On regular-stable graphs

Rommel Barbosa*, Departamento de Matemática, Universidade Federal de Mato Grosso, 78060-900, Cuiabá-MT, Brazil, rommel@cpd.ufmt.br Domingos M. Cardoso, Departamento de Matemática, Universidade de Aveiro, 3810-193, Aveiro-Portugal, dcardoso@mat.ua.pt

Abstract

We introduce graphs G, with at least one maximum independent set of vertices, I, such that $\forall v \in V(G) \setminus I$, the number of vertices in $N_G(v) \cap I$ is constant. When this number of vertices is equal to λ we say that I has the λ -property and that G is λ -regular-stable. Furthermore we extend the study of this property to the well-covered graphs (that is, graphs where all maximal independent sets of vertices have the same cardinality). In this study we consider well-covered graphs for which all maximal independent sets of vertices have the λ -property, herein called well-covered λ -regular-stable graphs.

Keywords: Graph Theory, well-covered graphs, regular-stable graphs.

1 Introduction

Let G = (V, E) be a finite connected undirected graph. We denote by V(G) the set of vertices and E(G) the set of edges of G. G is a graph without loops and multiple edges. Here we give some results for graphs with maximum independent sets with a special property which is designated by the λ property.

Let I be a maximum independent set of vertices in G. Then G is λ -regular-stable relatively to the set of vertices I, if $\forall v \in V(G) \backslash I$, the number of vertices in $N_G(v) \cap I$, is constant, and equal to λ . In this case, we say that I has the λ property. We also say that a graph is λ -regular-stable if it has at least one maximum independent set with the λ property. This concept is connected with the recognition of graphs for which the upper bound on the stability number, obtained by convex quadratic programming is attained [5, 6].

^{*}This work was done during his visit to Universidade de Aveiro, Portugal.

The graphs C_{2n} are examples of 2-regular-stable graphs. The graph $K_{p,n}$, with $p \geq n$, is an example of a p-regular-stable graph.

Another interesting class of graphs which has an easy stability number to determine is the class of well-covered graphs introduced in [7]. It is a challenge to know among the graphs in this class which ones have all maximal independent sets with the λ -property.

The plan of the paper is as follows. In section 2 the main results obtained regarding λ -regular-stable graphs are introduced. In section 3 we give some results about well-covered graphs for which all maximal independent sets have the λ -property. Finally, in section 4, we propose some open questions.

2 λ -regular-stable graphs

Given a λ -regular-stable graph, G, we obtain the upper and lower bounds on the stability number of G, $\alpha(G)$, established in the next theorem.

Theorem 1 If G be is a λ -regular-stable graph then

$$\frac{n\lambda}{\Delta(G)+\lambda} \le \alpha(G) \le \frac{n\lambda}{\delta(G)+\lambda},$$

with $\delta(G)$ and $\Delta(G)$ denoting the minimum and maximum degree of G, respectively.

Proof: Let us denote by $d_G(i)$ the degree of the vertex i. Let I be a maximum independent set of vertices with the λ -property. Thus

$$\sum_{i \in I} d_G(i) = \lambda(n - \alpha(G)) \Leftrightarrow (\frac{1}{|I|} \sum_{i \in I} d_G(i)) \alpha(G) = \lambda(n - \alpha(G))$$

and, if $\tilde{d} = \frac{1}{|I|} \sum_{i \in I} d_G(i)$, then

$$\tilde{d}\alpha(G) = \lambda(n - \alpha(G)) \Leftrightarrow \alpha(G) = \frac{n\lambda}{\lambda + \tilde{d}}.$$

Since $\delta(G) \leq \tilde{d} \leq \Delta(G)$, we have

$$\frac{n\lambda}{\lambda + \Delta(G)} \le \frac{n\lambda}{\lambda + \tilde{d}} = \alpha(G) \le \frac{n\lambda}{\lambda + \delta(G)}.$$

As a consequence of this theorem, if G is a k-regular graph (that is, such that $\forall v \in V(G)$ $d_G(v) = k$) which is λ -regular-stable then $\alpha(G) = \frac{n\lambda}{\lambda + k}$.

