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ABSTRACT

For graph G with non-empty edge set, a (j, k)-edge labeling of G is an
integer labeling of the edges such that adjacent edges receive labels that
differ by at least j, and edges which are distance two apart receive labels
that differ by at least k. The )\ .-number of G is the minimum span over
the (4, k)-edge labelings of G. By establishing the equivalence of the edge
labelings of G to particular vertex labelings of G and the line graph of G,
we explore the properties of A ,(G). In particular, we obtain bounds on

X x(G), and prove that the A2 conjecture of Griggs and Yeh is true for
graph H if H is the line graph of some graph G. We investigate the X ;-
numbers and ) ;-numbers of common classes of graphs, including complete
graphs, trees, n-cubes, and joins.

1. Introduction. In this paper, we introduce and consider the problem
of labeling the edges of simple, loopless graph G = (V, E) with integers
constrained by edge distance conditions. We say that two edges e; and ez
are adjacent (at distance one) if and only if there exists a vertex to which
e; and e; are incident. Two edges e; and e are at distance two if and only
if they are not adjacent and there exists an edge to which e; and e; are
incident. We let d(z) (the degree of x) denote the number of edges incident
tozifreVorzekFE.

If G is a graph with non-empty edge set and if j and k are positive
integers with j > k, then a (j, k)-edge labeling of G is a mapping L from
E(G) into the integers such that

: |L(e2) — L(e1)] > j if e; and ey are adjacent in G, and
: |L(e2) — L(e1)| = k if e; and ez are at distance two in G.

Elements of the image of L are called labels, and the span of L, s(L), is
the difference between the largest and smallest labels. The minimum span
taken over all (j, k)-edge labelings of G, denoted X , (G), is called the X ,
number of G, and if L is a labeling with nummum span, then L is called
a )\; -labeling of G. We shall assume with no loss of generality that the
minimum label of (j, k)-edge labelings of G is 0.

The (j, k)-edge labeling problem defined above is analogous to the
(4, k)-vertex labeling problem; i.e., the problem of labeling the vertices of
a graph with a condition at distance two (called the L(j, k) vertex labeling
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problem), on which there exists much literature ([1], [2], [5]-[13], [15]-[20]).
The vertex labeling problem was first investigated in the case j = 2 and
k = 1 by Griggs and Yeh [13]. There, they considered the Ay ;-number
(i.e. the minimum span over L(2, 1)-labelings) of certain classes of graphs
such as paths, cycles, trees, and n-cubes. They also presented bounds on
A2,1(G) in terms A(G), x(G) and |V(G)|, and submitted the following:

Conjecture 1.1. For any graph H with A(H) > 2, A1 (H) < A%(H).

Two additional results from the literature on vertex labelings, useful
in this paper, are found in [10] and [5], respectively.

Theorem 1.2. Let G be a graph whose complement has path-covering num-
ber ¢. Then

it A2.(G) < |V(G)| ifc=1.
i Ad21(G) = |[V(G)|+¢c—2 ifc>1. o

Theorem 1.3. For r > 2, let G be an r-regular graph. Then
i Al,]_ (G) Z T
ii: )\2‘1(0) >r+2. e

In Section 2 of this paper, we derive the /\; (-numbers of paths, cycles
and complete bipartite graphs by noting the equivalence between the )\'
number of G and the A; x-number of L(G), the line graph of G. We also
introduce another useful correspondence between (j, k)-edge labelings of the
edges of G and a particular type of vertex labeling, defined subsequently,
in which the labels are sets. In Section 3, we produce bounds on the X ;-
number and X ;-number of arbitrary graph H, and show that if H =
L(G) for some graph G, then H satisfies Conjecture 1.1. In Section 4, we
investigate the A} ;-numbers and A3 j-numbers of trees, complete graphs
and regular graphs, and in Section 5 we similarly consider the n-cube.
Finally, in Section 6, we investigate the A} ;-numbers and X} ;-numbers of
joins and t-point suspensions, deriving A} ;-numbers and )} ;-numbers of
the n-wheel W,, for n > 3.

2. Preliminary Definitions and Results. We begin with two defini-
tions.

Definition 2.1. For positive integer p, a subset S of the set Z of integers
is said to be p-separated if and only if the absolute difference between any
two distinct elements in S is at least p.

Definition 2.2. For graph G, a function f : V(G) — 2{0:1.23..m} g 5

110



(4, k)—set labeling of G with span m if and only if f has the following
properties: for any v, w,w’ € V(@) such that w and w’ are adjacent to v,

i |f()] = d(v);

ii:  f(v) is j-separated;

ii: |f(v)N fw)l =15

ivi ifz€ f(v)andy € f(w),thenz=yor |z —y| > k;

veif f(u) N f(w) = f(v) () f(w') then w = w;

vi: for some vy,vs € V(G), 0 € f(v1) and m € f(v2).
The smallest m for which a (j,k)—set labeling of G exists is called the
s\jk-number of G, denoted sA;x(G). Any (j, k)—set labeling of G with
span sA; x(G), is called an sA; x-labeling of G. @

For arbitrary graph G, it is clear that a (j, k)-edge labeling of G with
span m induces a (j, k)—set labeling f of G with span m by setting f(v)
equal to the set of labels assigned to the edges incident to v. The converse
is also true; a (4, k)—set labeling f of G with span m induces a (3, k)-edge
labeling L of G with span m by setting L({w, v}) equal to the unique integer
in f(w) ) f(v). Since an analogous relationship exists between a (34, k)-edge
labeling with span m and a (j, k)-vertex labeling with span m of the line
graph L(G), we have the following.

