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Abstract. Given a collection of points in the plane, a circle is drawn around each
point with radius equal to the smallest distance from that point to any other in the
collection. The sphere-of-influence graph is the intersection graph of the open balls
given by these circles. Any graph isomorphic to such a graph is a SIG realizable in
a plane. Similarly, one can define a SIG realizable on a sphere by selecting a
collection of points on a sphere. We show that Ko is realizable as a SIG on a

sphere and that the family of graphs realizable as SIGs on a sphere is at least as
large as the family of SIGs in the plane.

1. Introduction

There are several families of graphs which can be associated with a given set
of points in the euclidean plane. They capture some of the perceptual relevance of
the original set of points and they are known as “proximity graphs”. Toussaint
[10-12] defined two families of proximity graphs as.follows. Let X be a set of
points in the plane. To each point of X assign an open ball centered at that point of
radius equal to the smallest distance from that point to any other point of X. The
sphere-of-influence graph G(X) has X as the vertex set and two vertices from
G(X) are adjacent if their open balls intersect. We are going to use the abbreviation
“SIG” for sphere-of-influence graphs. Similarly, closed sphere-of-influence
graphs (or CSIGs) are defined like SIGs except that the balls assigned to points are
closed. For all results, problems and questions discussed for SIGs there are
corresponding ones formulated for CSIGs.

Which graphs are SIGs and which graphs are not ? The answer to this
fundamental question is unknown and a full characterization seems to be difficult.
The main obstacle is the non-hereditary property of sphere-of-influence graphs,
namely, the fact that an induced subgraph of a SIG need not be a SIG (see [2], for
example). Therefore, current research in this area is concentrated on obtaining
partial information on sphere-of-influence graphs.

The characterization of trees that are sphere-of-influence graphs was done by
Jacobson, Lipman and McMorris [3].

Theorem A. A treeis

(a) aCSIG if and only if it has a perfect matching,
(b) aSIG if and only if it has a {K,, P3}-factor.

Even the very special case of the fundamental problem for complete graphs is
open. A construction of Malnic and Mohar [6] and Scheinerman in [2] shows that
Kg is a SIG. There is a strong belief that we cannot do better in the plane.

K9 - conjecture. The complete graph Ko is neither a S1G nor a CSIG.
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The construction for Kg together with the result of Kézdy and Kubicki [4] that the
complete graph K2 is not a CSIG represent the current state of knowledge
concemning the Kg-conjecture.

Edge density and clique size of SIGs were examined by Avis and Horton [1]
and by Michael and Quint [7]). Lipman [S] proved that every SIG has a realization
in which every vertex is an integer lattice point. Michael and Quint examined
sphere-of-influence graphs in general metric spaces [8].

A survey of main results and conjectures in this area together with a complete
bibliography is given by Michael and Quint [9].

The organization of this paper is the following. After introducing some
terminology, notation, and concepts in Section 2, we present a realization of Kg on

-the sphere in Section 3. The proof showing that every SIG in the plane is also a
SIG on the sphere uses stereographic projection and is presented in Section 4. In
Section 5 we shortly address an open problem, namely the existence of graphs that
are SIGs on the sphere but not SIGs in the plane.

2. Terminology and notation

A graph G is a SIG if there exists a set X of points in the plane such that
G(X) is its sphere-of-influence graph. We say that X is a realization of G. We
denote the vertices of G by v;, v5, ..., v, the corresponding points in the

realization X of G by x}, x,, ..., x;,, the circles centered at these points by C|,
C,, ..., C, and the open disks (balls) bounded by these circles by B, B,, ..., B,,.
As an example, in Figure 1, a realization of the graph Cj is presented.

0

Figure 1. Realization of a 5-cycle.
In the proof of the main theorem in Section 4, we will use some concepts introduced

by Lipman [5]. If x and y are two points in the realization X, then y defines x
whenever y is a nearest point to x. In addition, we say that y uniquely defines x
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whenever y is the only such point. According to [5], the realization X has no
accidental tangencies if the following condition is fulfilled: two circles of X are
tangent if and only if the point of tangency uniquely defines their centers. The
realization of a 5-cycle in Figure 1 has no accidental tangencies. Even if two circles
C; and Cj3 are tangent at xp, the point x, uniquely defines their centers x,. and
x3. In fact, every realization of a Scycle (as well as an n-cycle forodd n, n 2 5)
has a pair of tangent circles. From [5, Corollary 2] we have:

Proposition B. If G is a SIG in a plane, then G has a realization X so that:

(a) every point in X is uniquely defined, and

(b) X has no accidental tangencies.

The realization of a 5-cycle in Figure 1 does not satisfy condition (a) of
Proposition B, because the point x; is not defined uniquely. However, if we move
point x3 a little to the right, then the new realization will satisfy both conditions of
Proposition B. .

