Cartesian Products and Edge Domination

Robert W. Cutler, III
Departments of Biology & Computer Science
Bard College, Annandale, NY 12504 USA

and

Mark D. Halsey
Department of Mathematics
Bard College, Annandale, NY 12504 USA

January 10, 2002

Abstract

A set of edges D in a graph G is a dominating set of edges if every edge not in D is adjacent to at least one edge in D. The minimum cardinality of an edge dominating set of G is the edge domination number of G, denoted $D_E(G)$. In this paper we investigate the edge domination number for the cartesian product of an n-colorable graph G and the complete graph K_n .

We consider only finite, undirected simple graphs G(V, E) where V is the vertex set and E is the edge set. v(G) will denote the number of vertices of G. A matching in a graph G is a subset of disjoint edges and a full matching in G is a matching such that at most one vertex is not on some edge of the matching. A graph G is n-colorable if there is a map $\alpha: V \mapsto \{1, 2, ..., n\}$ such that if u and v are adjacent then $\alpha(u) \neq \alpha(v)$. The chromatic number of a graph G, denoted $\chi(G)$, is the smallest n for which G is n-colorable. For other terminology used in this paper please see [5].

A subset of edges D of a graph G(V, E) is called an edge dominating set of G if each edge in E-D is adjacent to at least one edge in D. The edge domination number of G, denoted $D_E(G)$, is the cardinality of a minimum edge dominating set of G. The edge domination number of a graph was first discussed in [4] and in [9]. Yannakakis and Gavril show that the problem of determining the edge domination number of bipartite graphs

with degree at most three is NP-complete. They also note that any graph has a minimum edge dominating set that consists of disjoint edges. Mitchell and Hedetniemi [7] show that a minimum edge dominating set can be found for a tree in linear time. Forcade [2] discusses the edge domination of the n-cube. Forcade's work is generalized by Cutler [1] where he considers the edge domination number of the cartesian product of a graph with the n-cube Q_n (which can also be viewed as a repeat cartesian product of K_2 with itself). Georges et. al. [3] compute the edge domination number for the cartesian product of two complete graphs. As a corollary to the theorems in this paper we compute the edge domination number for the cartesian product of an arbitrary number of complete graphs.

Definition 1 Let G(U, E) and H(V, F) be graphs. The cartesian product of G and H, denoted $G \times H$, is the graph with vertex set $U \times V$ where two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if either $\{u_1, u_2\}$ is in E and $v_1 = v_2$ or if $\{v_1, v_2\}$ is in F and $u_1 = u_2$. See Figure 1 for an example of the cartesian product of two graphs.

Figure 1: C_3 , P_3 , and $C_3 \times P_3$

We will also need the following idea.

Definition 2 Let G be a graph and let D be a subset of edges of G. We say a vertex v in G is saturated with respect to D if v is contained in some edge of D. Otherwise, v is unsaturated with respect to D.

We note that for a graph G a subset of edges D is an edge dominating set if and only if all unsaturated vertices with respect to D are non-adjacent. The next proposition gives us a basic inequality.

Proposition 1 Let G be a graph with $n \geq 3$. Then $D_E(G \times K_n) \geq \frac{v(G) \cdot (n-1)}{2}$.

Proof: We can think of $G \times K_n$ as v(G) copies of K_n . For any edge dominating set D of $G \times K_n$, each copy of K_n can contain at most one unsaturated vertex with respect to D. This means that the number of saturated vertices with respect to D is at least $v(G) \cdot (n-1)$. If D is a minimum edge dominating set of disjoint edges then we obtain the inequality $D_E(G \times K_n) \geq \frac{v(G)(n-1)}{2}$. \square

The following two theorems investigate when the lower bound in Propostion 1 can be achieved.

Theorem 1 Let n be odd with $n \geq 3$. If G is an n-colorable graph then $D_E(G \times K_n) = \frac{v(G) \cdot (n-1)}{2}$.

Proof: To prove this theorem, using Proposition 1, all that remains is to construct an edge dominating set D for $G \times K_n$ with $\frac{v(G)(n-1)}{2}$ edges. Fix an n-coloring α of G using the colors $\{1,2,...,n\}$. Let $\{u_1,u_2,...,u_t\}$ be the vertices of G and let $\{v_1,v_2,...,v_n\}$ be the vertices of K_n . Again we can think of $G \times K_n$ as t copies of K_n . Construct a subset of edges D as follows: for each i=1 to t take $\frac{n-1}{2}$ disjoint edges from the i^{th} copy of K_n so that the vertex $\{u_i,v_{\alpha(u_i)}\}$ is not incident to any of the edges. For an example of this see Figure 1. Clearly, D contains $\frac{v(G)(n-1)}{2}$ edges. Consider any two vertices $\{u_i,v_{\alpha(u_i)}\}$ and $\{u_j,v_{\alpha(u_j)}\}$ that are unsaturated by D. Since $\alpha(u_i)=\alpha(u_j)$ implies that u_i and u_j are not adjacent in G we see that any two unsaturated vertices with respect to D are not adjacent in $G \times K_n$. Thus D is an edge dominating set of the required size. \square

Theorem 2 Let n be even with $n \geq 4$. If G is an n-colorable graph with a full matching then $D_E(G \times K_n) = \lceil \frac{v(G) \cdot (n-1)}{2} \rceil$.

