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Abstract

We introduce graphs G, with at least one maximum independent
set of vertices, I, such that Vv € V(G) \ I, the number of vertices
in Ng(v) NI is constant. When this number of vertices is equal to
A we say that I has the A-property and that G is A-regular-stable.
Furthermore we extend the study of this property to the well-covered
graphs (that is, graphs where all maximal independent sets of vertices
have the same cardinality). In this study we consider well-covered
graphs for which all maximal independent sets of vertices have the
A-property, herein called well-covered A-regular-stable graphs.
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1 Introduction

Let G = (V, E) be a finite connected undirected graph. We denote by V(G)
the set of vertices and E(G) the set of edges of G. G is a graph without
loops and multiple edges. Here we give some results for graphs with maxi-
mum independent sets with a special property which is designated by the A
property.

Let I be a maximum independent set of vertices in G. Then G is A-regular-
stable relatively to the set of vertices I, if Vv € V(G)\I, the number of
vertices in Ng(v) NI, is constant, and equal to . In this case, we say that
I has the A property. We also say that a graph is \-regular-stable if it has
at least one maximum independent set with the A property. This concept
is connected with the recognition of graphs for which the upper bound on
the stability number, obtained by convex quadratic programming is attained
5, 6].
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The graphs Cj, are examples of 2-regular-stable graphs. The graph K,
with p 2 n, is an example of a p-regular-stable graph.

Another interesting class of graphs which has an easy stability number to
determine is the class of well-covered graphs introduced in [7]. It is a chal-
lenge to know among the graphs in this class which ones have all maximal
independent sets with the A-property.

The plan of the paper is as follows. In section 2 the main results obtained
regarding A-regular-stable graphs are introduced. In section 3 we give some
results about well-covered graphs for which all maximal independent sets
have the A-property. Finally, in section 4, we propose some open questions.

2 A-regular-stable graphs

Given a \-regular-stable graph, G, we obtain the upper and lower bounds on
the stability number of G, a(G), established in the next theorem.

Theorem 1 If G be is a A-regular-stable graph then

ni nA
N (&) F Y

with 6(G) and A(G) denoting the minimum and mazimum degree of G, re-
spectively.

Proof: Let us denote by dg(i) the degree of the vertex i. Let I be a
maximum independent set of vertices with the A-property. Thus

> dg(i) =A(n — a(G)) & (ﬁ > de(i))a(G) = A(n — a(G))

i€l i€l
and, if d = 1 Zier do(3), then
ni

da(G) = AMn - a(G)) & a(G) = i d
Since 6(G) < d < A(G), we have
nA ni nA

A+ A(G) < A+J=Q(G)ST5(G)'
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As a consequence of this theorem, if G is a k-regular graph (that is, such
that Vv € V(G) dg(v) = k) which is A-regular-stable then a(G) = -;-"_;\—k

A connected graph, G, with order greater than one, such that L(G) is not
complete (where L(G) denotes the line graph of G), has a perfect matching if
and only if it belongs to the class of graphs with convex-QP stability number
(2] (that is, the class of graphs for which the stability number is the optimal
value of a convex quadratic programing problem). Now we prove a similar
result.

Theorem 2 Let G, G # P, be a graph with mazimum matching M. Then
the graph H = L(G) is 2-regular-stable if and only if M is perfect.

Proof: (=>)Let M be a maximum matching in G. There is a maximum
independent set I in H formed by L(M). If M is not perfect, there is a
vertex g € V(G) not covered by M. Then the edge ug, for v € V(G) will
be a vertex in the graph H with only one neighbour in the maximum set 1.
On the other hand, there is a path uhzy, such that uh and zy € M. Then
the vertex L(zh) has L(zy) and L(uh) as neighbours in H. So, if M is not
perfect H is not A-regular-stable.

(<=)If M is perfect, then L(M) is a maximum independent set of vertices
in H, and every vertex in H\L(M) has exactly two neighbours in L(M).

Note that G = P5 does not have a perfect matching, but L(G) = P, is A-
regular-stable, with A = 1. In the next theorem a complete characterization
of 1-regular-stable graphs is given.