In a realization satisfying both conditions of Proposition B, all tangent circles
(if they exist) can be partitioned into pairs. Two circles in each pair are tangent, and
no other tangencies occur.

3. The complete graph Ky is a S1G on a sphere

Before presenting the construction, we need some results for spherical
triangles.
A spherical triangle is given by selecting three points on a sphere (here of radius 1).
The sides of the triangle are formed by great circles passing through pairs of points.
The length of a side is equal to the radian measure of the central angle determined
by two endpoints of the side. The Law of Sines for spherical triangles is depicted in

Figure 2.

(2]

cos a =cos b cos ¢ + sinb sinccos A

Figure 2. Law of Sines for spherical triangles

Theorem 1. The complete graph Kjg is a sphere-of-influence graph realizable on a
sphere.

Proof. Consider the following nine points in spherical coordinates:
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north pole p=(1,0,0),
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The circles centered at these points have the following radii:
radius(p) = dist(p, x) = 77/18 (= 1.22173), radius(x) = dist(x, p) = 7n/18,
because from the Law of Sines for spherical triangles
dist(x, a) = cos”![ cos(71/10)cos(71/18) + sin(71/10) sin(7n/18) cos(/4)] =
1.22757 > Tn/18.
Similarly, radius(y) = radius(z) = radius(w) = 7/18.
Once again, from the Law of Sines,
radius(a) = dist(a, b) = cos-![ cos2(7n/10) + sin2(7n/10) cos(/2)] =
cos-}{ cos2(7/10)] = 1.218, because dist(a, x) > dist(a, b).
Similarly, radius(b) = radius(c) = radius(d) = cos"![ cos?(7n/10)] = 1.218.
Of course, the circle centered at p intersects all remaining eight circles.
The circle centered at a intersects the circles centered at p, b, ¢, d, x, and w. Its
intersections with the remaining two circles centered at y and z are nonempty
because
dist(a, y) = dist(a, z) = cos"![ cos(71/10)cos(71/18) + sin(71/10) sin(71/18)
cos(3n/4)] = 2.401782 < radius(a) + radius(y).
A similar situation occurs for the circles centered at y, z, and w. The circles
centered at x and z are tangent at the north pole p. Therefore, the open disks
determined by these circles do not intersect. We can make their overlap nonempty
by slightly moving the point p, for example, to the position p’ = (l, %, %) .
Of course, replacing p by p’ changes the radii of the circles centered at p (p’), x,
¥, Z, and w, but these changes are so small that they do not affect intersections.
All of the intersections will be still nonempty which shows that the sphere-of-
influence graph for the set of points {p’, x, ¥, 2, W, a, b, ¢, d} is isomorphic to
K.

As we mentioned in the introduction, the best known construction in the plane
is for Kg (Malnic and Mohar [6] and Scheinerman [2]), and there is a strong belief
that we cannot do better.

4. Every SIG in a piane is also a SIG on a sphere

The proof showing that every SIG in the plane is also a SIG on the sphere
uses stereographic projection. In the euclidean space consider the sphere 52 of

diameter r and the plane R2 having exactly one point (0, 0, 0) in common. Let n
=(0, 0, r) be the antipodal point on the sphere. Each line passing through the pole

n and another point p on the sphere intersects R2 at exactly one point g. The

stereographic projection ¢ is a map from 52 - n 1o R2 defined by ¢(p) =¢
( see Figure 3). Itis well known thatif p = (x, y, 2), then
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#x,y,2)=(X, Y,0), where X =rx/r-z)and Y = ry/{r-z).
Also the inverse of the stereographic projection is given by
¢o1(X, Y,0)=ri(r2 + X2 + Y2) (Xr, Yr, X2 + Y2).

n=(0,0.r)

q: (X, Y, O)

Figure 3. Stereographic projection

The idea of a proof of the main theorem is simple. We take the realization X of
G in the plane ‘near’ the origin. We use a sphere with large diameter for the
stereographic projection. Take the preimage of X. This set will be, after some
modification, a realization of G on the sphere. We will use a well known property
of preserving circles by the stereographic projection, namely, if C is a circle in the
plane then its preimage ¢-1(C) is a circle on S2. However, the centers of circles are
not preserved. If a is the center of the circle C, then, in general, ¢-1(a) is not
the center of the circle ¢-1(C). This fact causes some difficulties while working

with sphere-of-influence graphs. In the remaining part of this section we take care
of this problem. We will use the symbol ¢, to denote the stereographic projection

with the sphere of diameter r.

Lemma 2. Let C be a circle in the plane with center a. For every £ > 0, there
exists r, the diameter of the sphere in the stereographic projection ¢,, such that
if b is the center of the circle ¢,-}(C) on the sphere, then dist(¢, !(a), b) < €.

