Connected colorings of graphs
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Abstract
Let H = Ky, gy be 2 complete nmltipartite graph having ¢ > 3 parts. Extend-
ing the well-known result that a simple graph G or its complement, G , is connected, it
is proved that in any coloring of the edges of 1 with two colors. blue and red, at least

onc of the subgraphs of 41 induced by the blue edges or by the red edges, is conmected.

1 Introduction

A folklore ( see [1] - [8] ) in Graph ‘Theory is the following resule:
Result 1: Let G be « graph. Then, cither G or its complement, G . is connceted,

A slightly stronger result is (sce [4]):
Result 2: If diam(C) > 3 then dian(G) < 3, and if dian(G) > 4 then dian(G) < 2,
where diam(G) is the diameter of G.

Rephrasing Result 1 in terms of coloring of the cdges of the complete graph &, we
obtain:

Proposition 1.1 In any coloring of the edyes of the complete graph K,,, by the colors, say,
blue and red, either the subgraph induced by the blue edyes or the subgraph induced by the red
edges, is connected.

Bialostocki, Dierker and Voxman [1) snggested several generalization of these results and
asked for further possible directions. Here we snggest a new direction concerning connected

colorings of not necessarily complete graphs.
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Definition 1.2 A graph G is called robust if in any coloring of its edges by two colors
say, blue and red, either the subgraph induced by the blue edges or the subgraph induced by

the red edges, is connected.

We notice here that a connected subgraph in a robust graph need not be a spanning
subgraph.

Thus, Proposition 1.1 says that A, is robust and so, for example, is auy graph having
an edge incident with all other edges (e.g.. stars. donble stars ere.).

The aim of this paper is to prove the following two theorems:

Theorem 1.3 Let H = Ky uy.p, -t 2 3 be a complete multipartite graph.  Then, H is

robust.

Theorem 1.4 Let G be a graph on n > G vertices obtained by deleting af nost three edges

from K,,. Then, G is robust.

We cmphasize that the requireient in Theorem 1.3 that 1 > 3 is essential since in the
case of ¢ = 2, namely, a complete bipartite graph, which is not a star, X'y 4,. the statement
of Theorem 1.3 does not hold. Indeed, consider K, 0, where, m=a+022 , n=uw+y 2>
2 ,a,b,2,y > 1, and the partite sets are | 4| = m ,|B] = n. We put 4 = .4, U 4y, where,
|41 = @, |As] = band B = B \UB,. where, |By| = z,|B2| = 3. Color the edges of < UL >
and < Ay U By > with the blue color, and the edges of < Ay U B, > and < ., U B, > with
the red color. One can easily observe that each of the color classes induces a disconnected
subgraph.

Finally, we observe that the result of Theorem 1.4 is best possible. Indeed, there is,

- 1' . . ']
for n > G, a graph G on n vertices and I 4 edges, which is non-robmst. Let G =

GWV,E)= K,\CywithV = AUB . |d|=u—4, [B| =4, B = {a,b,z,y}. where the edges
(,b), (z,y) arc the only edges left from the induced complete graph on the vertex set 3.
Now color the edges of the graph K, 5\ { (. »)}. ( where, the n—2 vertices are AU {x, y}).
by the blue color as well as the edge (a.b). The rest of the edges of G, namely, the complete
bipartite graph Ko, 1. ( where, the two vertices are @b and the » — 4 vertices are the set
A) together with the edge (r, 7). are colored red. Again, one can find that both colored
subgraphs are disconnected. In addition there is a graph G on 5 vertices and 7 edges which
is not robust. Indeed, let V(G) = {1.2.3,4,5} and E(G) = E(I5) \ {(1.2),(1.5),(3,4)}.
Now define, Gy = Ky U Ky, where, V(N3 U Ry) = {2,3,5} U (1,4}, and Gy = PyU Ky,
where, V(23U Ky) = {2.4,5} U {L.3}. One can see that both Gy and Gy are disconnected,
where, Gy, Gy are the induced subgraphs on the blue and red edges, respectively.