Proposition 2.3. Let G be a graph with non-empty edge set. Then the
following are equivalent:

i: there is a (7, k)-edge labeling of G with span m;

ii: there is a (j, k)-vertex labeling of L(G) with span m;

iii: there is a (j, k)—set labeling of G with span m.
Consequently, X} .(G) = A,k (L(G)) = sXjk(G). o

In Figure 2.1a, we illustrate a (2,1)-edge labeling with span 6 of a graph
G along with its induced (2, 1)— set labeling. In Figure 2.1b, we illustrate
the corresponding (2, 1)-vertex labeling of L(G).

(02,63 253 : 3

N\
fo35) (4 A 3

Figure 2.1a Figure 2.1b

3,63
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(We may argue that X, ;(G) = 6 as follows: noting that

2.1(G) = X2,1(L(G)), we observe that L(G)¢ has order 5, size 2 and path
covering number 3. By Theorem 1.2, Ay1(L(G)) = 6. More generally, since
L(G) is a 1-point suspension of C4, we may apply results in [9] (Theorem
5.8) which imply X, ,(G) = Xjx(L(G)) = 25 + 2k for j > k.)

Definition 2.4. Let m > 0,d > 1 and X = {0,1,2,...,m}. A collection C
of non-empty subsets of X is said to be (m,d)-feasible if and only if the
following properties hold:

(i) each element of C is d-separated, and
(ii) for each A € C and z € A, there exists B € C such that A(|B = {z}.

Theorem 2.5. If G is a graph with (d, 1)—set labeling L, then L induces an
(s(L), d)-feasible set. Furthermore, if C is an (m, d)-feasible set, then there
exists a (possibly infinite) graph G and a (d, 1)—set labeling with span at
most m of G whose image is contained in C.

Proof: The first assertion follows from the fact that the image of any
(4, k)—set labeling L with span m is an (m, j)-feasible set by definitions
2.2 and 2.4. To prove the second assertion, it suffices to produce an algo-
rithm which generates a (possibly infinite) tree T along with a (d, 1)—set
labeling of T' whose labels are taken from C.

1. Select Vo € C. Establish 0**-generation (root) vertex vy with d(vp) =
IVal.

2. Assign Vj to vg and assign distinct elements of Vp to the edges incident
to vp.

3. Assign to each first-generation vertex v} (those incident to vp) an element
V¢ of C which intersects V; at exactly the label assigned to the edge {v, v} }.
4. Establish |V{| — 1 unlabeled edges incident to v}, and assign to those
edges distinct values from V} — (Vo[ V}'). (The vertex vj is a leaf if and
only if |V{| = 1.)

5. Assign to each second-generation vertex vg with parent v} an element V{
of C which intersects V{ at exactly the label assigned to the edge {'w%, vi}.
6. Continue this process. o

Let Too(A) be the infinite A-regular tree. As a consequence of the
algorithm described in the proof of Theorem 2.5, we have

Corollary 2.6. For A > 2, T (A) has a (d, 1)-edge labeling of span at most

m if and only if there exists an (m, d)-feasible set each of whose elements
has cardinality A. e

112



The Aj x-numbers of various graphs, which are themselves line graphs
of other well-known graphs, have been studied in [9] and [12]. As a result,
the /\_f’-, x-numbers of paths, cycles and complete bipartite graphs easily follow
from Proposition 2.3.

Theorem 2.7. [9] For n > 2, X} 1 (Pn) = Ajk(L(Pn)) = Ajk(Pr-1) =
0 ifn=2
7 ifn=3
j+k ifn=4o0rb
j+2k ifn>6and £ >2
2j ifn>6and1<i<2 ¢

Theorem 2.8. [9] For n > 3, X; . (Cn) = Ajk(L(Cs)) = Xjk(Cn), which
equals

Case 1: For%22
23 if nisodd and n > 3
j+2k ifn=0mod4 .
25 ifn=2mod4and £ <3
j+3k ifn=2mod4and £ >3

Case 2: For -,% <2
2j ifn=0mod 3
dk ifn=5
Jj+ 2k otherwise o

Theorem 2.9. [12] For integers 2 < n < m, X (Kmn) = Aje(L(Km,n)) =
Aj,k(Kn X Km) =

(m=1)j+(n-1)k ifn<mand%>n

(mn - 1)k ifn<mand-,7;-$n
(n-1)j+@2n-2k ifn=mandi>n-1
(n% - 1)k ifn=mandf<n-1e

In the remainder of this paper, we will concentrate our attention on

X3.1(G) and X} ,(G).

3. General Bounds on )} ,(G) and X} ;(G). Let G be a graph with
1 < § £ A (where §(G) is the minimum vertex degree over V(G).) The
degree of edge {u,v} is the number of edges incident to {u,v}. Since G
is assumed to be simple and loopless, d({u,v}) = d(u) + d(v) — 2; that is,
the degree of the edge {u,v} is two fewer than the sum of the degrees of u
and v. Let ¥ and 1 denote respectively the maximum and minimum edge
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degree of G. It follows that 20-1) <Y< (6+A-2)<T<2A-1).
We now obtain a general upper bound for )} , (G). By Chang and Kuo
[2], we note that for any graph H, Ap1(H) < A%(H) + A(H). Thus,

21(G) = 221(L(G)) S V2 + ¥ = ¥(¥ +1).

We improve this bound to — . +30 by applying the strategy in Griggs and
Yeh'’s proof [13] of A2 1(H) < A2%(H) + 2A(H) to the adjacency structure
of the edges of G.

Theorem 3.1. For graph G with maximum vertex degree A and maximum
edge degree ¥,

2(A-1)<X5,(G) S ¥(A+2)<2(A - 1)(A +2).
Furthermore, if G is A-regular, then 2A < X5 ;(G) < <¥ 430

Proof: To obtain the lower bound, we note tha.t Kpisa subgraph of L(G),
from which it follows that A5 ,(G) > A21(Ka) = 2(A —-1). If G is A-
regular, then L(G) is 2(A — 1)-regular, from which the lower bound follows
by Theorem 1.3.

