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Abstract

A connected graph G(V, E) is said to be (a, d)- antimagic if there exist positive
integers a and d and a bijection f: E— {1,2, ..., |E|} such that the induced mapping
g,:V—> N, defined by gr(v) =Y {f{w,v)| (v, v) € E(G)} is injective and g‘(V) = {a,a+d,
a+2d, ...,a+(|V|- 1)d}. In this paper, we mainly investigate (a, d)- antimagic labeling
of some special trees, complete bipartite graphs K_ and categorize (a, d)- antimagic

unicyclic graphs.
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1. INTRODUCTION

In [7] G. Ringel (1994) introduced the concept of an antimagic graph. Each edge
labeling f of a graph G = (V, E) from 1 through [E| induces a vertex labeling g where
g{v) is the sum of the labels of all edges that are incident upon vertex v. Labeling f
is called antimagic if and only if (iff) the values g(v) are pairwisely distinct for all
vertices v of G. Graph G is called antimagic iff it has an antimagic labeling. Let "
denote the set of all finite, connected undirected graphs G = (V, E) without loops
and multiple edges. The main problem in the theory of antimagic graphs is the
determination of all antimagic graphs in I. This problem still remains open. Ringel [7]
conjectured that every graph G € I' of order 2 3 is antimagic.

R. Bodendiek and G. Walther (1996) introduced the concept of an
(a, d)- antimagic graph as a special antimagic graph where a,d € N.

Definition 1.1 [2] Let G(V, E) € I be a graph of order |[V| 2 3 and a, d € N.
A bijective mapping f: E — {1, 2, . . ., |E|} with the induced mapping
g : V — N, defined by g‘(v) =2 ccton 1(€) VEV, where I(v) := {e € E | e is incident to
v} for v €V is said to be (a, d) antimagic labeling iff gf(v) form an arithmetic
progression with initial value a and step width d.

G is called (a, d) antimagic iff G admits an (a, d) antimagic labeling. Obviously
every (a, d) antimagic graph is also antimagic. For example, C, is antimagic as shown
in Figure 1. But C, does not admit an (a, d) antimagic labeling for any paira,d e N.

4 3 7
Figure 1. Antimagic labeling of C,.

The vertex weight w(v) (sometimes denoted as w(v)) of a vertex v in V(G) under
an edge labeling f is the sum of values f{e) assigned to all edges incidenttov. Let W
denote the set of all vertex weights of the graph G.

R. Bodendiek and G. Walther |2, 3] proved the finiteness of two very interesting
subsets of the set of all (a, d)- antimagic parachutes. M. Baca and 1. Hollander [1}
characterized all (a, d)- antimagic graphs of prisms D_=C_x P, whennis even. They
showed that when n is odd, the prism D_ are ((5n+5)/2, 2)- antimagic. They also
conjectured that prisms with odd cycles of lengthn, (n 2 7), are ((n+7)/2, 4)- antimagic.
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In [4]) Bodendiek and Walther proved the following results that are useful to
the ensuing sections in this paper.

Theorem 1.2 [4] If G(V, E) eI, |[V| =n23, [E|=m 22, is an (a, d)- antimagic graph,
then a, d € N satisfy the following conditions:
(a) a,d e N are positive solutions of the linear Diophantine equation

2an+n(n-1)d=2m(m+ 1) (1)
(b) If & denotes the minimum degree in G, then
a21+2+...+8=58(8+1)/2. ) 1

Theorem 1.3 [4] If a tree T = (V, E) of order |V| =2k + 123 is
(a, d)- antimagic, then it is necessarily the case thatd=1anda=k. 1

Theorem 1.4 [4] (a) Ifa tree T =(V, E) of order |[V] =2k + 1 > 5 contains a vertex v
adjacent to at least three end vertices in T, then T is not (a, d)- antimagic.

(b) Every tree T =(V, E) of order [V| =2k + 1 2 5, containing at leastk + 2 end
vertices, is not (a, d)- antimagic. |

Using the above results, Bodendiek and Walther [4] proved that cycles of
even order, paths of even order, stars K, ,n2 3, complete binary trees are not (a, d)-
antimagic.