Henee, both Theorem 1.3 and Theorem Lol are best possible.
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2 Proofs

To the sequel we assume that H = Ky gy, o8 2 3 is a complete nmltipartite graph. In
any two coloring of the edges of H by the colors blue and red we denote by Hy, Hy the
subgraphs of H induced by the blne edges and the red edges, respectively. Let v € V(H) by
dp(v), dp(r) we denote the degree of vin Hy and Hy. respectively. The partite sets of H
are denoted by Ay, Ay sl and < oLy >0 # s the complete bipartite subgraph of
H induced by 4; U AA;. Finally, we denote by dg(u, ¢) the distance between « and v in Hy.
Proof of Theorem 1.3
If H 1 18 counccted we are done. Hence, we may assume that Hy is disconnected with
Ry, Ry,---. R, ;s > 2 as its connected components. Denote by £, = 1 N A the set of
vertices at the red component £ in the j—th part of H. The following is a simple but
crucial observation:
Observation 2.1 The subgraph < Ri;. 8, >, i # 0. j # y, is a complete bipartite subgraph
()f H -

We will show that Hy is connccted by considering several cases.
Case 1: ;\V(Hy) £0 .

In this case there is a vertex ¢ € 4\ V(Hg) and hence dg(u) = L kj. But then any

.‘1' Vi/i
other possible blue edge is incident with some vertex of V(H)\ 24; which is, in turn, adjacent
to u. Hence, Hy is counected and in fact dicn(Hp) < 4, since for every vertex » in Hy.
dp(n,v) <2

Case 2: L, \V(Hu)=0.

I this case we show that for any vertex n € A; and any vertex » € .;, there is a path in
Hy between them.

Sub-case 2.1: ; #:.

Assamne first that w and » are in distinet components of Hy. Then by observation 2.1 u and
v are connected by a blue edge.

So let now u and » be in the same component of Hy, say, Ry, That is u € Ry, € Ry; .
Recall that Hy has at least two components and A has at least three parts, I L\ Ry #O
for some & # & 4. then we have, withont lost of gencrality, 2y, # O. But then applying
twice observation 2.1 on < £y, Iy, > and < [y, By; >, we obtain that dy(u, v) < 2.

If AL\ Ry = O for any x # i, j thew sinee Hy is not connected it follows that aw.lo.g. |
1y and Ry; are not empty.

Applying. again, observation 2.1 on < 18y, 8y, > < Ry 1y > < Ry Ry > < Ry Ry >0
we find dg(u,v) < L

Sub-case 2.2: j =i.

In that casc u,v € 4;. If © and ¢ are in the same component. say, I, of Hy, then for some
€ # 5,y #F i, Ry, is not empty, and hence by observation 2.1 applying on < Ry Ry, > it
follows that dpg{u.v) < 2.
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If w and ¢ are in distinet components of Hy,, we nay assnme that « € By, v e Ry, If for
some 7 # i and @ # 1.2, 1,, # @. Then by applying observation 2.1 on < i R, > <
Rer, By > it follows that dy(u, v) < 2. Hence, Hy has only two components 2, Iy and since
H has at least three parts, it follows that there is some & snch that Rgp # O. If for some
T # ik Ry, # O we may apply observation 2.1 on < Ry, Ry >, < R, By, >, < Rypy Ry >
and thus, dy(u,v) < 3.

It remains only the case that Ry;. Ry Ry, Ry # O and A, = Iy, for a2 # i, k. Henee,
applying again observation 2.1 on < Ry Ry, >, < Ry, Ry >.< Ry, Ry > it follows that
dy(u,v) < 3, completing the proof. ]

Remark 2.2 The proof of Theorem 1.3 contains o bit wmore then stated in the theorem. It
says that if Hp is not connected then dian(Hg) < 4. In the following example we give two
possible colorings of Koy, where in the first diam(Hy) = oo and dinan(H ) = 4 (Fig. 1(a)),
while in the second coloring diam(Hy) = dimn(Hp) = 1 (I'g. 1(h)). (The ved edges are
presented by the bold Lines).

a: first coloring b second coloring

Fignre 1: 2—coloring of K2y, in two ways

Before proving ‘Theoremn 14 we need some further simple observations.

