbitrary graphs, it is natural to consider sequences of colors
along all paths in a graph. Thus, for a graph G, a coloring ¢ of E(G)
is called non-repetitive if the sequence of colors on any (open) path P in
G is non-repetitive. (Note that repetitive sequences on closed paths, that
is on cycles, are not forbidden.) The minimum number of colors needed
for a non-repetitive coloring is called the Thue number of a graph G, and
denoted by 7(G). In this language Thue’s theorem asserts that n(P,) = 3
for n > 5. The problem of determining the Thue number of cycles has been
posed by R.J. Simpson as well as in (1], and has been recently solved by
Currie [6] who proved that, except for n = 5,7,9,10, 14, and 17, 7(C) = 3.

In this paper we introduce a variation of non-repetition in graphs that
involves walks instead of paths. The concept and the corresponding graph
invariant called the “walk Thue number” are introduced in the next section.
We show that the walk Thue number and the Thue number coincide on trees
and cycles. In Section 3 we determine the (walk) Thue number of some
Hamming graphs and in particular of hypercubes, which in turn enables
us to prove an upper bound for the (walk) Thue number of an arbitrary
subdivision graph. Then, in Section 4, we consider the (walk) Thue number
of the Cartesian, the direct, and the strong product of graphs. We extend
an inequality of [1] from the Cartesian product of trees to the Cartesian



product of arbitrary graphs and obtain upper bounds for the (walk) Thue
number of the other two products as well. The proofs of these results are
rather straightforward which indicates that the new concept is very natural.
As an application of these “product results” the (walk) Thue number of
complete multipartite graphs is bounded which in turn implies that for an
arbitrary graph G, m,(G) < (2a(G) - 2) - (25(G) — 8), where a(G) denotes
the independence number of G and k(G) the clique cover number of G. The
paper is concluded with several remarks including two additional variations
of nonrepetitive colorings proposed by Grytczuk and Currie.

2 Square-free walks

A walk W in a graph G is a sequence of (not necessarily different) edges
e1,..., e such that e; = x;_; z; for some sequence of vertices o, ..., zx of
G. If zp = 7y the walk is closed. Otherwise the walk is open.

Let G be a graph and c a coloring of its edges. If the sequence of colors
along a walk of G forms a square then this walk will be called a square
(walk). Note that the walk ee, where e is an arbitrary edge of G, is a
(closed) square walk. Similarly, if G contains cycles then we always have
(closed) square walks just by going twice around a cycle. Hence to avoid
square walks, we should restrict our concern only to open walks. Note also
that eef, where f is an incident edge of e, is an open walk along which we
always get a repetitive coloring.

By the above, walks inducing repetitions cannot be avoided. We thus
say that the coloring c of E(G) is a square-free coloring if any open walk is
not a square. We call the minimum number of colors needed so that G has
a square-free coloring the walk Thue number of G and denote it by m,,(G).
If a coloring of G is square-free then there are also no square paths, thus
the coloring is clearly non-repetitive, and so

m(G) < 7w(G)

holds for any graph G. On the other hand the top coloring of the graph
H on Fig. 1 is non-repetitive but contains a square walk. Nevertheless we
have m,,(H) = m(H) = 4 as the bottom coloring from Fig. 1 shows.

The following simple lemma provides an essential simplification for our
further arguments.

Lemma 2.1 Let G be a graph and let ¢ be a coloring of E(G). IfG contains
an open square walk (with respect to c) then G contains an open square walk
eiez...exn such thate; #ejpq,1=1,2,...,2n - 1.

Proof. Let W = eje;...ey be an open square walk with respect to c.
Then k > 2. Suppose that for some i, e; = e;y;. We may without loss
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Figure 1: A non-repetitive, and a square-free coloring

of generality assume 1 < ¢ < k. Assume first £ = 2. If ¢ = 1, then
eseqs must be an open square walk and if ¢ = 2, then e;e4 is an open
square walk. So let £k > 2. Assume i = k and consider the walk W' =
€2€3...€x—1€k+2€k+3 - - - €2k—1. If it is not open, then as c(esx) = c(ex) =
c(ex+1) = c(e1), e1ezx forms an open square walk. Otherwise, |W'| = |W|—
4 and we proceed by induction. Assume finally that ¢ < k. If ei4x # €itkt1,
then as c(ei+k) = c(€itk+1), €i+k€it+k+1 is an open square walk. Otherwise,
consider the walk W" =e;...€i—1€;+2€i+3 . . - €it+k—1€i+k+2 - .. €25. I i5 AN
open square walk with |W'| = |W| — 4 and the induction completes the
argument. O

Coloring every edge of a graph with its own color and using Lemma 2.1
we infer that 7, is well-defined:

Corollary 2.2 For any graph G, m,(G) < |E(G)|.
For trees and cycles we can say more.