To obtain the upper bound, arbitrarily order the edges of G, and label
them in a greedy way, starting with the smallest available integer. An edge
e € E(G) is adjacent to at most ¥ edges, and at distance two from at most
W(A —1) edges. So there are at most 3¥ + ¥(A — 1) = (A + 2) integers
not available for assignment to e, implying that e is labelable from among
the first ¥(A + 2) non-negative integers. Hence X5 ,(G) < ¥(A +2) <
2(A - 1)(A + 2) since ¥ < 2(A — 1), with equality if G is A-regular. o

As pointed out, Griggs and Yeh [13] conjectured that for all graphs H
with A(H) > 2, A2,1(H) < A%(H). Theorem 3.1 implies the truth of the
conjecture for a particular class of graphs.

Corollary 3.2. If H is a graph such that H = L(G) where §(G) > 4, then
A1 (H) € A%(H).

Proof: Notmg that A(H) = ¥(G) 2 A(G)+6(G) -2 > A(G) +2, we have
A2, 1(H) = 25,(G) < ¥(G)A(G) +2) < ¥%(G) = Az(H) .

Since K1,y is a subgraph of L(G), we easily modify the argument of
Theorem 3.1 to obtain

Theorem 3.3. Let G be a graph with A > 1. Then ¥ < )| (G) < TA <
2A(A —1). Furthermore, if G is A-regular, then ¥ < | I(G) <¥ S+ W
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For A-regular graph G, A > 3, we note that, in the next section, the
lower bound of 2A for A} {(G) in Theorem 3.1 will be improved to 2A + 1.

4. On the )] ;-numbers and )} ;-numbers of Complete Graphs,
Trees and Regular Graphs. For n > 2, the edges of K, are pairwise
at most distance two apart. Thus, (;) — 1 serves as a lower bound for
both A} ;(Ky) and Xj {(Ky). It is clear that Aj ;(K,) = (3) — 1 since any
bijection from {0,1,2, ..., (3) — 1} to E(Ky) is a (1,1)-edge labeling.

Theorem 4.1. For n > 2, X5 1(Ky) =

0 fn=2
4 ifn=3
7 ifn=4

¢)-1ifn>5

Proof: The cases n = 2 and n = 3 follow immediately from Theorems 2.7
and 2.8 since K and K3 are respectively P» and Cj.

For n > 4, we observe that L(K,) is a (2n — 4)-regular graph with
order (3) and diameter two. As a result, A5 ;(K,) > (3) — 1, and each
A2 1-labeling of K, is necessarily injective.

For n = 4, the complement of L(K,) is 1-regular and has path covering
number 3. By Theorem 1.2, it follows that Az ;1 (L(K4)) = A 1(Kq) = T7.

For n = 5, L(K;5)° is isomorphic to the Petersen graph which has a
Hamilton path. Thus, A3 ,(Ks) = 9 by Theorem 1.2 and our established
lower bound of (3) — 1.

In Figure 4.1 we exhibit a (2,1)—set labeling of K¢ with span 14 (in-
ducing a (2, 1)-edge labeling with span 14), implying (by our lower bound
of (§) — 1) that Xy ;(Ke) = 14.

{0,3.8,00,12} £1.3,6,9 143
£1,58,0,33 £24.¢10.13;
{252,923 £0.4,7,1,143
Figure 4.1

115



For n > 7, we observe that L(K,)° is m-regular where m = (3) — 1 —

(2n — 4) = Bi=fni6 > 1((3) - 1). By Dirac’s theorem on Hamilton paths
[3], L(Ky)® has a Hamilton path which, by Theorem 1.2 and our lower
bound (3) — 1, implies that Xy (Kn) = (3) — 1. »

In Figures 4.2a and 4.2b, we give )) ;-labelings of K4 and K.

Figure 4.2a Figure 4.2b

We next turn our attention to the )} ;-numbers and ) ;-numbers of
trees. In the case of the latter, it will be convenient to consider the edge
labeling properties of infinite trees with particular attention to Too(A), the
infinite A-regular tree.

Theorem 4.2. Let T" be a non-trivial tree. Then

it A}1(T) =¥, and
ii: M (Too(A)) = 2(A - 1).

Proof: By Theorem 3.3, A7 ;(T) > V. It thus suffices to produce a (1, 1)-
edge labeling L of T with span ¥. We proceed by induction as follows: let
eo € E(T) have degree ¥, and let L(eg) = 0. Then we may distribute the
labels 1, 2, 3, ... ¥ over the ¥ first-generation edges adjacent to ey. Now
assume that labels from {0, 1,2, ..., ¥} have been assigned to the edges of T
through the k*f-generation in accordance with the definition of (1,1)-edge
labelings. Let e = {a,b} be a k**-generation edge where, with no loss of
generality, the d(b) edges incident to b are labeled and the d(a) — 1 edges
incident to a of the (k + 1)* generation are unlabeled. Consider the set
C of the d(a) — 1 unlabeled children of {a,b}. The labels unavailable for
assignment to the edges in C are precisely the labels assigned to the edges
incident to b. Thus, there are ¥ + 1 —d(b) labels available for assignment to
the edges in C. However, we have seen that ¥ > d(b) + d(a) - 2, implying
¥ 41 —d(b) > d(a) — 1. Hence, X} ;(T) = V.

To see that A} ;(Too(A)) = 2(A—1), we merely note that the maximum
edge degree in To(A) is ¥ =2(A ~1). o

116



We now turn to the \j ;-numbers of tree T with maximum degree A
and T (A). Since the case A = 1,2 is addressed by Theorem 2.8, our main
theorems are:

Theorem 4.3. Let T be a tree with maximum degree A > 3. Then 2A+2 <
251(T) < X5 1(Too(A)) < 2A +3.