A vertex v of a graph is a simplicial vertex if it appears in exactly one
clique of the graph. A clique of a graph G containing at least one simplicial
vertex of G is called a simplex of G. A graph G is a simplicial graph if every
vertex of G is a simplicial vertex of G or is adjacent to a simplicial vertex of
G. A graph G is chordal if every cycle of G of length four or more has a chord.

Next, the 1-regular-stable graphs are characterized.

Theorem 3 A graph G is 1-regular-stable iff each vertex belongs to ezactly
one simplez.
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Proof: Let us suppose that G is 1-regular-stable and S is a maximum
stable set for G, such that Vv € V(G)\ S, |[Neg(v)NS|=1. Then Vi € S i is
a simplicial vertex. Otherwise, Ng[i] is not a clique and then 3p,q € Ng(7)
such that [p, q] € E(G) and

(Ne(p) U Ne(9)) N S = {i}.

Therefore T = (S \ {i}) U {p,q} is a stable set for G such that |T'| > ||
which is a contradiction.

It is proven that each vertex 7 € S determines a simplex, S;, and each vertex
not in S belongs at least to one of these simplices. Let us suppose that
3i,j € S such that 5;NS; # 0. Then Vv € S;N S; |[Ng(v) N S| > 2 and we
again have a contradiction.

Conversely suppose that each vertex belongs to exactly one simplex. Then

V(G) = U,'e}Si, with Spﬂ Sq =0 Vp 7& q,

where Vi € I i is a simplicial vertex and S; is a simplex. Therefore I is a
maximum independent set such that Vv € V(G) \ I, [Ng(v) N S| = 1. o

There are graphs with more than one maximum independent set where
some of them have the A-property and others do not have it. As examples
we have Py and the graph of figure 3.

However if A > —Anin(Ag), where \pin(Ag) denotes the minimum eigen-
value of the adjacency matrix of G, Ag, (which it is not greater than —1 if
G has at least one edge) and there is a maximum independent set with the
A-property, then all maximal independent sets have the A-property (see [2]).

3 well-covered A-regular-stable graphs

A graph G is well-covered if all maximal independent sets of vertices in G
have the same cardinality. The recognition problem of well-covered graphs in
general is Co-NP-complete (3, 9]. A recent survey paper about these graphs
was given by Hartnell [4]). It is not true that if G is well-covered and 2-
regular stable it must have all maximal independent sets of vertices with the
A-property (for instance, see figure 3).

We are interested in well-covered graphs for which all maximal independent
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sets of vertices have the A-property, for a given A. From now on we call the
graphs with this property, well-covered A-regular-stable graphs.

For any A, the graph K) ) is an example of a well-covered A-regular-stable
graph.

A graph G is randomly matchable if every maximal matching in G is perfect.
This class of graphs was characterized in [10]. So, according to Theorem 2,
if we take the line graph of a randomly matchable graph, we obtain a well-
covered 2-regular-stable graph. As examples, we have the graphs of figures
1 and 2, where both are well-covered 2-regular-stable graphs.

It is not true that every well-covered 2-regular stable graph must be a line
graph of some graph. Figure 4 gives an example of a well-covered 2-regular
stable graph that are not line graph of any graph.

Given a subset S of V(G), G[S] denotes the graph induced by S and a(G[S)])
denotes the stability number of G[S].

Figure 1: A well-covered, 2-regular-stable graph.

Theorem 4 [8] Let G be a simplicial graph. Then G is well-covered if and
only if every vertez in V(G) belongs to ezactly one simplex.

Figure 2: The graph L(K33).
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Figure 3: G is 2-regular-stable, but it has a maximal independent set without
this property.

Theorem 5 [8] Let G be a chordal graph. G is well-covered if and only if it
is simplicial.

As an immediate consequence of the above theorems and Theorem 3 we
may conclude that a simplicial graph is 1-regular-stable if and only if it is
well-covered. A chordal graph is 1-regular stable if and only if it is simplicial.

Theorem 6 IfG is a simplicial and well-covered A-regular-stable graph,then
A =1 and G is complete.