Observation 2.3 1. The only graphs on siz vertices and five edges which are either dis-

connected or coutein only one non-trivial comnponent on at most four vertices are:
A= {(1\‘4 \ {(.‘}) U b‘; C".] ) l\.-g. 1\’;; U l’g ’1‘11).:, U 1\’2},

where, By is the cinpty graph ou two vertices and T Ry is a triangle with an edge incident

to one of its vertices.
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2. The only graphs on six vertices and six edges which are either disconnected or contain

only one nou-trivial component on at most four vertices are:
B ={K;UEy 2K (K3 {c}) U Iy}

3. The only graph on six vertices and seven edges which is disconnected without a trivial

component is Ny U N,.

Observation 2.4 1. If G has siz vertices and flve edges and G € A\, then the edges of G
induced a connected subgraph on at least five vertices.
2. I G has sixz vertices and siz edges and G @ B, thea the edges of G induced @ connected

subgraph on ot least five pertices.

3. If G has siz vertices and scven edges and G # KU Ky, then the edges of G induced o

connected subgraph on at least five vertices.

>~

If G has six vertices and at least cight edges then the edges of G induced a connected

subgraph on at least fioe vertices.

Now we are ready to the proof of Theovem 11
Proof of Theorem 1.4
The proof is by induction on 1. We start wirh the case when G is a graph on six vertices.
We denote by Gy, G the subgraphs induced by the blne and red edges, respectively. By
¢(G) we denote the mumber of edges of G0 We assnme that ¢(G ) > e(Gy).
Case 1: ¢(¢) = 15.
The result of the theorem follows iunnediarly from Proposition L1,
Case 2: ¢(G) = 14.
If ¢(Gp) 2 8 then we are done by Observation 2.4 (4). Otherwise ¢(Gy) = ¢(Gy) = 7 then
we are done by Observation 2.4 (3) unless Gy = Gp = ;UK. But it is impossible to pack
two copics of Ay U A3 into A, and we are done again.
Case 3: ¢(G) = 13.
If e(Gr) 2 8 then we are done by Observation 2.4 (4). So ¢(Gg) = 7 and ¢(Gy) = 6. But,
as one can check, it is impossible to pack Ay U K, with a wember of £ into K. So that we
are done again.
Case 4: ¢(G) = 12.
If e(Gg) > 8 then we are done by Observation 2.4 (4). If ¢(Gy) = 7 then ¢(Gy) = 5, but
once again it is casy to check that it is impaossible to pack AU &, with a member of 2 into
Ka. Now if ¢(Gg) = e(Gpy) = 6 then one can cheek that it is inpossible to pack any member
of B with anuy member of B into K.

Henee, it follows that in any coloring of a graph G on six vertices and at least 12 edges.

cither Gy or G g is connected on ar least five vertices,
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So we may assume that for n.— 1 > 5 either Gy or Gy is counected and of order at least
1 — 2. Cousider a two coloring of the edges of a G, G| = # and G is obtained from K, by
deleting at most three edges. Since |G > 7 there is a vertex ¢ € G such that deg(v) =n—1.
Define G° = G\ {v}. Then by the indnetion hypothesis as G* s missing at most three edges,
cither Gy or G, is connected of order at least 2 — 2. Assume |G| > (G
Case 5: |Gyl =n-—1.
In this case we are done since either there was a red edge from ¢ to G° and thus, |Gg| = n
and Gy is connected or else, |Gyl = v and Gy is connected.
Case 6: |Gy =n-2.
If every edge from ¢ to G is blne then Gy is connected of order 7. If there are at least two
red odges from e to G° then |Gl > 0 = 1 and Gy is conneeted. I there is a red edge from
¢ 1o Gy then again |Gyl =1 — 1 and G is connected. Henee we are left with the following
possibility that there is a vertex = € G* but = € Gy and v is connected to all n — 2 vertices
of G*\ {z} by blue edges and (e 2) is red. However any blue edge in G has an end-vertex
in G*. and is incident with the blue edges cnmanating from ¢, so that G is connected with
1G] = n since all edges incident with 2 in G are blue edges (and degyz > 0).