Theorem 4.4. A 1(T'oo(A)) =

2+1ifA=3,4
20 +2ifA=5
20+3ifA>6

Proof of Theorem 4.3: Since K 4 is a subgraph of T, A3 1 (K1,4) = 24 -2
is a lower bound for A5 ;(T). .

To show that 2A + 3 is an upper bound, it suffices to produce a
(2, 1)-edge labeling of T (A) with span 2A 4+ 3. To that end, let Xy =
{0,2,4,...,2A + 2} and X; = {1,3,5,...,2A + 3}. We note that |Xo| =
|X1] = A+2. Let {u,v} be the 0**-generation edge, to which we assign the
label 0. Then each first-generation edge is incident to either u or v. Assign
distinct labels to the A —1 first-generation edges incident to u from the set
Xo — {0} and assign distinct labels to the A — 1 first-generation edges inci-
dent to v from X; —{1}. Now assume that, for 1 < h < k, the h**-generation
edges descended from u are labeled entirely from Xp1mod2. Without loss of
generality, let e be a k**-generation edge with label L(€) € X41mod2 and let
€' be the father of e with label L(e’) € Ximod2. We assign labels to the A—1
children of e from the set W = Xy42mod2 —{L(e)—1, L(e)+1, L(e’)}. Since
[W| > A—-1, such alabeling can be achieved. Since no two k+-1°*-generation
edges (cousins) descended from u with distinct parents are within distance
two, all of the & + 1**-generation edges may be labeled in this manner. As
similar argument may be used to label the edges descended from v. e

Proof of Theorem 4.4: We begin with an improvement of the lower bound
given in Theorem 3.1.

Lemma 4.5. For A > 3, 2A +1 < A5 1(Teo(4)).

Proof: The line graph of To(A) is 2A — 2-regular, implying that
5.1(Teo(A)) > 2A by Theorem 3.1. Suppose that A5 ;(Teo(A)) = 2A. We
first show that for any A} ;-labeling L of Tio(A), there is an edge e; such
that L(e;) = 1.
Let L be a A} ;-labeling of Too (A) and let ep be an edge with L(eg) = 0.
Then the 2A — 2 edges incident to ep receive labels from {2,3,4,...,2A},
implying that at least one edge e incident to ep receives a label from
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{3,4,5,..,2A —1}. Hence, the 2A —2 edges incident to e receive distinct la-
bels from the 2A -2 labels in {0,1,2,...,2A} — {L(e1)—1, L{e1), L(e1) +1}.
Since this set has cardinality 2A — 2 and contains 1, there is an edge e;
which receives that label.

Let e; = {u,v}. With no loss of generality, the edges incident to u
receive labels 3, 5, 7, ..., 2A — 1 and the edges incident to v receive labels 4,
6,8, ..., 2A. Let {v,v;} be the edge which receives label 4. Then the A —1
remaining edges incident to v; must receive labels 0, 2, and the odd integers
from 7 to 2A — 1. (If A = 3, there are no such odd integers.) Let {v;,v2}
be the edge which receives label 2. Then the remaining A — 1 edges incident
to vo must receive labels 5,6, 8, 10, ....2A, implying the contradiction that
two adjacent edges receive consecutive labels 5 and 6. o

Lemma 4.6. Let A > 2 and let G be a A-regular graph. Then every (j, k)-
edge labeling L of G induces a (j, k)-edge labeling of To,(A) with span at
most s(L), implying X} .(G) > A} (T (A)).

Proof: Let L be a (j, k)-edge labeling of G with span s(L). Then by
Theorem 2.3, L induces a (j, k)—set labeling L* of G with span s(L).
Let v, be an arbitrarily selected vertex in V(G) and let the neighbors
of vp, be vp,,Un,,..,Un,. We assign the label L*(v,,) to the root wg of
Too(A), and we assign the labels L*(vy,), L*(vny)...., L*(vn, ) to the chil-
dren wy, ws, ..., wa of wp, respectively. The A—1 children of w; may then be
assigned the labels of the neighbors of v,, which have not already been as-
signed to the parent of w;. By induction, there exists a (j, k)—set labeling of
Too(A) with span at most s(L) which, by Theorem 2.2, induces a (3, k)-edge
labeling of Too(A) with span at most s(L). Hence X3 1(G) > A3 1 (Too(A)).

By Lemma 4.6, A\3,(T(3)) < A3;(K4) = 7, and by Lemma 4.5,
2,1(To(3)) = 7. Theorem 4.4 is thus proved in the case A = 3. The case
A = 4 is handled identically.

Lemma 4.7. For A > 5, X} 1(Tw(A)) 2 2A +2.

Proof: Suppose to the contrary that L is a (2,1)-edge labeling with span
2A + 1. Then L assigns the label 4 or it does not.
Suppose L assigns the label 4 to the edge {z,y}. Let