A connected graph, G, with order greater than one, such that L(G) is not complete (where L(G) denotes the line graph of G), has a perfect matching if and only if it belongs to the class of graphs with convex-QP stability number [2] (that is, the class of graphs for which the stability number is the optimal value of a convex quadratic programing problem). Now we prove a similar result.

Theorem 2 Let G, $G \neq P_2$, be a graph with maximum matching M. Then the graph H = L(G) is 2-regular-stable if and only if M is perfect.

Proof: (\Longrightarrow)Let M be a maximum matching in G. There is a maximum independent set I in H formed by L(M). If M is not perfect, there is a vertex $g \in V(G)$ not covered by M. Then the edge ug, for $u \in V(G)$ will be a vertex in the graph H with only one neighbour in the maximum set I. On the other hand, there is a path uhxy, such that uh and $xy \in M$. Then the vertex L(xh) has L(xy) and L(uh) as neighbours in H. So, if M is not perfect H is not λ -regular-stable.

 (\Leftarrow) If M is perfect, then L(M) is a maximum independent set of vertices in H, and every vertex in $H \setminus L(M)$ has exactly two neighbours in L(M).

Note that $G = P_5$ does not have a perfect matching, but $L(G) = P_4$ is λ -regular-stable, with $\lambda = 1$. In the next theorem a complete characterization of 1-regular-stable graphs is given.

A vertex v of a graph is a *simplicial* vertex if it appears in exactly one clique of the graph. A clique of a graph G containing at least one simplicial vertex of G is called a *simplex* of G. A graph G is a *simplicial graph* if every vertex of G is a simplicial vertex of G or is adjacent to a simplicial vertex of G. A graph G is *chordal* if every cycle of G of length four or more has a chord.

Next, the 1-regular-stable graphs are characterized.

Theorem 3 A graph G is 1-regular-stable iff each vertex belongs to exactly one simplex.

Proof: Let us suppose that G is 1-regular-stable and S is a maximum stable set for G, such that $\forall v \in V(G) \setminus S$, $|N_G(v) \cap S| = 1$. Then $\forall i \in S$ i is a simplicial vertex. Otherwise, $N_G[i]$ is not a clique and then $\exists p, q \in N_G(i)$ such that $[p,q] \notin E(G)$ and

$$(N_G(p) \cup N_G(q)) \cap S = \{i\}.$$

Therefore $T = (S \setminus \{i\}) \cup \{p,q\}$ is a stable set for G such that |T| > |S| which is a contradiction.

It is proven that each vertex $i \in S$ determines a simplex, S_i , and each vertex not in S belongs at least to one of these simplices. Let us suppose that $\exists i, j \in S$ such that $S_i \cap S_j \neq \emptyset$. Then $\forall v \in S_i \cap S_j |N_G(v) \cap S| \geq 2$ and we again have a contradiction.

Conversely suppose that each vertex belongs to exactly one simplex. Then

$$V(G) = \bigcup_{i \in I} S_i$$
, with $S_p \cap S_q = \emptyset \ \forall p \neq q$,

where $\forall i \in I$ i is a simplicial vertex and S_i is a simplex. Therefore I is a maximum independent set such that $\forall v \in V(G) \setminus I$, $|N_G(v) \cap S| = 1$.

There are graphs with more than one maximum independent set where some of them have the λ -property and others do not have it. As examples we have P_4 and the graph of figure 3.

However if $\lambda \geq -\lambda_{min}(A_G)$, where $\lambda_{min}(A_G)$ denotes the minimum eigenvalue of the adjacency matrix of G, A_G , (which it is not greater than -1 if G has at least one edge) and there is a maximum independent set with the λ -property, then all maximal independent sets have the λ -property (see [2]).

3 well-covered λ -regular-stable graphs

A graph G is well-covered if all maximal independent sets of vertices in G have the same cardinality. The recognition problem of well-covered graphs in general is Co-NP-complete [3, 9]. A recent survey paper about these graphs was given by Hartnell [4]. It is not true that if G is well-covered and 2-regular stable it must have all maximal independent sets of vertices with the λ -property (for instance, see figure 3).