This completes the proof. "]
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ABSTRACT. A graph G = (V, E) is said to be an integral sum graph
( respectively, sum graph) il there is a labeling f of its vertices with
distinct integers ( respectively, positive integers) , so that for any two
vertices u and v, uv is an edge of G if and only if f(u) + f(v) = f(w)
for some other vertex w. For a given graph G, the integral sum number
¢ = ¢(G) (respectively, sum number o = a(G) ) is defined to be the
smallest number of isolated vertices which when added to G result in an
integral sum graph (respectively, sum graph). In a graph G, a vertex
v € V(G) is said to a hanging vertex if the degree of it d(v) = 1.
A path P C G, P = zom172- - T4, is said to be a hanging path if
its two end vertices are respectively a hanging vertex zo and a vertex
x4 whose degree d(z¢) # 2 where d(z;) =2 (j = 1,2,---,t — 1) for
every other vertex of P. A hanging path P is said to be a tail of G,
denoted by t(G), if its length |¢(G)| is a maximum among all hanging
paths of G. In this paper, we prove {(T3) = 0, where T3 is any tree
with [#(T3)] > 3. The result improves a previous result for integral sum
trees from identification of Chen(1998).

1. Introduction

All graphs in this paper are finite and have no loops or multiple edges.
We follow in general the graph-theoretic notation and terminology of [1]

unless otherwise specified.
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F.Harary introduced the idea of sum graphs and integral sum graphs
(2] [3]. At first, let N denote the set of positive integers. The sum graph
G*(S) of a finite subset S C N is the graph (S, E) with uv € E if and only if
utv € §. A graph G is said to be a sum graph if it is isomorphic to the sum
graph of some S C N. The sum number o(G) is the smallest nonnegative
m such that G UK, , the union of G and m isolated vertices , is a sum
graph. In the above definition by using the set Z of all integers instead of N
we obtain the definition of the integral sum graph. Analogously, the integral
sum number ((G) is the smallest nonnegative m such that GUmK, is an
integral sum graph. It is easy to see that the graph G is an integral sum
graph if and only if ((G) = 0. It is obvious that {(G) < o(G). Although
some results on sum graphs and integral sum graphs were presented [2-12],
but a considerable number of unsolved problems were remained. One of
them is the conjecture: "Every tree is an integral sum graph”, which was
proposed by Zhibo Chen in 1998 (10]. In order to discuss this problem, here
and now, we briefly summarize some results on tree graph. F.Harary [2] has
conjectured that any tree can be wmade into a suin graph with the addition
of a single isolated vertex in 1990. This conjecture was proved by Ellingham
[5] in 1993. F.Harary (3] found that all paths and stars are integral sum
graphs and conjectured that every integral sum tree is a caterpillar in 1994.
This conjecture was disproved by Zhibo Chen (4] in 1996. Zhibo Chen [10]
has also shown that every generalized star and tree with all forks at least

distance 4 apart are integral sum graphs in 1998,

In a graph G, a vertex v € V(() is said to be a hanging vertez if its
vertex degree d(v) = 1. A path P C G, P = g2 - - - 1y, is said to be a
hanging path if its two end vertices are respectively a hanging vertex zo and
a vertex ux; with vertex degree d(ay) # 2 and d(x;) = 2(j = 1,2,---,t = 1)
for every other vertex of P. A hauging path P is said to be a tail of G,
denoted by ¢t(G), if its length |t(G)| is maximum one among all hanging
paths of G. In this paper, we shall prove ((T3) = 0, where 1% is any tree
with |t(T3)| > 3. A tree is said to be a caterpillar C, if it consists of a

path sgsy - -+ 8y, called the spine of C, with some hanging vertices known
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as feet attached to the inner vertices (an inner verter is a vertex with at
least two adjacent vertices which are not the hanging vertices) of the spine
by edges known as legs . Then s;(i = 1,2,---,1 — 1) was called as the spine
verter of C, sg as tail , s; as head and s;_; as heart and s, as neck (see
Figure 1). The result improves the previous result of integral sum trees

from identification [10].

tail heard neck head
(o) O -
S0 31 82 Sr-2 St St

Figure 1. A caterpillar C

To prove that ((T3) = 0 for any tree whose tail length is not less than 3,
we use a labelling algorithi. The labelling algorithin has two stages. And
the first stage has to depend on the Ellingham's labelling algorithm [5] .