X = {z1,72,...,Za—1} be the set of edges incident to z not labeled 4 under
L, and similarly let Y = {y1,%2,...,ya—1} be the set of edges incident to
y not labeled 4 under L. Let B = {0,1,2} and C = {6,7,...2A + 1}.
We first observe that X and Y contain at least one edge labeled from B
since C does not contain a 2-separated subset of size A — 1. We next show
that X and Y cannot both contain exactly one edge with labels from B.
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Suppose the contrary that X and Y contain exactly one edge labeled from
B. Then X and Y have exactly A — 2 edges labeled from C. So, since the
edges of X (resp. Y') must have labels which differ pairwise by at least 2,
the edges in Y must have labels which differ pairwise by at least 2, and
the labels assigned to the edges in X and Y pairwise distinct, then with
no loss of generality, the labels in C' assigned to the edges of X must be
6, 8, 10, ... 2A and the labels in C assigned to the edges of Y must be
7,9,11,...,2A + 1. Let {y,w} be the edge in Y which receives label 2A —1
under L and let W = {w;, w2, ...,wa—1} be the set of edges incident to W
without label 2A — 1. Then the A — 1 labels of the edges in W must be
in [0,2A — 4] — {4}, an impossibility due to the unavailability of A — 1 2-
separated integers in that set. Thus, it follows from the distance conditions
that, with no loss of generality, exactly 2 edges in X receive labels from B
and exactly one edge in Y receives a label from B. Furthermore, the two
edges in X which receive labels from B must be assigned 0 and 2 due to the
adjacency of those edges. Let {z, z} be the edge on X which receives label
9 and let Z be the set of A — 1 edges incident to z not labeled 2. Then the
edges of Z must receive 2-separated labels in {5,6,7,...,2A +1}, and hence
those labels must be 5, 7, 9, .. , 2A + 1. Let {z,u} be the edge in Z with
label 2A — 1 and let U be the set of A — 1 edges incident to u not labeled
2A—1. Then the edges in U must receive labels in {0, 1,2, .., 2A—4}—{2, 5},
an impossibility due to the unavailability of A —1 2-separated integers in
that set. Thus L assigns 4 to no edge, implying that L assigns 2A — 3 to
an edge since 2A + 1 — L is a (2, 1)-edge labeling.

We next show that L assigns 2 to no edge. Let e be an edge labeled 2
under L. Then 2A — 2 edges incident to e must receive distinct labels from
the 2A — 3 integers in {0} N{5,6,7, .....2A +1} — {2A —3}, an impossibility.
Consequently, L assigns 2A — 1 to no edge as well.

We have thus shown that L assigns labels from the set

R={0,1,2,...,2A + 1} — {2,4,2A - 3,2A - 1}.
However, any edge e along with the 2A — 2 edges to which e is adjacent

require 2A — 1 distinct labels. Since |R| = 2A — 2, L is not a (2, 1)-edge
labeling. o

Now consider the claim A5 ; (Too(A)) = 2A +2 for A = 5. By Lemma
4.7 and Corollary 2.6, it suffices to show the existence of a (12, 2)-feasibility
set C in which every element in C has cardinality 5. But such a set is

{{0,2,5,8,11},{0,3,5,8,12},{0,3,6,8,11}, {0, 3,6,9,12},{0,4, 7,9, 11},
{0,4,7,10,12}, {1,3,5,7,10}, {1,3,5,8,10}, {1,3,5,9,12},{1,3,6, 8,11},
{1,3,6,9,11},{1,4,6,8,11},{1,4,7,9,11},{1,5,7,10,12}, {2,4, 6,8, 10},
{2,4,6,8,12}, {2,4,6,10,12},{2,4,7,9,12}, {2,4,8,10,12},
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{2,5,7,9,11}, {3,5,7,10,12}, {4, 6, 8,10,12} }.
Hence, Theorem 4.4 is proved for A = 5.

We next establish that for A = 6, A} 1(Tw(6)) > 2A +2 = 14. By
Lemma 4.7, A} (T (6)) 2 14. If equality holds, then there exists a (14, 2)-
feasible set C each of whose elements has cardinality 6. We note that C
is a subset of the collection of all 2-separated 6-subsets of the set X =
{0,1,2,3,...14}, of which there are (*7) = 210. We also note, however, that
many of the 2-separated 6-subsets of the set X fail to meet property 2 of
Definition 2.4; for example, the reader can verify that there is no 2-separated
6-subset in X which intersects {2,4,6,8,11,14} at only the element 4. A
computer search reveals that the maximal (14, 2)-feasible set C is empty.
This, along with Theorem 4.3 for A = 6, proves 15 = A} ; (Too(A)) = 24+3.

Lemma 4.8. For A > 2, if Too(A + 1) has a (d, 1)-edge labeling of span m,
then Tox(A) has a (d, 1)-edge labeling of span at most m — d.

Proof: If Too(A + 1) has a (d, 1)-edge labeling of span m, then there exists
an (m,d)-feasible set each of whose members has cardinality A + 1 by
Corollary 2.6. Let C = {A;, A2, ...A,} be such a set and consider the set
C' = {By, B, ..., By} where B; = A;— {m—d+1,m—d+2,...,m}. Since the
elements of A; are d-separated, we note that |B;| > |A;| - 1 = A, implying
that C’ is a (y, d)-feasible set, y < m — d. By Corollary 2.6, C’ induces a
(d, 1)-labeling of an infinite tree T each of whose vertices has degree at least
A. Since Too(A) is a subgraph of T, the result now follows. e

To complete the proof of Theorem 4.4, we note that A3 ;(Te(4)) >
2A + 2 for A > 6 by Lemma 4.7. If, for some Ag > 7, A5 1(Too(D0)) =
2A¢ + 2, then by Lemma 4.8 and an inductive argument, X} ; (Too(6)) =
14, a contradiction of our demonstration that X5 ;(To(6)) = 15. Hence,
A21(Teo(A)) > 2A 4+ 3 for A > 6. But Theorem 4.3 indicates that
A 1(Teo(A)) < 2A + 3, concluding the proof. e

5. On the X}, and ),; numbers of Q,. We denote the vertices of
@ by n-tuples each of whose components is 0 or 1, and we note that
|E(Qn)| = n2"~1. It is clear that X} ,(Q1)) = O for all j > k. Hence, we
consider the case n > 2, proving the following two theorems:

Theorem 5.1. For n > 2, A} 1(Qr) =2n—1.

Theorem 5.2

L )\'2,1 (@) =4
ii. 25,(Q3) =7
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il A5 ;(Q4) =10
iv. 23,1(@s) =12 0r 13
v. X5,;(Qe) = 15 or 16.

Before the proofs, however, we make a few observations.