In this paper, we mainly investigate the (a, d)- antimagic labeling of trees,
complete bipartite graphs and unicyclic graphs. Section 2 deals with
(a, d)- antimagic labeling of some special classes of caterpillars and spiders. Section 3
encompasses the study of (a, d)- antimagic labeling of complete
bipartite graphs K_ . A necessary condition is obtained for the complete
bipartite graph K __ to be (a, d)- antimagic. Using this condition it is proved thatK
is not (a, d)- antimagic when m + nis prime andK__ is not (a, d)- antimagic whenn
is odd. Several properties of (a, d)- antimagic labeling of K__,, have been derived.

In Section 4 we investigate the categorization of (a, d)- antimagic
labeling of unicyclic graphs. In particular, (a, d)- antimagic labeling of unicyclic
graphs such as C ®mK and C, @ P, are discussed.

Throughout this paper a graph always means a connected graph,
p denotes the number of vertices and q the number of edges of the graph unless
otherwise mentioned. For graph theoretic definitions and terminology, we refer to
Harary [6] and Gallian [5].
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Main Results

2. On (a, d)- antimagic labeling of trees.

Bodendiek and Walther [3] observed that trees of even order are not
(a, d)- antimagic. We focus our attention on (a, d)- antimagic labeling of trees T of odd
order. We consider a caterpillar asa tree which hasapathP_=aa, ...a ofordernandis
obtained by attaching x, (possibly zero) end vertices at the vertex a, of P ,i=1,2,.. ,n
by end edges. Itis denoted as T=8(x,, X,, X,, ..., X ). Clearly the order of Tisn +3x,.
Now the following theorem is an immediate consequence of Theorem 1.4(b).

Theorem 2.1 The caterpillar T=8(x,, x,, . . ., x ) of odd order is (a, d)- antimagic only
if 2x.<n+l. |

Corollary 2.2 Let T = §(x,, X,, . . ., X,) be a caterpillar of odd order. If x,2 2 for
i=1,2,...,n,thenTis not(a, d)- antimagic.

Proof: Since x, 2 2 for each i, we observe that in 2 2n >n +1. Hence the result
follows from Theorem 2.1. |

Corollary 2.3 If T is an (a, d)- antimagic caterpillar, then deg(v) <4 for any vertex
v e V(T). 1

Corollary 2.4 If T is an (a, d)- antimagic caterpillar of odd order p and having
avertex v of degree 4, thenp 2 9.

Proof: Let v be an internal vertex of the path of degree 4. If we assign the labels a
and a+1 for the end edges emanating from v and the labels 1 and 2 for the edges of
the path incident at v, then we must have 1 +2 +a + (a+1) <a+p—1. This implies that
p 29 since a=(p-1)/2 using Theorem 1.3. 1

Example: The caterpillar S(0, 0, 2,0, 0, 0, 0) is (4, 1)- antimagic as shown in Figure 2.

6 2 1 8 3 7
0 ——0—2—0'10

Figure 2. (4, 1) - antimagic labeling of S(0, 0, 2,0, 0, 0, 0)

However one can easily verify that the caterpillar S0, 0, 0, 2, 0, 0, 0) shown in
Figure 3 is not (a, d)- antimagic though p = 9 (we omit a formal proof).
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Figure 3 S(0,0, 0, 2, 0, 0, 0) is not (a, d) - antimagic

Theorem 2.5 Let T = S(x,, x,, X,, . . -, X.) be of odd order where x,= 2 for
i=1,2,..,k(<n)andx=1 fori=k+1,k+2, ..., n If Tis(a, d)- antimagic, thenk=1.

Proof: Here 2x, = 2k + (n - k) =n+k. If T is (a, d)- antimagic, thenn +k <n+1 by
Theorem 2.1. This implies that k < 1. Now k = 0 makes [V(T)| even and hence it
follows thatk = 1. 1

Theorem 2.6 T = S(2, x,, X;, . . - X ), where x,=x,=...=x =1, 1is
(n, 1)- antimagic.

