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Abstract

Given positive integers m, k, and 7. Let Dy [k,k+i] represent
the set {1,2,...,m} — {k,k +1,...,k +¢}. The distance graph
G(Z, Do, [,k+i]) has vertex set all integers Z and edges connecting j
and j' whenever |j — j'| € Dy, [k,k+i]- The fractional chromatic num-
ber, the chromatic numbers, and the circular chromatic number of
G(Z, Dm,[k,k-i-i]) are denoted by Xf(Z) Dm,[k,k-H]), X(Zr Dm.[k.k+i])a
and x¢(Z, Dpn [k k+i}), Tespectively. For ¢ = 0, we simply denote
Dok, k+0] bY Dm.k. X(Z, Dm,x) was studied by Eggleton, Erdés and
Skilton [5], Kemnitz and Kolberg (8], and Liu [9], and was completely
solved by Chang, Liu and Zhu [1] who also determined x¢(Z, Dm,i)
for any m and k. The value of xc(Z, Dm,x) was studied by Chang,
Huang and Zhu [2] who finally determined xc(Z, D ) for any m
and k. This paper extends the study of G(Z, Dy, (x,k+i)) to values i
with 1 <7 < k—1. We completely determine x7(Z, Dy, (x,k+i]), and
X(Z, D [k k+4)) for any m and k with 1 < i < k — 1. However, for
Xc{Z, Dy [k, k+1)), only some special cases are determined.
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1. Introduction

The fractional chromatic of a graph is a well-known variation of the chro-
matic number. Let G be a graph. A fractional coloring of G is a mapping
c from I'(G), the set of all independent sets of G, to the interval [0, 1] such
that 3, ¢ rer() c(f) 2 1 for all vertices z in G. The fractional chromatic
number x¢(G) of G is the infimum of the value ;. ) ¢(I) of a fractional
coloring c of G.

The circular chromatic number of a graph is a natural generalization of
the chromatic number, introduced by Vince [11] under the name the "star
chromatic number” of a graph. Given two positive integers p and g, such
that p > 2q. A (p, g)-coloring of a graph G = (V, E) is a mapping ¢ from
V to {0,1,...,p— 1}, such that ||¢(z) — ¢(y)|l, > ¢ for any edge zy € E,
where ||a|l, = min{||a||,p — ||al|}. The circular chromatic number x.(G)
of G is the infimum of the ratios 2 for which there exist (p, q)-colorings
of G. It is obvious that a (p,1)-coloring of a graph is simply an ordinary
p-coloring of G. It was proved in [17] that x(G) — 1 < x.(G) < x(G) for
any graph G. Thus x.(G) can be viewed as a refinement of x(G), and it
contains more information about the structure of the graph. It is usually
much more difficult to determine the circular chromatic number of a graph
than to determine its chromatic number.

For any graph G, it is well-known that

V(G)|
o(G)

maz{w(G), } < x5(G) £ xe(G) S xe(@) =x(G) (1)

Given a set D of positive mtegers, the distance graph G(Z, D) has ver-
tices a.ll integers Z, and two vertices j and j' in Z are adjacent if and only if
|7—3'| € D. We call D the distance set. The fractional chromatic number,
the circular chromatic number, the chromatic number, the clique number
of a distance graph G(Z, D) are denoted by x¢(Z, D), x.(Z, D), x(Z, D),
and w(Z, D), respectively.

The problem of determining x(Z, D) for different types of distance sets D
has been studied extensively. (See [1, 3, 4, 5, 6, 8, 9, 10, 12, 13]). Recently
Xc(Z, D) for several types of distance sets D has also been investigated.
(See ([1, 2, 7, 15, 16)).

Given integers m, k, and i, let Dy, [k x+4) denote the set {1,2,...,m} —
{k,k+1,...,k+i}. This paper discusses the graph G(Z, D, g,k+4))- For
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i = 0, we simply denote D (k,k+0] DY Drm k- The following results are from
(1] and [2].