For 0 < i < n—1, let E; denote the set of edges {#, 7} such that @ and
7 differ only in the i** component. Also, for h = 0,1, let E! = {{&,7} €
Ei| Y51 ;% ¥i = h mod 2}. Then:

1. Each E; is a perfect matching in Q,; hence, |E;| = 2°~! and no two
edges in E; are adjacent

2. The set {Ey, Ey, ..., Ep,—1} is a partition of E(Q,);

3. The set {E?, E}} is a partition of E;, and for fixed h, |E?| = 2"~2 and
the edges in E are pairwise distance at least three apart

4. For n > 2 and fixed i, @,, — E; is isomorphic to the sum of two copies of

Qn—l-

5. For fixed h € {0,1} and fixed i, every edge in Q,, — E; is adjacent to
some edge in EP.

6. For n > 2, if X C E(Q,) with |X| = 272 such that elements of X are
pairwise distance at least three apart, then X = E? for some fixed i, h.

Proof of Theorem 5.1: By Theorem 3.3, A1 ;(Qn) > 2n — 2. Suppose L is
a (1, 1)-edge labeling with span 2n — 2. Then by the pigeon-hole principle,
some fixed label ! is assigned by L to = edges, where z > [ 3-‘22;";——11-] > 27241,
These edges are incident to 2z > 2"~! + 2 distinct vertices. Since two of
these vertices must be adjacent in @, there exist two edges at distance
two each of which receives label [ under L, a contradiction. It thus suffices
to demonstrate a (1,1)-labeling with span 2n — 1. To that end, let L be
the edge labeling such that L(e) = 2i+ h for e € E!. By Property 3, edges
which receive the same label under L are at least distance three apart. It
thus follows that L is a (1, 1)-edge labeling. o

Proof of Theorem 5.2. We begin by establishing that A3 ; (Teo(n)) <

A51(Qn) £ 3n—2 for n > 2. Since @ is n-regular, the lower bound
follows from Lemma 4.6. The upper bound follows from the construction
of an edge-labeling with span 3n — 2. If L(e) = 3i + h for e € E, then by
Property 3, edges which receive the same label under L are at least distance
three apart. Additionally, two edges which receive consecutive labels are
necessarily in E; for some fixed ¢, and are thus not adjacent by Property 1.
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Now, since X3 ,;(Tw(2)) = 4, M1(To(3) = 7, X51(To(4)) = 9,
5.1(Too(5)) = 12, and X5 1 (Teo(6)) = 15, these bounds imply

i %1(Q2) = 4

ii. )"2,1 (Qs)=7

iii. A3,(Q4) =9 or 10
iv. X5,1(Qs) =12 0r 13
v. A5 1(Qs) = 15 or 16.

We close the proof by showing that A5 ;(Q4) = 10. Assume there exists
a (2,1)-edge labeling L with span 9. Then the 32 edges of Q4 can be placed
into 10 labeling classes My, My, .., My such that M; contains precisely those
edges labeled j under L. We observe that no 5 edges can receive the same
label under L, for if such were the case, then Q4 would need to have at least
7 x 5 = 35 edges. As a result, there must exist at least 2 labeling classes
with order 4. We argue that

a. if |M;| = 4 for some j, 1 < j < 8, then |M;_| +|M;41| < 4

b. if there exist 3 labeling classes representing labels j, j +1 and j +2 such
that |M_7| = |Mj+2| = 4, then |Mj+1| =0.

¢. no two labeling classes M; and M representing consecutive labels can
each have order 4.

To show a, we appeal to Properties 5 and 6 thus: for some %, h, M; = E}.
Since no edge in M;_1|J M4 is a.d_]acent to any edge in M, then by
Property 5, M;_1|J M;+1 C E; — E}, implying the result.

To show b, ,we suppose that M,.,.] > 0. By Property 6, M; = E!
and M;,, = E} for some i, h,4',h'. By Property 5, Mj;1 C E; — E" and
M;41 C By —Et Regardless of whether or not ¢ = i’, we have that E; — E}
and Ey — E are disjoint, which implies Mj41 = ¢.

To show ¢, we first suppose |Mp| = |M;| = 4. Since no edge in My
is adjacent to any edge in M;, we have by properties 3, 5, and 6 that
My = EP and M; = E} for some i, implying Mo\JM; = E;. From b,
we have |M2| = 0. Thus the remaining edges in Q4 — E;, the sum of two
disjoint copies of Q3 by Property 4, have labels in {3,4,5,...9}, implying
that Q3 can be (2, 1)-edge labeled with span 6, a contradiction of the result
251(Qs) = 7. (A symmetric argument can be given if j = 8.) Now suppose
1 € j £ 7. Then arguing as above, |MJ 1| = |[Mj42| = 0 by a (implying
j > 0 since |Mp| # 0 and j < 7 since |[Mg| # 0.) Noting again that
M;|J M; 41 = E; for some i, we can label the edges of Q4 — E; with labels
in {0,1,2,...7 — 2} U{j + 3,7 +4,...9}. We may thus produce a (2, 1)-edge
labeling L' of Q4 — E; where
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L(e) if L(e) < j—2
L'(e) =
L(e)-3 ifL(e)>35+3

But by property 4, L’ is (2, 1)-edge labeling of Q3 with span 6, a contra-
diction.