Proof: The given caterpillar is an odd tree with p = 2n+1, q = 2n and
2x,=n+l.Leta,a,..., a bethe path vertices, u, and u, be the two end vertices
incident to a, and v, be the end vertex incidenttoa, i=2, . .., n. Now Figure 4 depicts
(n, 1)- antimagic labeling for T which completes the proof. §

3n 3n-1 3n-2 2p+3 2n+2 2n+1

Figure 4. (n, 1)- antimagic labeling of $(2, 1, 1, ..., ).
A spider SP(P , 2) [S] is a caterpillar S(x,,x,,...,x,) wherex =2and x,=0, fori
=1,2,...,n-1.
Theorem 2.7 The spider SP(P,,,, 2), wherek 2 1, is (k+1, 1)- antimagic.

Proof: Leta,a,,...,a,  bethe path vertices and u, and u, be the two end vertices
attached at the vertex a,,,,. Figure 5 concludes the proof by giving a (k+1, 1)-
antimagic labeling of the spider SP(P,,,,,2). 1
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3k 3k+2 k+1 k+2

k+S 3k+1 3k+3

Figure 5. (k+1, 1)- antimagic labeling of SP(P 2).

2k+)?

A regular spider SP(k : n) is a tree obtained by identifying one end vertex of k
number of paths, each of length n [5]. Obviously SP(k : n) has kn + 1 vertices.

Theorem 2.8 If a regular spider SP(k : n) of odd order is (a, d)- antimagic, then
k<3n-1.

Proof: Let SP(k : n) be (a, d)- antimagic. Thena=kn/2 and d = 1. It has one vertex of
degree k and hence if we assign the integers 1, 2, . . ., k for the edges incident to that
vertex, then we must have 1+2+. .. +k<a+(p-1)d. Thatis,k <3n- 1 since p=kn+1.
Hence the result is proved. 1§

Theorem 2.9 SP(n : 2) is (a, d)- antimagic if and only if n<4,

Proof: Replacing k and n with n and 2 respectively in Theorem 2.8, we can show
that SP(n : 2) is (a, d)- antimagic only ifn < 5.

Claim: SP(5 : 2) is not (a, d)- antimagic.

Suppose to the contrary, SP(S5 : 2) is (a, d)- antimagic. Let u be the vertex of
degree 5. In light of the above arguments, four edges that are incident at u receive
labels 1,2, 3, 4. The fifth edge can only be labeled with 5 to get w(u) = 15, which is
the maximum vertex- weight required. Labeling the end edges with 6, 7, . ., 10 in any
order, no vertex would get a vertex weight 5, the minimum vertex- weight. Hence the
claimis proved.

Now Figure 6 depicts (a, d)- antimagic labeling of SP(n: 2) whenn<4. 1
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Figure 6

The converse of the Theorem 2.8 is not true. For example, SP(5 : 2) is not
(a, d)- antimagic by the above claim in Theorem 2.9, thoughk = 5 and n =2 satisfy
k<3n-1.

3. On(a,d)- antimagic labeling of K_ |

In this section, we mainly focus on the (a, d)- antimagic labeling of the
complete bipartite graphs K, andK .

Consider an (a, d)- antimagic labeling of K, m < n, if it exists.
Then the vertex weights form an arithmetic progression W = {a, a+d, a+2d, . . .,
a+(m+n-1)d}. Let L denote the set of last m terms of the arithmetic progression W
and L, denote the sum of the terms of L. Then L, = (a+nd) + (a+(nt+1)d) +. .. +
(aH(m+n-1)d). Thatis, L, =ma +d(mn+ 4(m’ -m)). Let S denote the sum 1+2+3
+ ...+ q. We know that 2S = a + (a+d) + ... + (aH(m+n-1)d). Then S =
Y(m +n)(a + %(m+n-1)d). Let D, denote the difference between L, and S. That is,
D,=L,-S. Then we have the following relation

D,='4ma- Y2na+d(mn+ %(m’-m)- Yi(m®+2mn + n? - m-n)).
Thatis, D,='(m-n)(2a+d(m+n-1))+%dmn. 3)
Lemma 3.1 If fis any (a, d)- antimagic labeling of K, m<n, thenD,20.