Therefore, in the next section, we shall briefly introduce it.

Since it can easily be shown that ((T) = 0 for |T| < 6, from now on, we

assume |T| > 6.
2. Ellingham labelling algorithin [5]

Suppose that T is a tree with |T| = = and z is an isolated vertex. And
define a shrub S which is a special class of trees with at most one inner
vertex. Then, using the Ellingham labelling algorithm. we can construct
a sequence of caterpillars Cy,Cy, - -, C,, and obtain two different types of

decomposition of T'.

Type 1. T is completely decomposed into some caterpillars, that is
T=CiUC2U---UCp.

199



Type 2. T is decomposed into some caterpillars and a shrub S . Thus
T=CiuCU---UC,US (m>1).

Applying the Ellingham labelling algorithin, we can give a sun labelling
f for the graph T U {z}, no matter what happens. We suppose the vertices
V(T) = {v1,v2,---v.} to be ordered such that 0 < f(v,) < fl) < - <
flva) < f(2).

For type 1, the vertex v, is the head of the last caterpillar C,,. If v,
and v, are the heart and the neck of C,,, respectively, then we have
that f(v,—;) = f(v,) + (k= ) f(vu=s)i = 0,1,---,k = 1) and f(z) =
flo.) + (k+ 1) f(vp—p).

For type 2, without loss of generality, we assume that the shrub S has
k hanging paths with length 2 and its root is v,, of course v, is also the
heart of the last caterpillar C,,,. Then we have that f(z) = f(vy—g—is1) +
fnri)(i = 1,2,--,k), f(v,) < flon-u) and f(v,_pti) = f(v,) +
Fon-ak4i) (i =1,2,-- k). If vgv,-1 € E(T), then we have that

FWnoisi) = Flva) + flon-on) + (i = ) = fop_pgr) + (i = 1)

(i =1,2,-+ k), f(v1) 2 kand |f(v;) = f(v;)] > k for any v;,v; € V(T),i #
Jjand i <n—2k.

3.The integral sum labelling of T}

Now we denote the tree whose tail length is at least 3 by T3. In this
section, we will give an integral sum labelling ¢ of T3. Suppose that
[t(T35)] = b = 3. Therefore we can decompose Ty into T U P, where
P is a tail of Ty, P = wowjawa2wy. w3 is a hanging vertex of Ty and
V(T) = {v1,v2,--+,vn_3}. In order to give an integral sum labelling of
Ty, using the Ellingham labelling algorithm above, we give first a sum la-
belling f of T'U {2z}, where z is a vertex which is not in V(7). Then, we

consider two cases according to the location of xg as follows.

Case 1. iy = v,, in other words i is the heart of the last caterpillar
Cln -
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In this case, let z = x» in the Ellingham labelling f above. Then we
extend from sum labelling f of T U {a2} to a labelling o of T3 by the
following algorithm. Let,

@(v) = fv) for v € V(T U {x2})
plr)) = —p(r2) + p(v,)
<P(1'»'3) = _(P(il:'_)) + 9’(":;) + (P('U,-),

where v, € V(T'), v,v, € E(T) and ¢(v,) < p(v,) (see Figure 2).