We next show that for 1 < j < 8, |M;| < 3. Suppose to the contrary
that there exists j, 1 < j < 8, such that |Mj| = 4 and let j* be the smallest
such j. From a, |[Mjs_1| 4+ |Mj-|+ |Mj+41| < 8, which implies that at least
24 edges of ), have labels from the remaining 7 labeling classes. Therefore,
at least 3 of the remaining 7 labeling classes have order 4, and hence there
exists g, 7* +2 < g < 8, such that |M,| = 4. If ¢ # j* +2, then the labeling
classes Mj-_y1, Mj, M- 11, Mg_1, My, My, are distinct and, by a, contain
at most 16 edges. The remaining four labeling classes must each have order
at exactly 4 (since, as noted, no 5 edges can receive the same label). This
forces the existence of two labeling classes representing consecutive labels
each with order 4, contradicting c. If, on the other hand, ¢ = j* + 2, then
by b, |Mj-41| = 0. Furthermore, from @, we observe that |M;-_;| < 3 and
|Mj- 43 < 3. Hence the five labeling classes Mj._;, M+, Mj«41, Mj+ 42, and
Mj- 43 contain at most 14 edges, implying that the remaining 5 labeling
classes contain at least 18 edges. At least three of these classes must have
order 4, implying the existence of ¢/, j* + 4 < ¢’ < 8 such that |[My| = 4.
By the preceding argument, this forces the existence of two labeling classes
representing consecutive labels each with order 4, contradicting c.

Since 1 < j < 8, |M;| < 3, it follows that [Mp| = |My| = 4 and that
for 1 < j < 8, |[M;| = 3. From Property 6, My = E! for some i, h, and
since the edges in M, are not adjacent to the edges in M, from Property
5 it follows that M; C E; — E," But no edge labeled 2 can be among the
18 edges adjacent to the edges in M, nor can it be an edge among the 7
edges in My |J M;. Hence, the remaining 7 edges in Q,, which may receive
the label 2 are precisely the single edge in E; — My — M; and its 6 adjacent
edges. However, it is impossible to find three edges among this collection
which are pairwise distance three apart, thus concluding the proof. e

6. On the eMl-numbers and eA?-numbers of Joins. Let G; and G, be
graphs with orders m; and my. Recall that the join of G; and G2, denoted
G1V Gz, is the graph whose vertex set is V(G1)|J V(G2) and whose edge
set is E(G1) | E(G2) U Z, where Z = {{u,v}|u € V(G,) and v € V(G3)}.

Theorem 6.1.

i: if G1 and G have non-empty edge sets, then A} 1(G1V G2) = X} 1(G1) +
Ma(Gz) +mymg + 1
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ii: if (without loss of generality) E(G)) is non-empty and E(G3) is empty,
then X} ,(G1V G2) = X1,1(G1) + mimg

iii: if E(G1) and E(G32) are each empty, then X} ;(G1VG2) = A ; (Km,,m,)
=mimg — 1.

Proof: i: We first show that A} ;(G1VGa2) < X} 1(G1)+2] 1(G2)+mima+1,
and then show that no (1, 1)-edge labeling of G; V G has smaller span.

Let Z = {21, 23, .....2Zm,m, } be the edges joining the vertices of G; to
the vertices of Gg, and for i = 1,2, let L; be a /\’l’l-labeling of G;. Noting
that every edge in Z is at most distance two away from each edge in G1VGa,
and that every edge in G, is exactly distance two away from each edge in
G2, we produce a (1, 1)-edge labeling L of G V G as follows: L(e) =

Ll(e) ifee E(G])

)‘II,I(GI) + Lz(e) +1 ifee E(Gz)

)\'1,1(61)+/\'1,1(G2)+1+p ife=zp.

Now suppose that A} ;(G1 V Gz2) < A} 1(G1) + A},,1(G2) + mima and
let L* be a (1,1)-edge labeling of Gy V G2 with span at most X} ;(G1) +
M.1(G2) + mymy. For i = 1,2, let X; = {z|L*(e) = z,e € G;} and let
Y = {y|L*(e) = y,y € Z}. We observe that |X;| > X} ,(G;) + 1, and that
Y| = myma. So [Xi|+|X2|+]Y| > A]1(G1) +A],1(G2) +myme +2, which
implies either X; (Y or X2(Y or X;[) X2 is non-empty, contradicting
the distance constraints.

Part ii is similar to part i, and part iii follows from Theorem 2.9. e

Recalling that a t-point suspension of G (t-spn(G)) is the join of G
with the sum of ¢ copies of K, we have the following:
Corollary 6.2.

i: for n > 2, A] ;(t-spn(Pr)) = A,1(Pr-1) + tn.

ii: for n > 3, A} 1(t-spn(Cr)) = AM1,1(Cr) +in. @

For positive integers j > k and general graphs G and G2, arguments
analogous to those used in Theorem 6.1 above yield

(1) X, 4(C1VG2) < X (G1)+X;(Ga) + X (Kiny ma) +5+K if E(G1)
and E(G3) are each non-empty;

(2) N1 (G1 V G2) < X, 1 (G1) + X, 1 (Km,,m,) + J if (without loss of
generalitys E(G,) is non-empty and E(G2) is empty;

(3) X x(G1VG2) = X  (Km,,m,) if both E(G1) and E(G?) are empty.

We note that for j = 2 and k = 1, the above bound in (1) is met when
G1 = G = P (since the bound is 7 and X} ;(K,) = 7), but is not met
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when G, = P; and G, = Cj (since the bound is 12 and ), ,(Ks) = 9).
We also note a given graph G may have more than one representatxon as a
join of graphs, in turn giving rise to distinct upper bounds on A3 1(G). For
example, K also equals C3V Ky, which by (2) above implies A3, I(K.;) <11,

For the remainder of this section, we investigate the \} 2,1-humber of the
n-wheel W,, = C,, VK;, for n 2> 3. Since K}, is a subgraph of W,,, we have
from (2) above 2n — 2 = A} (K1,n) < 25 1(Wr) < A5 1(Cn) + X5 1 (K1,0) +
2 = 2n + 4. Below, we show 251 (W) = 2n 2if a.nd only if n > 6.

Theorem 6.3. For n > 3, A5 ,(W,) =

7 ifn=3o0r4.
9 ifn=5
2n —2 ifn>6

Proof: If n = 3, then W3 = K, and the result follows by Theorem 4.1.