Theorem 1.1. If m < 2k, then

W(Za Dm,k) = Xf(Z, -Dm,k) = Xc(Z; Dm,k) = k.

Theorem 1.2. If m > 2k, then x¢(Z, D ) = Ztk+L,

Theorem 1.3. Suppose m > 2k. Let m + k F1l= 2,'m' and k = 2°k,
where r and s are non-negative integers and m and k are odd integers.
Ifr < s and ged(m + k + 1,k) # 1, then xc(Z, Dm i) = 2EEE2; otherwise
Xe(Z, D i) = L'.L‘tz‘:li

This paper extends the study of x7(Z, Dy [x,k+4) and x(Z, Dk k+i)
to values ¢ with 1 < ¢ < k — 1. We completely determine the fractional
chromatic number and the chromatic number of G(Z, D [k k+4)) for any m,
k, and 7 with 1 < ¢ < k—1. For some cases, the circular chromatic number
of G(Z, Dy, [k,k+4)) are determined, and, of other cases, lower bounds and
upper bounds of xc(Z, Dy [x k+i)) are given.

2. Xf(Z, Dm,[k,k+z’]) and Xc(Z’ Dm,[k,k+i])

Since G(Z, Dy, k,k+i)) is a subgraph of G(Z,Dpm ), it is obvious that
X.f(Z! Dm,[k,k+i]) < Xf(zv Dfmk) and xC(Z7Dm,[k,k+i]) < x(Z, Dm,k) for
any m, k, and i. Note that w(Z, Dy [k,k+i) > k, the following theorem
follows immediately from Theorem 1.1.

Theorem 2.1. If m < 2k, then

W(Z, D [k,k+i)) = X(Z, Dpn [k k+i]) = Xe(Zy Din k5 4i]) = k-

In order to prove Theorem 2.2 below, we need a lemma in [2].

Lemma 2.2. [2] Suppose D is a set of positive integers, and that p and
g are positive integers. Let dp(p,q) = min{|| ¢j mod p ||p: j € D}. If
dp(p,q) 2 1, then x.(Z,D) < ;zE—-

For brevity, we denote the subgraph of G(Z, Doy k,k+i) induced by
{0,1,2,...,5} as G;.
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Theorem 2.3. If 2k < m < 2k+2, and 1 < i < k-1, then
X5(Z, D i k4)) = Xe(Z, Do fh i) = =32

Proof. Since ¢ < k — 1, it is not hard to see that a(Gp) = 2. It
follows that Xf(Z, D kk+q) = L. By (1), it suffices to show that
Xe(Z, Do g k44) < 2FE. According to Lemma 2.1, it suffices to prove that
A, ayy(m +1,2) = 2. For j € {1,2,...,k—1},2< 2 < 2k—-2 <
m+1—2 andforje{k+i+1,k+i+2,....m}, m+1+2<2k+
204+2<2j<2m=2m+1) -2 Thus dp,, ;;,q(m+1,2) =2 and
Xe(Z, Dy (g k+i) < L. Theorem 2.3 follows from (1) immediately. B

Theorem 2.4. If m > 2k+2iand 1 <4 < k—1, then x¢(Z, Dy [k k+4)) =
m_-_tzkil .

Proof. We first prove a(Gp+x) = 2. Let S be a maximum independent
set of Gk Without loss of generality, assume 0 € S. Clearly, S\ {0} C
{kk+1,...,k+i}u{m+1,m+2,...,m+k}. Note that m > 2k + 2i
and i < k — 1, it is easy to check that the subgraph of G+ induced
by {k,k+1,...,k+i}U{m+1,m+2,...,m+k} is a complete graph.
Therefore, &(Gm+k) = 2. By (*), X/(Z, D [k k4i]) 2 X5 (Gmr) > BEEL.
Recall that G(Z, Dy (k,k+i) is a subgraph of G(Z, D, k), by Theorem 1.2,
Theorem 2.4 holds. B

Lemma 2.5. [14] If G has a circular chromatic number p/q (where p
and q are relatively prime), then p < |V(G)|, and any (p, g)-coloring c of G
is an onto mapping from V(G) to {0,1,---,p - 1}.