Proposition 2.3 (i) For any tree T, 7y (T) = w(T).
(i) For any n > 3, my(Cr) = m(Chr).

Proof. (i) We only need to show that 7, (T) < #(T). So let ¢ be a non-
repetitive coloring of E(T) using #(T) colors. Let a be an open square
walk with respect to c. By Lemma 2.1, T contains an open square walk
¢ = ajaz...as, such that a; # a4y, 7= 1,2,...,2n — 1. As T is a tree,
a’ induces a repetitive path, a contradiction.

(i) Let ¢ be a non-repetitive coloring of E(Cy) using m(Cy) colors,
where the edges of C,, are colored with a;,a2,...,a,. Let a be an open
square walk with respect to c. By Lemma 2.1 we can assume that a does
not contain a subsequence of two equal colors. Also, as cis non-repetitive, a
passes at least n+ 1 edges. So assume that a = a;a3 ...an0102 .. .ay, where
r<nand n+r =2t Asaisasquare walk, a; = a;4; fori = 1,...,t.
From the definition of a we also get ap—¢t4s = a; fori = 1,...,n — ¢.
Consider now the sequence @' = a1,...,8n—t,8n—t+1,.-,82(n—¢)- BY the



above, o' is a square. But since t > n/2 we have 2(n — t) < n, which
implies that a' induces a repetitive path of C,, a contradiction. The case
when a = (a1a2...an)*a1a2...ar, k > 1, is treated similarly and left to
the reader. m]

So the Thue number and the walk Thue number coincide on trees and
cycles. On the other hand, Barit and Varji [2] constructed examples
demonstrating that these numbers are in general different.

3 Hamming graphs and subdivision graphs

The Cartesian product GOH of graphs G = (V(G),E(G)) and H =
(V(H), E(H)) is the graph with the vertex set V(G) x V(H) and (a,z)
is adjacent to (b,y) in E(G OH) whenever ab € E(G) and = = y, or, if
a = b and zy € E(H). The Cartesian product is associative and com-
mutative in a natural way, cf. [11). Hemming graphs are, by definition,
Cartesian products of complete graphs. We can compute the walk Thue
number for the following Hamming graphs.

Theorem 3.1 Let ky,ky,...,kr > 1. Then

r
T Kok, O Kow, O - -+ OKos,. ) = E ok _p.

i=1

Proof. Set G = Ky O Ko1, O+ O Kgi. and p = 2;;1 2ki . As A(G) =
P, we only need to show that 7, (G) < p.

Let z € V(G), then z = (z1,%2,...,%,), where 1 < z; < 2% . For
1=1,2,...7 let H; be the group isomorphic to Z;“, where we consider the
groups H; to be pairwise disjoint. Let f; : V(K ) & H; be an (arbitrary)
bijection.

Let zy € E(G). Then we have z; # y; for some i, and z; = y; for
J #i. Denote £(zy) = i and color the edge zy with f;(z;) + fi(y:), where
the computation is done in the group H;. As fi(z:) + fi(y;) = 0 if and only
if 2; = y; we have colored the edges of G with p colors. It remains to show
that this coloring, say c, is square-free.

Let Q = z(® 2 . zCm) m > 1, be a square walk of G. Thus
c(zO*+)g(1+0) = ¢(z(m+g(m+1+0) 0 < § < m — 1. Let j be an arbitrary
index (1 £ j <), and consider the sequence of coordinates

2

i ,:cg.l),...,:c(.zm) .

J

Suppose that £(z@+)z(1+3) £ j. Since c(a(®+) z(1+1)) = ¢(g(m+i) g(m+1+i))
we also have £(z(m+i)p(m+1+i)) £ Tt follows that x§-°+i) = x§-1+i) and



gmH) = w(m+1+’). On the other hand, if £(z©+9z(+9) = j then also
g(x(m+t)w(m+1+*)) = j and therefore f; (:c(°+')) +f;($(l+')) = fJ(m(m-H)) +
fj(xg.m*‘*'i)). Hence

m-l m—1 ) '
Y (55 + £G) = 3 (HE) + £H6),
i=0 i=0

which in turn implies f; (:cg.o)) + f,-(a:g."‘) ) = fj (:cj"')) + f](m(z'")) and so

fi (xgo)) = f; (:c?"‘)). We conclude that z(® = z(2™)| so0 any square walk is
closed. ]

As for any graph G we have A(G) < 7(G) < Tw(G) we infer
Corollary 3.2 Let k;,ko,...,kr > 1. Then

r
T(Kor DK, O -+ 0 Ko, ) = 225:-‘ —r.

i=1

This result is an extension of the first part of a proposition from (1] for
complete graphs. Similarly we can extend the second part of the proposition
as follows.

