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Abstract

A set of edges D in a graph G is a dominating set of edges if every
edge not in D is adjacent to at least one edge in D. The minimum
cardinality of an edge dominating set of G is the edge domination
number of G, denoted Dg(G). In this paper we investigate the edge
domination number for the cartesian product of an n-colorable graph
G and the complete graph K,,.

We consider only finite, undirected simple graphs G(V, E) where V is
the vertex set and E is the edge set. v(G) will denote the number of
vertices of G. A matching in a graph G is a subset of disjoint edges and
a full matching in G is a matching such that at most one vertex is not
on some edge of the matching. A graph G is n-colorable if there is a map
a:V — {1,2,..,n} such that if u and v are adjacent then a(u) # a(v).
The chromatic number of a graph G, denoted x(G), is the smallest n for
which G is n-colorable. For other terminology used in this paper please see
(5].

A subset of edges D of a graph G(V, E) is called an edge dominating
set of G if each edge in E — D is adjacent to at least one edge in D. The
edge domination number of G, denoted Dg(G), is the cardinality of
a minimum edge dominating set of G. The edge domination number of a
graph was first discussed in [4] and in [9). Yannakakis and Gavril show that
the problem of determining the edge domination number of bipartite graphs
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with degree at most three is NP-complete. They also note that any graph
has a minimum edge dominating set that consists of disjoint edges. Mitchell
and Hedetniemi [7] show that a minimum edge dominating set can be found
for a tree in linear time. Forcade [2] discusses the edge domination of the
n-cube. Forcade’s work is generalized by Cutler [1] where he considers the
edge domination number of the cartesian product of a graph with the n-
cube @, (which can also be viewed as a repeat cartesian product of K, with
itself). Georges et. al. [3] compute the edge domination number for the
cartesian product of two complete graphs. As a corollary to the theorems
in this paper we compute the edge domination number for the cartesian
product of an arbitrary number of complete graphs.

Definition 1 Let G(U, E) and H(V, F) be graphs. The cartesian prod-
uct of G and H, denoted G x H, is the graph with vertez set U x V where
two vertices (u1,v1) and (ug,v2) are adjacent if and only if either {u;,uz}
i3 in E and vy = vp or if {v1,v2} is in F and u; = uy. See Figure 1 for an
ezample of the cartesian product of two graphs.

Figure 1: C3, P3, and C3 X P3

We will also need the following idea.

Definition 2 Let G be a graph and let D be a subset of edges of G. We
say a vertex v in G is saturated with respect to D if v is contained in
some edge of D. Otherwise, v is unsaturated with respect to D.

We note that for a graph G a subset of edges D is an edge dominating set

if and only if all unsaturated vertices with respect to D are non-adjacent.
The next proposition gives us a basic inequality.
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Proposition 1 Let G be a graph with n > 3. Then Dg(G x K,) 2
v(G):(n—1)
2 .

Proof: We can think of G x K, as v(G) copies of K,. For any edge
dominating set D of G x K,,, each copy of K,, can contain at most one
unsaturated vertex with respect to D. This means that the number of
saturated vertices with respect to D is at least v(G)-(n—1). If D is a min-
imum edge dominating set of disjoint edges then we obtain the inequality
Dg(G x K,) > ¥&e-1)

The following two theorems investigate when the lower bound in Pro-
postion 1 can be achieved.

Theorem 1 Let n be odd with n > 3. If G is an n-colorable graph then
Dg(G x K,) = ¥&n-1)

Proof: To prove this theorem, using Proposition 1, all that remains is
to construct an edge dominating set D for G x K,, with ﬂglg‘—_ll edges.
Fix an n-coloring o of G using the colors {1,2,...,n}. Let {uj,us,...,u;}
be the vertices of G and let {v1,v2,...,¥n} be the vertices of K,. Again we
can think of G x K, as t copies of K,. Construct a subset of edges D as
follows: for each i =1 to ¢ take 25! disjoint edges from the i** copy of K,
so that the vertex {u;,Va(u,)} is not incident to any of the edges. For an

example of this see Figure 1. Clearly, D contains ﬁ)—gﬂ edges. Consider
any two vertices {u;,Ua(u,)} and {tj,Va(u;)} that are unsaturated by D.
Since a(u;) = a(u;) implies that u; and u; are not adjacent in G we see
that any two unsaturated vertices with respect to D are not adjacent in
G x K,,. Thus D is an edge dominating set of the required size. O

Theorem 2 Let n be even withn > 4. If G is an n-colorable graph with a
full matching then Dg(G x K,) = [4Gk{n=1)]

Proof: By the above proposition all that is needed is to construct an
edge dominating set D for G x K,, that has [ﬂﬂ;‘—_lz] edges. Fix an
n-coloring o of G using the colors {1,2,...,n}. Let {uy,uz,...,us} be the
vertices of G and let {v;, v, ...,vn} be the vertices of K,. Also, let M be
a full matching for G. Again we can think of G x K, as t copies of K.
We construct a subset of edges D in two steps. For each edge {u:,u;} in
M find an ! that is not equal to either o(u;) or a(u;) and place the edge
{(ui, 1), (uj,w)} in D. At this point one vertex in each copy of K, is satu-
rated with respect to D except in the case when v(G) is odd in which case
some copy K, still has only unsaturated vertices (without loss of generality
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we will assume that this is the 1°¢ copy of K,,). Now, if v(G) is even then for
each i = 1 to ¢ take 2= "‘2 disjoint edges from the it* copy of each K, so that
the vertices (ug,'va(u‘)) and (u;,v;) are not on any of the edges. If v(G) is
odd then for each ¢ = 2 to ¢ take 23= "‘2 disjoint edges from the i*" copy of each
K, so that the vertices (u;, Va(u ‘)) and (u;,v;) are not on any of the edges.
Also, in the 1°* copy of K, take % disjoint edges. In either case we have a
set D with [HELE=1] edges. For an example of this see Figure 2. As in
the proof of Theorem 1 we see that all unsaturated vertices with respect to
D are non-adjacent and D is an edge dominating set of the required size. [

Figure 2: K4, K3, and K4 x K3

In [8] Vizing shows that x(G x H) = maz{x(G),x(H)}. This implies
inductively that the chromatic number of K,, X K, X...x K, is n; assum-
ing without loss of generality that n; is the largest subscript. Combining
this result with Theorems 1 and 2 we have the following corollary.

Corollary 1 Let G = K,,, X Kp,; X ... X K, with at least one n; > 3. As-
sume that n; = maz{n,na,...,m}. Then Dg(G) = [3“‘—"1)—"?‘,’“—"'"]
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