In order to obtain the counterpart of Theorem 1.3 for G(Z, Dy [k, k+1])
withm > 2k+2iand 1 < i < k — 1, we first prove the following two
lemmas.

Lemimna 2.6. S”uppose m>2k+2iand1<i<k-1. Let m+’k+ 1=
2"'m and k = 2°k , where r and s are non-negative integers and m and k
are odd integers. If 1 < 7 < s, then Xc(Gomtok+1) € {BEEEL 4 1 mdhi2}

Proof. We first show that xc(Gam+2k+1) > 2HEL. Since Xc(Gamt2k+1) >

X(Gam+2k+1)—1 and BEEEL s an integer, it suffices to show that x(Gz2m+2k+1) :

mik+l  Assume to the contrary that x(Gem2e+1) < ZEEL. Let ¢ be a

-"%Hi-coloring of Gopmyok+1-

For 0 < j < m+k+1, let H; denote the subgraph of Gom+-2k+1 induced
by the m +k+1 vertices {5,7+1,...,j+m+k}. By the proof of Theorem
2.4, o(H;) = 2 for j = 0,1,...,m+k. Therefore, each of the ZHEEL colors
is used at most, and thus exactly twice in each H; ( =0,1,...,m+k+1).
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It follows that ¢(j) = e(j + m+k+1) for j = 0,1,...,m + k. We now
prove that for each j € S = {0,1,...,m+k}, the only possible vertices in S
having the same color as j are j+k& and j —k, where addition and minus are
taken under modulo m + k + 1. Looking at H; for any j =0,1,---,m +k,
because ¢(j) = ¢(j + m + k + 1), the only possible vertices that may be
colored by the same color as j are j+k and m+1+j. Becausem+1+j =
j — k(mod m + k + 1), we conclude that the only possible vertices that can
be colored by the same color as j are j + k and j — k(mod m + k + 1).

Consider the circulant graph C(m + k + 1, k) with vertex set S, and in
which vertex j is adjacent to vertex j if and only if j' = j +k or j—
k(mod m + k +1). It follows from the discussion in preceding paragraph
that two vertices z and y in S have the same color only if Ty is an edge
of the circulant graph C(m + k + 1, k). Since the intersection of each color
class with S contains exactly two vertices, the coloring induces a perfect
matching of C(m+k+1, k). However, C(m+k+1, k) is the disjoint union of
d cycles of length 2k+L where d = ged(m+k+1,k). Since C(m+k+1,k)
has a perfect matching, each cycle has an even length. This implies that
r > s, contrary to the assumption r < s. Hence Xc(Gam42k+1) > ZEEEL,

Suppose Xc(Gam+2k+1) = 5, where p and q are relatively prime. Then,
by Lemma 2.5, p < |V(Gam+ak+1)| = 2m + 2k + 2, and 2 > Ml
If ¢ > 4, then p > 2m + 2k + 2, a contradiction. Hence ¢ < 3. Re-
call that G(Z, Dy, k,k+i)) is a subgraph of G(Z, D, &), by Theorem 1.3,
Xe(Z, Dk k+i])) S Xe(Z, D) < B2 If g = 2, then 2 = bkt -
Xe(Gemy2k41) = Xe(Z, D fk,k44))- If ¢ = 3, then BEEHL < B « mikd2,
Thus, AmtEH) o ¢ ﬂ%""'11+§ Since p is an integer, p = 3—(%""'ll+1
and 5 = Xc(Gamto2k+1) = M,%Ll + % Concluding the above discussion,
the only possible values of xc(Gam+2k+1) are ZEEEL 4 L and BEE+2 This
completes the proof of Lemma 2.6. B

Lemma 2.7. Supposem > 2k+2iand 1<i<k-—-1.Ifm+k+1is
odd and ged(m +k+1,k) # 1, then xc(Gom42k+1) € {FE + 2, =tk 413,