Corollary 3.3 Let nj,na,...,n, > 2. Then

r
Ww(KmDKruD' ' 'DKn..) < 2 Eﬂi —3r.

i=1

Proof. Set H = K,,0K,,0.---0K,, and select k;, 1 < i < r, such that
2ki=1 « pn; < 2%, Let G = Kyu OKye,O- - OKos,, then by Theorem
3.1, mw(H) < 7y (G). It suffices to show our assertion for n; = 2K~1 + 1,
1<i<r. In this case we have:

1r,,,(H)<Z2"'—r—22(n.—1)—r—22n,—3r,

i=1 =1
and we are done. a
The Cartesian product of r copies of K> is the r-cube Q.. Theorem 3.1
also immediately implies:
Corollary 3.4 For anyr > 1, my(Q,) = 7(Qy) =T.

The subdivision graph S(G) of a graph G is obtained from G by subdi-
viding every edge of G. From Corollary 3.4 we can deduce:



Corollary 3.5 Let G be a connected graph. Then m,(S(G)) < |[V(G)).

Proof. Set n = |V(G)|. Using a construction from [3], see also [12], it
follows that S(G) is a subgraph of a hypercube. Alternatively, we can
define an embedding of S(G) into @, as follows. Label the original vertices
of G by the n-tuples containing n — 1 zeros, so that vertices receive 1’s at
pairwise different positions. The new vertices of S(G) receive two 1’s on
the same places as their neighbors. This is obviously an embedding of S(G)
into @y, and since 7y, (Qn) = n, we conclude that 7,,(S(G)) < n. O

By Corollary 3.3, 7,(G) < 2n — 3 for any graph G on n vertices. Let
H be a graph on n' vertices and m' edges and let G = S(H) has n vertices
and m edges. Then n = n' +m' and m = 2m’. Hence by Corollary 3.5,
7w(G) £n' =n—m' =n - 2. In conclusion, if G is a subdivision graph
of some graph, then the general bound m,(G) < 2n — 3 can be improved
to 7y (G) <n - 2.

4 Thue numbers of graph products

Besides the Cartesian product introduced in the previous section we will
consider two additional standard products of graphs, the direct product,
and the strong product [11]. Let G and H be arbitrary graphs. As for the
Cartesian product, the vertex set of any of these products is V(G) x V (H).
In the direct product G x H the vertex (a,z) is adjacent to the vertex
(b,y) whenever ab € E(G) and zy € E(H). For the strong product GR H
of graphs G and H we have E(GR H) = E(GOH) U E(G x H). The
projections pg,px of a product graph to factors are defined in a natural
way. Note that projections map edges of G x H to edges in factors, while
an edge of G OH is mapped to either an edge or a vertex. Also the direct
and the strong product are associative and commutative in a natural way.

Theorem 4.1 Let G and H be connected graphs. Then
(i) 7w(GOH) < my(G) + my(H),
(#) 7w(G x H) < my(G) - mw(H),
(i) my(GBRH) < (1y(G) + 1)« (mu(H) +1) = 1.

Proof. Let g an h be disjoint square-free colorings of G and H, respectively,
each with the minimum number of colors.

(i) Define a coloring ¢ of GOH by setting c((a,z)(b,y)) = g(ab) if
z = y (that is, if pg((a,z)(b,y)) = ab), and c((a,z)(b,y)) = h(zy) if
a =b. We claim that this is a square-free coloring of G OH. Suppose that
P =e,e,...,e2m, m > 1is asquare walk in G. Then the projections of P
to the factors induce square walks in the factors. Note that the projection



on a factor can also be empty, that is, a walk of length zero. Since g and h
are square-free colorings, these walks are all closed, which in turn implies
that P is closed.

(i) Define a coloring ¢ of E(G x H) by c(e) = (g9(pc(e)), h(pu(e)).
We claim that c is a square-free coloring of G x H (which obviously uses
mw(G) - mw(H) colors). Suppose that W = ej,ez,...,e2m, m > 1 is a
square walk in G x H. Then Wg = pg(e1),pc(ez),-..,pc(e2m), resp.
Wy = pu(e1),pu(es2),--.,pu(eam) is a square walk in G, resp. H. Thus
Wg (Wy) must be closed in G (resp. H), and so W is closed in G x H.