Proof: Assuming that G is a well-covered simplicial graph, then by The-
orem 4 each vertex belongs exactly to one simplex.
If G is complete then we obtain the result. Let us suppose that G is not a
complete graph and let I = {s;, 2, ..., 3, } be the maximal independent set of
G built with the simplicial vertices, each one taken from a different simplex.
Then I has the 1-property. Now, replace s; by a vertex g € Ng(s)) with
g not simplicial. Then g has a neighbour A, such that h is not a simplicial
vertex (otherwise the graph must be complete) but, since G is well-covered,
by Theorem 4, h must belong to only one simplex, say Sz with a simplicial
vertex s;. Then J = {g, s3, ..., 53} is a maximal independent set of vertices,
where h has two neighbours (g and s;) in J. Hence G must be the complete

graph. m}

Corollary 1 Let G be a chordal well-covered graph with more than one maz-
imal independent set of vertices. Then there is at least one mazimal inde-
pendent set of vertices in G without the A-property.
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Figure 4: An example of a well-covered graph that is not line graph of any
graph.

Proof: Since by Theorem 5, a well-covered chordal graph must be a
simplicial graph, we apply the above theorem. o

Theorem 7 LetG be a well-covered A-reqular-stable graph. ThenVv € V(G)
a(G[Ng(v)]) = A

Proof: If 3v € V(G) with a(G[Ng(v)]) # A, taking a maximal indepen-
dent set I that contains the maximum independent set of G[Ng(v)], v will

not have A neighbours in I, which is a contradiction. a

As an immediate consequence of the above theorem we have the following
corollary.

Corollary 2 Let G be a well-covered 2-regular-stable graph. Then G does
not have K13 as an induced subgraph.

Theorem 8 Let G be a well-covered A-regular-stable graph, not bipartite.
Then G has triangles.

Proof: Let I be a maximal independent set of vertices in G. Since G is
not bipartite, there must exist z, y € V(G)\I such that z ~ y. We now have
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to prove that Ng(z) N Ng(y) # 0. If Ng(z) N Ng(y) = 0, then there is a
maximal independent set J which includes the maximum independent set of
the induced subgraph G[Ng(z) U {y}]. Then z has more than A neighbours
in J, which is a contradiction. o

Furthermore the above proof allows to conclude that every edge of a
well-covered A-regular-stable graph with both ends out of some maximal
independent set belongs to a triangle.

Theorem 9 [10] Let G be a graph for which every mazimal matching is
perfect, then G = K, , or G = Ky, for somen € N.

From this theorem we obtain the following corollary.

Corollary 3 Let G be a graph such that exists a graph H with G = L(H).
Then G is a well-covered A-reqular-stable graph if and only if H = K,, or
H = K, , for some n.

For n > 3, the graphs L(K, ) have C3 and all even cycles up to Cy, and
for n > 4, the graphs L(K,,) have all cycles from C3 to Cpny,. Therefore, for
every n > 4 it is possible to build well-covered A-regular-stable graphs, with
X =2, and with C,, as induced cycles.

Theorem 10 The graphs given in figure 5 are forbidden induced subgraphs
for well-covered graphs for which every mazimal independent set of vertices
has the A property, with A = 2.

Proof:

1)See corollary 2

2)In this case, see figure 6, when we choose a maximal independent set 1
that contains {a, b}, ¢ must have a vertex w € I as a neighbour. But, since

w cannot be adjacent to z (as A = 2), we would then have the induced K3
formed by vertices cwzz, a contradiction.
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Figure 5: The forbidden induced subgraphs of Theorem 10

Figure 6: A forbidden induced subgraph.

3)In this case, see figure 7, when we choose a maximal independent set /
that contains {c,d, e}, a must have a vertex z € I as a neighbour. But then,
since z is not joined to z nor to y (as A = 2), we would have the induced
K, 3 formed by vertices zayz, a contradiction. o

The graphs of the Theorem 10 belong to the set of nine forbidden graphs
for the line graphs [1].
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Figure 7: A forbidden induced subgraph.

4 Open problems

Theorem 10 gives some forbidden induced subgraphs of well-covered graphs,
for which all maximal independent sets have the A-property, with A = 2. It
is an open question to decide if these are the only forbidden subgraphs for
the family of well-covered 2-regular-stable graphs.

Another natural question, not considered in this paper, is to determine the
properties of well-covered A-regular-stable graphs, with A > 2.
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