Proof. We first prove that xc(Gam+2k+1) > 2L, Since a(Gmik) =
2, Xe(Gam+2k+1) > Xe(Gmak) > ZEEEL. Suppose xc(Gamq2e+1) = ZEEEL,

Same as in the proof of Lemma 2.6, let H; denote the subgraph of
Gam+2k+1 induced by {7,7+1,...,7+m+k}(0 < j < m+k+1). Clearly,
a(H;) = 2 and x.(H;) > m‘z—kﬂ(j =0,1,....m+k+1). Let cbea
(m+k+1,2)-coloring of Gomt2k+1. Thenforeachj € S ={0,1,...,m+k},
c(H;) is a (m+k+ 1, 2)-coloring of H;. Since m+k+1 and 2 are relatively
prime, by Lemma 2.5, every (m+k+1,2)-coloring of H;(0 < j < m+k+1)
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is onto and hence one-to-one. Consequently, ¢(j) = ¢(j + m + k + 1) for
each j € S. Similar to the proof of Lemma 2.6, it can be proved that, for
each j € S, the only possible vertices in S having the colors c(j) + 1 or
c(j) — 1 are j + k and j — k(where addition and minus are taken under
modulo m 4 k+1). Define a circulant graph C(m+k+1, k) as in the proof
of Lemma 2.6. Since ¢(Gm+) is a (m + k + 1,2)-coloring of G4k, there
exists an ordering %o, Z1,%2,...,Tmtk Of V(Gm+x) such that ¢(z;) = i for
0 <% < m+ k. Therefore , X = (zo,21,%2,...,Zm+k,Zo) is a cycle in
C(m+k+1,k). However, since gcd(m+k+1 k)y=d#1,Cm+k+1,k)
is the disjoint union of d cycles of length Z+E+l This is a contradiction.
Thus xc(Gam+ak+1) > ZEEL,

Suppose xc(Gam+2k+1) = s, where p and g are relatively prime. Then
p < 2m + 2k +2. Since 2 > miktl ifg>4thenp >2m+2k+2, a
contradiction. Thus ¢ < 3. Recall that G(Z, Dy, [x,k+4)) is a subgraph of
G(Z, D k), by Theorem 1.3, x.(Z,D m,[k, k+t]) < Xe(Z,Dmi) < _-u‘-_
fq=2, then‘:-mustbe—L"'— If ¢ = 3, then BEHHL < 2 < —"'—3'—
Thus, M+ s<p< M+3 Since p is an integer, p = —(m—'H‘)-+2
and 2 = xc(G2m+2k+1) = —+— + 2. We conclude that, XC(G2m+2k+1) €
{mk 4 2 miki2) This completes the proof of Lemma 2.7. B

Theorem 2.8 follows immediately from Theorem 1.3, Theorem 2.4 and
Lemmas 2.6, 2.7.

Theorem 2.8. Supposem > 2kand 1 <i < k—1. Let m+k+1 = 2"
and k = 2°k’, where r and s are non-negative integers and m’ and &' are
odd integers.

(1) f 1 <r < s, then BEEEL 4 2 < ¥ (Z, Dy o p4q) < DEEE2,

(2) Ifr = 0 and ged(m-+k+1,k) # 1, then . +2 < 5 (Z, Dy (1 ki) <
mj;zk;t2;
(3) Otherwise, Xc(Z, Dm,[k.k+i]) = ﬁ%d

It seems very difficult to determine the exact values of x.(Z, D [k k+i))
under the conditions of Theorem 2.8 (1) and (2).

Corollary 2.9. Suppose 1 < i< k-1 Letm+k +1= 2'm and
k = 2°k’, where r and s are non-negative integers and m' and k' are odd
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integers. Let d = ged(m + k + 1,k). Then

kv ifm < 2k
_ ) =, if 2k <m < 2k+2i
X(Z, Dpn ft k+4) = [mth£2) ifm > 2k +2,r<s,andd#1
mikyl otherwise
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