(iii) For the strong product we combine the coloring of E(GOH) defined
in (i) and the coloring of E(G x H) defined in (ii) in such a way that the col-
ors for the Cartesian edges are disjoint with the colors for the direct edges.
This gives a coloring of E(G ® H) using 7y (G) » mw(H) + 7w(G) + my(H)
colors. Using similar arguments as above we deduce that this coloring is
square-free. [}

In [1] it is proved that for any trees Ti,...,Th,
n

A(N0---0T,) < > w(T).
i=1

As the considered products are associative, Theorem 4.1 can be extended
to a finite number of factors. For instance, if Gy,...,G, are (connected)
graphs then

(G100 0Gy) S 1y(G10-+-0Gy) < Y mu(Gi).

i=1

Since by Proposition 2.3 (i), 7,(T") = #(T) holds for any tree T', Theorem
4.1 (i) thus extends the above result for trees.
Another application of Theorem 4.1 is the following. Denote by K, the
complete multipartite graph Kn, ..., n.
N, o’

Corollary 4.2 m,(K}) < (2n—2)(2r—3) foralln>2,7 > 2.

Proof. Consider the direct product Gy » = K, X K,. By Theorem 4.1 (ii)
and Corollary 3.3 (for one factor), 7, (G,) < (2n—3)(2r—3). Now, K}, can
be obtained from G, , by adding those Cartesian edges of K, B K, whose
projections to K, are edges (that is, to G,,» we add edges of n disjoint
copies of K). Color the new edges of K7, with new colors like in the proof
of (i) of Theorem 4.1, or like in the proof of (iii) of the same theorem in the
case of Cartesian edges. Thus altogether (2n — 3)(2r — 3) + 2r — 3 colors
are used in this construction. Using again similar arguments as above (by

10



projecting colors) we see that this is indeed a square-free coloring of K.
o

Recall that x(G) denotes the clique cover number of G (that is, the
smallest number of complete graphs needed to cover the vertices of G),
a(G) the independence number of G, and w(G) the cardinality of a largest
complete subgraph of G. By G we denote the complement of G.

Corollary 4.3 For an arbitrary connected graph G,
mw(G) < (2a(G) - 2) - (2x(G) - 3).

Proof. Note that £(G) also means the minimum number of independent
subsets of G such that each vertex of G is included in at least one of these
subsets. By setting r = £(G), and n = a(G) we infer that G C K7,. As the
walk Thue number of subgraphs is not greater than of their original graphs
the result follows from Corollary 4.2. a

Among the most well-known graph classes are the perfect graphs [8].
One of their characteriscic properties is that kK(G) = a(G) for any induced
subgraph of G. Also note that the graph G is perfect if and only if G is
perfect. Therefore from the corollary above we infer the following result
for perfect graphs.

Corollary 4.4 For a perfect graph G,
Tw(G) < (2a(G) - 2) - 2w(G) - 3).

Since any bipartite graph B is obviously perfect, and its maximum
clique has two vertices, we get in this case 7, (B) < 2a(G) — 2.

5 Concluding remarks

1. We present (a sketch of) an alternative proof of Theorem 3.1. We claim
first that Theorem 4.1 (iii) implies m(Kg) = 2¥ ~ 1 for all k£ > 1. Indeed,
the statement is clear for k = 1. For & > 1 we have

T(Kpx) <y (Kor) = mp(Ka B Kpu) <2(2F-' —141)—1=2F -1,

As m(Kyx) > A(K,k) = 2% —1 the claim follows. Let G = K4, O+ - - OKau,.
By Theorem 4.1 (i) (and the remarks after its proof), m,(G) < 327_, 2% —r.
For the lower bound we again use the fact that 7,(G) > A(G) = Y°I_, 2% —
T, and Theorem 3.1 follows.

2. Is there an upper bound for the walk Thue number for graphs with a
given maximum degree A? Recall that such a bound exists for the original

11



Thue number, defined in [1], where it is expressed as a constant times A2.
This result is obtained by probabilistic approach, and it is natural to ask
whether such approach could be applied for bounding .

3. We conclude the paper by proposing two different variations of non-
repetitive walk colorings suggested by Grytczuk and Currie (personal com-
munication), respectively. In the first variation, the coloring is called non-
repetitive if colors on any open simple walk form a nonrepetitive sequence
(by a simple walk we mean a walk in which each edge appears only once).
Obviously, this is a weaker concept than the square-free coloring as pre-
sented here, yet it is stronger than the (path) nonrepetitive coloring from
{1]. In the second one, coloring is called nonrepetitive, if colors on any non-
repetitive walk (that is a walk in which there is no subsequence of edges
forming a square (as sequence of edges)) form a nonrepetitive sequence.
Any of these concepts seems to be natural so an investigation of relations
between them would be welcome. We refer again to Barat and Varju [2]
that in general all these four concepts are different.
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