-259

Ty Vp-3
--=---0 O —0
8 205

35
62 116

Figure 2. Illustration of Type 1 in Case 1

It is obvious that o(r;) < @) < 0 < @) < () < -+ <
Y(vn-3) < p(r2) and @(v,) + @(v,) < @(v.), where v, satistics vov,_3 €
E(T)(The v, is the neck of the last caterpillar C,, in type 1 and the v,
is equal to v,_3_sp41 in type 2). Now, we shall prove the labelling ¢ is
an integral sum labelling of T3. At first, for any u,v € V(T U {x2}), if
uv € E(T), then we have p(u) + ¢(v) = p(w) for some w € V(T U {x2})
because ¢ = fin TU {2} and f is a sum labelling of TU{z»}. In addition,
we have that

@(x0) + @(x1) = (v,) = p(x2) + (vy) = (a3)

@) + ple2) = o(v,) and

p(x2) + @) = puy) + @(v,) = p(y),
for some y € V(T U {x2}) by v,v, € E(T). Thercfore we have that for any
w,v € V(Ty) and uv € E(T3). p(u) + @(v) = o(w) for some w € V(Ty).
Now, we just need to show that if any u,» € V(T3), u # v and wo € E(Ty),
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then p(u) + ¢(v) # p(w) for any w € V(T3). We may assume without. loss
of generality that p(u) < p(v).
(1) For any u,» € V(T U {72}), u # v and uv € E(T3).

It is obvious that yp(u) + ¢(v) # @(w) for any w € V(T U {z2}) because
¢ = fin TU {z2}. In addition, by the construction of the labeling ¢, we
know that (x,) < ¢(x3) < 0. Thus p(u)+p(v) # @(w) for any w € V(Ty).

(2) For any v € V(T3) and v € E(Ty).
It is obvious that v # g, x», therefore

o) +o(v) < =) + eleg) + W(tn-3)
—p(Un-3) - p(0e) + 9(0g) + P (vns)
—p(ve) + p(vy)

< =p(v,) + o(v,) <0.

In addition, for w = @3 we have only that p(rg) + (1) = p(x3), but it
is not in this case. Thus @(r) + o(v) # @(w) for any w € V(T3) and
sre € E(Ty).

(3) For any v € V/(T3) \ {1} and x3v € E(Ty).
It is obvious that v # x4, therefore

plr) <) + @lv) < plas) + e(vn-3)
= —tp(:l:;z) + ‘p('“r) + ‘p("q) + W(vn—S)
= —p(va-3) — @(v.) + o(v,) + ‘P("tl) + p(vn-3)
= "GP(Ur) + ‘P("’I‘) + ‘P('Uq)
< —p(ve) + p(v,.) = 0.

Thus @(3) + @(v) # p(w) for any w € V(T;) and z3v € E(Ty).

Summarizing the above mentions in Case 1, we obtain that labelling ¢
satisfies the condition of an integral sum labelling of T3 when g = v,..

Case 2. 9 # v,.

At first, let 2 = z, in the Ellingham labelling f above. Then we can
extend from the sum labelling f of T U {&;} to a labelling o of Ty by the
following algorithm. Let

p(v) = f(v) for ve V(TU{x;})

pla) = (1) + 9li0)
pla2) = =) + (o),
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where v, € V(T), vyirg € E(T).

It is easy to see that p(22) < 0 < @(u1) < p(v2) < -+ < P(U,—3) <
e(z1) < ().

It is easy to verify that if w,v € V(T3),u # v and uwv € E(Ty), then
p(u) + o(v) = (w) for some w € V'(Ty). So we just need to show that
for any u,v € V(T3), if uv ¢ E(T3), then there is no w € V(T4) such
that p(u) + (v) = p(w). We may assume without loss of generality that
p(u) < p(v).

At first, if u,v € V(TU{x,}), and uv ¢ E(T3), then g(u) +o(v) # o(w)
for any w € V(T U {1 }) because ¢ = fin TU{x;} and f is a sum labelling
of TU {&}. Next, for p(u) + p(v) = (), v = 2 if and only if u = xq
according to the labeling . Therefore if p(u) + p(v) = @(x3). then there

must be that p(v) < -7, —3). We consider two subcases as follows.

Subcase 1. For p(u) < ¢(v..), where v.v,_3 € E(T), we have that
w(u) + o) < pe.) + p(vn-3) = (1) < p(r3)

Subcase 2. For p(u) > p(v.), where vov,_3 € E(T).