Observing that Wy and W; have edge diameter 2, we have that
A2,1(Wy) > 7 and Xy ,(Ws) > 9. In Figures 6.1a,b, we provide (2, 1)-edge
labelings of W, and W5 with these respective spans.

[

Figure 6.1a Figure 6.1b

Let n > 6. We denote the vertices of C, by ug, uy, ¢, ..., 4,1 and the edge
{tiy Yit1modn} by €i, 0 < i < n — 1. Additionally, we denote the vertex of
K by w and the spoke {w,u;} by s;, 0 <% < n— 1. We produce a (2,1)-
edge labeling L of W,, which meets the lower bound of 2n — 2 as follows:
L(e,-) =

2i+1 ifi=0,1,2

1 ifi=3

2 —1 fa<i<n-1
Also, L(s;) =

2n—8 ifi=0

2n — 6 ifi=1
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0 ifi=2

2n 4 ifi=3
2n -2 ifi=4
2i -8 if5<i<n-~-1

Although the reader can easily verify that L is a (2, 1)-edge labeling,
we observe that the spokes of W,, are labeled with distinct even integers,
L(ep) = L(e3z) = 1, and all other edges along C,, are given distinct odd
labels not equal to 1. For each spoke s;, L(s;) differs from its incident
edges in C,, by at least 3.

In Figure 6.2 below, we give an X; ;-edge labeling of W;.

Figure 6.2

7. Concluding Remarks. Our results on Too(A) show that for any tree
T with maximum degree A, \; | (To(A)) is in

S, ={0}ifa=1

Sy ={2,3,4}if A =2

Sy = {4,5,6,7} if A =3
Si={6,7,8,9}if A =4

Ss = {8,9,10,11,12} if A =5
Sa={2A-22A-1,..,2A+3}ifA>6

Thus, for A > 2, the set Ta, the collection of all finite trees with
maximum degree A, can be classified according to their Aj ;-number. It
is clear that K a is the smallest possible tree in the class of trees with
Ay j-number equal to 2A — 2, and is the only tree in this class for A = 2
alone. We conjecture that for each s € Sa, the class of finite trees with
N -number s is non-empty.

By Lemma 4.6, X} , (To(A)) < X . (G) where G is a A-regular graph.
For j = 2 and k = 1, we have seen that K3 and K4 meet the lower bound for
A =3and A =4. For j =k =1and m > 2, the odd graph O,,, that is, the
graph whose vertices are precisely the m — 1-subsets of {0,1,2,..,2m — 2}
(see [4]) and whose edges join vertices which are disjoint, can be (1, 1)-set
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labeled by assigning to vertex v the m-set {0,1,2, «y2m — 2} — v. Since
A1,1(Om) = 2m — 2 by Theorem 4.2, the odd graphs represent a class of
graphs which attain the minimum (1, 1)-edge number.

REFERENCES

(1] G. J. Chang, Wen-Tsai Ke, D. Kuo, D. Liu, R. Yeh, On L(d,1)-labelings
of graphs, Discrete Mathematics, 220 (2000) 57 - 66.

[2] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM
J. Discrete Math., 9 (1996) 309-316.

(3] G.A. Dirac, Some theorems on abstract graphs, Proc. London. Math.
Soc., (1952) 69-81.

[4] S. Fiorini and R.J. Wilson, Edge-colourings of graphs, Research Notes
in Mathematics No. 16, Pitman, (London, 1977).

[5] J.P. Georges and D.W. Mauro, On regular graphs optimally labeled with
a condition at distance two, submitted

[6] J.P. Georges and D.W. Mauro, Labeling trees with a condition at dis-
tance two, submitted

[7] J.P. Georges and D.W. Mauro, Some results on the Aj,k-numbers of
products of complete graphs, Congressus Numerantium, 140 (1999) 141-
160.

[8] J.P. Georges and D.W. Mauro, On the size of graphs labeled with a
condition at distance two, Jour. of Graph Theory, 22 (1996) 47 - 57.

[9] J.P. Georges and D.W. Mauro, Generalized vertex labelings with a con-
dition at distance two, Congressus Numerantium, 109 (1995) 141-159.

[10] J.P. Georges and D.W. Mauro, and M.A. Whittlesey, Relating path
coverings to vertex labelings with a condition at distance two, Discrete
Math., 135 (1994) 103 - 111.

[11] J.P. Georges and D.W. Mauro, On the criticality of graphs labeled with
a condition at distance two, Congressus Numerantium, 101 (1994) 33 - 49.

[12] J.P. Georges, D.W. Mauro and M.I. Stein, Labeling products of com-
plete graphs with a condition at distance two, SIAM J. Discrete Math., 14
(2000) 28 - 35.

127



[13] J.R. Griggs and R.K. Yeh, Labeling graphs with a condition at distance
two, SIAM J. Discrete Math., 5 (1992) 586-595.

[14) W K Hale, Frequency assignment: theory and application, Proc. IEEE
68 (1980) 1497-1514.

[15] P. Jha, Optimal L(2, 1)-labeling of Kronecker products of certain cycles,
preprint

[16] P. Jha, A. Narayanan, P. Sood, K. Sundaram, and V. Sunder, L(2,1)-
labeling of the Cartesian product of a cycle and a path, Ars Combinatoria,
55 (2000) 81-89.

[17] D. Liu and R. Yeh, On distance two labelings of graphs, Ars Combi-
natoria 47 (1997) 13-22

[18] D. Sakai, Labeling chordal graphs: distance two condition. SIAM J.
Discrete Math. 7 (1994) 133-140.

[19] J. Van Den Heuvel, R.A. Leese and M.A. Shepherd, Graph labeling
and radio channel assignment, Jour. of Graph Theory 29 (1998) 263 - 283.

[20] M.A. Whittlesey, J.P. Georges and D.W. Mauro, On the A-Number of
Q.. and related graphs, SIAM J. Discrete Math. 8 (1995) 499 - 506.

128