Proof: By the above proposition all that is needed is to construct an edge dominating set D for $G \times K_n$ that has $\lceil \frac{v(G)(n-1)}{2} \rceil$ edges. Fix an n-coloring α of G using the colors $\{1,2,...,n\}$. Let $\{u_1,u_2,...,u_t\}$ be the vertices of G and let $\{v_1,v_2,...,v_n\}$ be the vertices of K_n . Also, let M be a full matching for G. Again we can think of $G \times K_n$ as t copies of K_n . We construct a subset of edges D in two steps. For each edge $\{u_i,u_j\}$ in M find an l that is not equal to either $\alpha(u_i)$ or $\alpha(u_j)$ and place the edge $\{(u_i,v_l),(u_j,v_l)\}$ in D. At this point one vertex in each copy of K_n is saturated with respect to D except in the case when v(G) is odd in which case some copy K_n still has only unsaturated vertices (without loss of generality

we will assume that this is the 1^{st} copy of K_n). Now, if v(G) is even then for each i=1 to t take $\frac{n-2}{2}$ disjoint edges from the i^{th} copy of each K_n so that the vertices $(u_i, v_{\alpha(u_i)})$ and (u_i, v_l) are not on any of the edges. If v(G) is odd then for each i=2 to t take $\frac{n-2}{2}$ disjoint edges from the i^{th} copy of each K_n so that the vertices $(u_i, v_{\alpha(u_i)})$ and (u_i, v_l) are not on any of the edges. Also, in the 1^{st} copy of K_n take $\frac{n}{2}$ disjoint edges. In either case we have a set D with $\lceil \frac{v(G)\cdot(n-1)}{2} \rceil$ edges. For an example of this see Figure 2. As in the proof of Theorem 1 we see that all unsaturated vertices with respect to D are non-adjacent and D is an edge dominating set of the required size. \square

Figure 2: K_4 , K_3 , and $K_4 \times K_3$

In [8] Vizing shows that $\chi(G \times H) = max\{\chi(G), \chi(H)\}$. This implies inductively that the chromatic number of $K_{n_1} \times K_{n_2} \times ... \times K_{n_m}$ is n_1 assuming without loss of generality that n_1 is the largest subscript. Combining this result with Theorems 1 and 2 we have the following corollary.

Corollary 1 Let $G = K_{n_1} \times K_{n_2} \times ... \times K_{n_m}$ with at least one $n_i \geq 3$. Assume that $n_1 = max\{n_1, n_2, ..., n_m\}$. Then $D_E(G) = \lceil \frac{(n_1-1) \cdot n_2 \cdot n_3 \cdot ... \cdot n_m}{2} \rceil$.

References

- [1] R. Cutler, Edge Domination of $G \times Q_n$, Bulletin of the ICA, 15(1995), 69-79.
- [2] R. Forcade, Smallest Maximal Matchings in the Graph of the ddimensional Cube, Journal of Combinatorial Theory Ser. B, 14(1973), 153-156.
- [3] J. Georges, M. Halsey, A. Sanualla and M. Whittlesey, Edge Domination and Graph Structure, Congressus Numerantium, 76(1990), 127-144.
- [4] R. Gupta, Independence and Covering Numbers of Line Graphs and Total Graphs, in Proof Techniques in Graph Theory, ed. F. Harary. New York: Academic Press, 1969.

- [5] Frank Harary, Graph Theory, Addison-Wesley Publishing Company, Inc, 1972.
- [6] S. Jayaram, Line Domination in Graphs, Graphs and Combinatorics, 3(1987), 357-363.
- [7] S. Mitchell and S. Hedetniemi, Edge Domination in Trees, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Winnipeg: Utilitas Mathematica, (1977), 489-509.
- [8] V. G. Vizing, The Cartesian Products of Graphs. Vyc. Sis., 9(1963), 30-43.
- [9] M. Yannakakis and F. Gavril, Edge Dominating Sets in Graphs, SIAM Journal of Applied Mathematics, 38(1980), 364-372.