(1) If T is decomposed into type 1, namely T = C,UC»U- - - UC,,, then

o) + p(v) = P(0—3-;) + P(vn-s-i) (i<j3i,j=0,1,2,---,k=1)

= 299("1:—3) - (’ + /)Q(H,)

= @(vn-3) + 99(-"”) —-(i+j+ 1)(9('"4')

= @(vn-3) + @(a3) — ©lro) — (i +j + Do(ve)

= (v,) + p(irz) — () + (k=i = j — 1)p(v.).
Therefore now if p(u) + p(v) = (x3), then @(xg) — p(v,) = (k- i -
7 — Dp(v.). But since zg # v,. we have (k-4 —j — 1) # 0. Hence if
(k—1i—-j—1) <0, then we obtain ¢(v,) < ¢(v,.), which is a contradiction
with the Ellingham labelling of the last caterpillar C,, in type 1. If (k—i -
Jj —1) >0, then we obtain ©(irg) > @(v,) + p(v.) = P(vp—3-t+1), which is

a contradiction with the supposition of [#(T3)| = 3.

(2) If T is decomposed into type 2, namely T = CyUC,U---UC,, US.
then
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when p(u) < p(vn—3-k),

p(u) +o(v) < p(vn-3-k) + ©(Vn-3)
= @(vn—s—t) + oltn—s—k+1) + (k- 1)
= p(x1) + (k= 1) < o(x1) + p(x0) = @(x3);

when o(u) > p(vp-3-1).

o(u) + p(v) = o(v,_3—;) + @(en_a-i)
= 2p(vn-3) = (i + j)
= ((vn-s-r+1) + (k = 1)) + (o(x1) — @(ve)) — (i + j)
=o(v) +o(ve) + olra) — p(x0) —p(v) + (k—i -7 1)
= (v} + p(as) — @lre) + (k=i —j5 = 1).
(i<341,7=0,1,2,---,k —1). Therefore now if p(u) + ¢(v) = ¢(z3), then
we have that p(zg) = p(v,) + (k =i — j — 1), that is |p(xn) — w(v,.)] =
|k —i—3j—1| < k-2, which is a contradiction with the Ellingham labelling
of the shrub S in type 2.

Sumnmarizing the above mentions in Case 2, we obtain that the labelling

 satisfies the condition of an integral sum labelling of T5 when zq # v,.

Finally, since ¢(z3) is the maximum label of T3, for any v € V(T), we
have that o(v) + ¢(z3) > ¢(z3). Hence, there is not w € V(T3) such that
w(v) + ¢(r3) = p(w) for any u,v € V(T3), u # v and wv € E(T3).

Summarizing the above mentions. we can conclude that the labelling 2

is an integral sum labelling of the tree Ty with |#{T3)] = 3.

When [((T3)} = b > 3, namely P = rqey -y, is a tail of Ty . it need
only to take T = Ty \ {wp, 24—y, 2-2} and P* = w_gwp_omy— . And let
T3 =TUP* and {a-3} = T N P~. We choose the hanging vertex x,_3 to
be the head of the first caterpillar C; of T (take the other end of the most
longest. path in T started from here as the tail of C)) and then decompose T
outright or partially into a sequence of caterpillars C,Cs, -+, C,,. Finally,
using the above complete labeling algorithm, we can obtain an integral
sumn labeling ¢ of T3 with the tail length more than 3. Thus we obtain the
following result.

Theorem 1 If T3 is a tree with tail length at least 3, then ((T3) = 0.
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4. Remarks

Recently, Zhibo Chen [10] proved that any tree T with all forks at least
4 apart is an integral sum graph. Although our result is not the final
solution on integral sum trees, it improves the previous result and is very
close to completion. We try hard to explore a method into the study of
integral sum graphs in this paper. This method can connect the sum graph
with the integral sum graph. That is, we extend from a sum labelling to
the integral sum labelling. We believe that this method can be applied in

elsewhere with similar problems, such as general graphs with tail.
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