We are interested in well-covered graphs for which all maximal independent

sets of vertices have the λ -property, for a given λ . From now on we call the graphs with this property, well-covered λ -regular-stable graphs.

For any λ , the graph $K_{\lambda,\lambda}$ is an example of a well-covered λ -regular-stable graph.

A graph G is randomly matchable if every maximal matching in G is perfect. This class of graphs was characterized in [10]. So, according to Theorem 2, if we take the line graph of a randomly matchable graph, we obtain a well-covered 2-regular-stable graph. As examples, we have the graphs of figures 1 and 2, where both are well-covered 2-regular-stable graphs.

It is not true that every well-covered 2-regular stable graph must be a line graph of some graph. Figure 4 gives an example of a well-covered 2-regular stable graph that are not line graph of any graph.

Given a subset S of V(G), G[S] denotes the graph induced by S and $\alpha(G[S])$ denotes the stability number of G[S].

Figure 1: A well-covered, 2-regular-stable graph.

Theorem 4 [8] Let G be a simplicial graph. Then G is well-covered if and only if every vertex in V(G) belongs to exactly one simplex.

Figure 2: The graph $L(K_{3,3})$.

Figure 3: G is 2-regular-stable, but it has a maximal independent set without this property.

Theorem 5 [8] Let G be a chordal graph. G is well-covered if and only if it is simplicial.

As an immediate consequence of the above theorems and Theorem 3 we may conclude that a simplicial graph is 1-regular-stable if and only if it is well-covered. A chordal graph is 1-regular stable if and only if it is simplicial.

Theorem 6 If G is a simplicial and well-covered λ -regular-stable graph, then $\lambda = 1$ and G is complete.

Proof: Assuming that G is a well-covered simplicial graph, then by Theorem 4 each vertex belongs exactly to one simplex.

If G is complete then we obtain the result. Let us suppose that G is not a complete graph and let $I = \{s_1, s_2, ..., s_n\}$ be the maximal independent set of G built with the simplicial vertices, each one taken from a different simplex. Then I has the 1-property. Now, replace s_1 by a vertex $g \in N_G(s_1)$ with g not simplicial. Then g has a neighbour h, such that h is not a simplicial vertex (otherwise the graph must be complete) but, since G is well-covered, by Theorem 4, h must belong to only one simplex, say S_2 with a simplicial vertex s_2 . Then $J = \{g, s_2, ..., s_3\}$ is a maximal independent set of vertices, where h has two neighbours (g and $s_2)$ in J. Hence G must be the complete graph.

Corollary 1 Let G be a chordal well-covered graph with more than one maximal independent set of vertices. Then there is at least one maximal independent set of vertices in G without the λ -property.

Figure 4: An example of a well-covered graph that is not line graph of any graph.

Proof: Since by Theorem 5, a well-covered chordal graph must be a simplicial graph, we apply the above theorem.

Theorem 7 Let G be a well-covered λ -regular-stable graph. Then $\forall v \in V(G)$ $\alpha(G[N_G(v)]) = \lambda$.

Proof: If $\exists v \in V(G)$ with $\alpha(G[N_G(v)]) \neq \lambda$, taking a maximal independent set I that contains the maximum independent set of $G[N_G(v)]$, v will not have λ neighbours in I, which is a contradiction.

As an immediate consequence of the above theorem we have the following corollary.

Corollary 2 Let G be a well-covered 2-regular-stable graph. Then G does not have $K_{1,3}$ as an induced subgraph.

Theorem 8 Let G be a well-covered λ -regular-stable graph, not bipartite. Then G has triangles.

Proof: Let I be a maximal independent set of vertices in G. Since G is not bipartite, there must exist $x, y \in V(G) \setminus I$ such that $x \sim y$. We now have

to prove that $N_G(x) \cap N_G(y) \neq \emptyset$. If $N_G(x) \cap N_G(y) = \emptyset$, then there is a maximal independent set J which includes the maximum independent set of the induced subgraph $G[N_G(x) \cup \{y\}]$. Then x has more than λ neighbours in J, which is a contradiction.