Proof. Let us intersect a given circle C in the plane and the sphere in the
stereographic projection by the vertical plane passing through the points n, a, and
the origin O (see Figure 4). Denote the points of intersection of this plane with the

circle C by a; and a;. The points b; = ¢,"}(a)) and b, = ¢, }(a5) are the
intersection of the vertical plane with the circle ¢,-1(C) on the sphere. The center
b of the circle ¢,'1(C) lies also in that vertical plane, From the formula for ¢,-1,
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it is easy to see that ¢,"1(a) > a_ ¢,°1(a)) = a;, and ¢,"1(a;z) > aj as
r— oo, Therefore, from the continuity of the euclidean metric,
dist(9,"(a;), ¢, (@) > dist(a;, a) and
dist(¢,1(ap), ¢ 1(a)) — dist(ay, a).
Therefore, Idist(epr'l(a,), ¢, 1(a)) - disi(¢, (asy), ¢, 1(a)) | = 0as r— oo.
Because the point b satisfies |dist(¢r'1(al), b) - dist(¢,"1(ay), b) | = 0, we
have ¢, (@) = b as r—» oo, and the conclusion of the lemma follows. O

n=(0,0,1

1 a a

Figure 4. Relationship between centers of circles in the plane and on the sphere

Theorem 3. Every sphere-of-influence graph in a plane is also a sphere-of-
influence graph on a sphere.

Proof. Let G be a SIG in a plane. Assume that the order of G is n. According to
Proposition B, there is a realization X of G in the plane with no accidental
tangencies and such that each point of X is uniquely defined. The set of all balls
B(x; ), 1 £ i £ n,is bounded, say, included in some ball B.

Let erepresent the smallest of the following three numbers:
the minimum overlap between non-tangent circles in the realization X;
the minimum distance between non-tangent circles in the realization X;
the minimum distance between a point x; € X and acircle C; taken over all pairs
i, jsuchthati#j andx; isnoton the circle C; .

Next, select r, the diameter of the sphere in stereographic projection, such that
for all points a and bin the ball B, we have

dist(¢,"1(a), ¢,"1(b)) > 0.9 dist(a, b)
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and such that for each i, 1<i<n, dist( ¢,(x;), b) < &3, where b, is the center
of the circle ¢,/(C,) on the sphere. This can be achieved by Lemma 2 and by the
fact that with r — oo we have

dist(¢,”(a), ¢,"(b)) — dist(a, b)
for all points a, b € B.

Consider the family of circles ¢,'(C), 1<i<n, on the sphere. If C; and
C; are tangent in the plane, then ¢,/(C) and ¢,"(C, ) are tangent on the sphere.
Let us partition all points ¢,’(x), x € X, into two subsets: T - the set of all
tangency points for the family ¢,(C;), 1 <i<n, and § - the rest of points. If
9,'(x) € S, then move it to the position y, which is the center of the circle ¢,(C,).
If ¢,/(x) € T, then define y,to be ¢,”(x;). We claim that the set ¥ ={y:1<i<n}
is a realization of the graph G on the sphere.

Suppose vy; is the edge of the graph G. Then the overlap of the circles C;
and C; is at least €, so the overlap of the circles $,(C) and ¢,'( C;) is at least
0.9€. The circles centered at y, and y, in the realization Y might have different
radii, because the points defining them could be moved. However, these new
radii will not differ more than € /3 from the radii of the circles ¢,7(C,) and ¢,”(C)
and, therefore, the circles centered at y; and y, in realization Y will still overlap.

If vy, is not an edge of the graph G, then there are two possibilities, the
circles C; and C; are either disjoint or tangent. If they are disjoint, then the
distance between them is at least €, so the distance between their pre-images
¢,'(C) and ¢,( C,) is at least 0.9€. By the same argument as above, in realization
Y, the intersection of the circles centered at y, and y; is empty. If the circles C; and
C, are tangent, then the circles 9,’(C,) and ¢,’(C)) on the sphere are also tangent.
The points x; and x; were uniquely defined at the point of tangency whose pre-
image y is in the realization Y. Therefore, the radii of the circles centered at y,
and y; in the realization Y are determined by their distance from y, so these circles
are identical with ¢,(C;) and ¢,(C;). They are tangent and the corresponding
open disks have empty intersection. []

5. Are there any SIGs on a sphere that are not realizable in the plane?

The complete graph K, would be an example of such a graph assuming
that the K -conjecture is true. Another candidate, even more promising, might be
a geodesic grid on a sphere. More precisely, consider all points on the sphere
whose both angular spherical coordinates are whole multiples of 7t/6 (or 30
degrees). Let G be the sphere-of-influence graph (on the sphere) of this set of
sixty two points. We belive that G is not realizable as a SIG in a plane.
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We would like to finish the paper by stating the following conjecture.

Conjecture. There are graphs realizable as SIGs on the sphere but not realizable as
SIGs in the plane.

1.

10.

11.

12.
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