Furthermore the above proof allows to conclude that every edge of a well-covered λ -regular-stable graph with both ends out of some maximal independent set belongs to a triangle.

Theorem 9 [10] Let G be a graph for which every maximal matching is perfect, then $G = K_{n,n}$ or $G = K_n$, for some $n \in \mathbb{N}$.

From this theorem we obtain the following corollary.

Corollary 3 Let G be a graph such that exists a graph H with G = L(H). Then G is a well-covered λ -regular-stable graph if and only if $H = K_n$ or $H = K_{n,n}$, for some n.

For $n \geq 3$, the graphs $L(K_{n,n})$ have C_3 and all even cycles up to C_{2n} and for $n \geq 4$, the graphs $L(K_n)$ have all cycles from C_3 to C_{n+1} . Therefore, for every $n \geq 4$ it is possible to build well-covered λ -regular-stable graphs, with $\lambda = 2$, and with C_n as induced cycles.

Theorem 10 The graphs given in figure 5 are forbidden induced subgraphs for well-covered graphs for which every maximal independent set of vertices has the λ property, with $\lambda = 2$.

Proof:

- 1)See corollary 2
- 2) In this case, see figure 6, when we choose a maximal independent set I that contains $\{a,b\}$, c must have a vertex $w \in I$ as a neighbour. But, since w cannot be adjacent to z (as $\lambda = 2$), we would then have the induced $K_{1,3}$ formed by vertices cwxz, a contradiction.

Figure 5: The forbidden induced subgraphs of Theorem 10

Figure 6: A forbidden induced subgraph.

3) In this case, see figure 7, when we choose a maximal independent set I that contains $\{c, d, e\}$, a must have a vertex $x \in I$ as a neighbour. But then, since x is not joined to z nor to y (as $\lambda = 2$), we would have the induced $K_{1,3}$ formed by vertices xayz, a contradiction.

The graphs of the Theorem 10 belong to the set of nine forbidden graphs for the line graphs [1].

Figure 7: A forbidden induced subgraph.

4 Open problems

Theorem 10 gives some forbidden induced subgraphs of well-covered graphs, for which all maximal independent sets have the λ -property, with $\lambda = 2$. It is an open question to decide if these are the only forbidden subgraphs for the family of well-covered 2-regular-stable graphs.

Another natural question, not considered in this paper, is to determine the properties of well-covered λ -regular-stable graphs, with $\lambda > 2$.

References

- [1] L.W. Beineke, *Derived graphs and digraphs*, In Beitrage Zur Graphentheorie, 17-33, Tubner 1968.
- [2] D.M. Cardoso, Convex Quadratic Programming Approach to the Maximum Matching Problem, Journal of Global Optimization 19, 291-306, 2001.
- [3] V. Chvatal and P.J. Slater, A note on well-covered graphs, Quo Vadis, Graph Theory?, Ann. Discrete Math. 55, 179-182, 1993.

- [4] B. Hartnell, Well-covered graphs, Journal Comb. Math. Comb. Comp. 29, 107-115, 1999.
- [5] C.J. Luz, An upper bound on the independence number of a graph computable in polynomial-time, Oper. Res. Lett. 18, No.3, 139-145, 1995.
- [6] C.J. Luz and D.M. Cardoso, A generalization of the Hoffman-Lovasz upper bound on the independence number of a regular graph, Annals of operations Research 81, 307-309, 1998.
- [7] M.D. Plummer, Some covering concepts in graphs, Journal Combin. Theory 8, 91-98, 1970.
- [8] E. Prisner, J. Topp and P.D. Vestergaard, Well-covered simplicial, chordal and circular arc graphs, J. of Graph Theory 21, 113-119, 1996.
- [9] R.S. Sankaranarayana and L.K. Stewart, Complexity results for wellcovered graphs, Networks 22, 247-262, 1992.
- [10] D. P. Sumner, Randomly matchable graphs, J. of Graph Theory 3, 183-186, 1979.