Proof: Let W = {a, a+d, a+2d, . . ., at(m+n-1)d} be the set of vertex weights
corresponding to f. Suppose D, <0. Then L, <S. That is, sum of last m terms (in fact
the largest m terms of the arithmetic series) is less than S. This implies that the sum
of any m terms of W does not add up to the required sum S for the m vertices of a
partite set of K_ , a contradiction since f is an (a, d)- antimagic labeling of K_ .
Hence D, 2 0. ]

Now we obtain a necessary condition for K__ to have (a, d)- antimagic
labeling.
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Theorem3.2IfK  , m<nhasan (a, d)- antimagic labeling, then d divides D,.

Proof: It is obvious when D, =0. Suppose D, > 0. For any (a, d)- antimagic labeling
of K, the sum of the vertex weights in each partite set must be S. Then few (or all)
terms of L have to be exchanged with equal number of terms from the first n terms of
W to adjust the excess D Since each term of W differs from the other by a multiple
of d and D, is adjusted by shifting the terms of W, it follows that D, must be a
multiple of d. Hence the proof'is complete. I

Theorem 3.3 If nis odd, thenK__ is not (a, d)- antimagic .

Proof: By putting m =n in equation (3), we get D, = %4 n’d, which is not divisible by
d when n is odd. Hence the result follows from Theorem 3.2. §

Ifthe graph K | has an (a, d)- antimagic labeling, then p = m+n and q=mn must
satisfy the equation (1) in Theorem 1.2 (a). Without loss of generality let n = m+c
where ¢ € NU{0} is an integer. Then we get 2(m?+ mc)(m?+ mc+1) =
(2m +c)(2a + (2m + ¢ ~1)d). Therefore, 2(m?+mc)(m?+mc +1) = 0 (mod (2m-+c)).
That is, 2(m*+ mc)(m*+ mc+1) = k(2m+c) for some integer k. This implies that
2m* -2m’ + 2m(2m+c) = (k -2m?c)(2m+c). This becomes that 2m* -2m? =
(k - 2m —2m’c)(2m+c). Thus (k — 2m —2m’c) = (2m* -2m? )/ (2m-+c). Since the right
hand side turns out to be an integer, by usual polynomial division, we get
¢?(c?~4) = 0 (mod (2m+c)), which is satisfied by ¢ =0, 2 among other values.

Theorem 3.4 If m + n is prime, then the complete bipartite graph K,
where n>m > 1, is not (a, d)- antimagic.

Proof: Letn=m+c, where ¢ € N. Then m + n=2m+c and using the above remarks
2m+c divides c*(c?—4). If (2m+c) is prime, then (2m +c) divides ¢ or (c-2)(c+2).
If (2m+c) divides c, then m = 0 which is not admissible. Suppose (2m+c) divides
(c—2)(c+2). Since (2m+c) cannot divide (c - 2), it follows that (2m +c) must divide
(c+2). This implies that m = 1, again not admissible. Hence the result is proved. B

We note that the case m = 1 has already been considered in [4].
Theorem3.5IfK__ ,is (a, d)- antimagic, thend isevenand (n+1)<d< (n+l)z/ 2.

Proof: Let (X, Y) be the bipartition of K__, where |X| = n and [Y| = n+2. Here
p =2(n+1) and q=n(n+2) which when substituted in equation (1) of Theorem 1.2(a),
we getn(n+1)(n+2) =2a+(2n+1)d. 4)

Therefore, d is even for any n. Since the minimum degree of any vertexinK . isn,
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putting a 2 % n(n+1) in equation(4), we getd < (n+1)2/2. )

By Lemma 3.1, we have L, > S, where S = (n(n+2)(n(n+2)+1)) = Yan(n+1)*(n+2) and
L,=n(n+1)(n+2) - ((n+2)a + %d(n+1)(n+2)). Then n(n+1)? 2 2a+(n+1)d. (6)
Subtracting (4) from (6), we get n+1 < d. Hence the result follows from (5). §

Now the following corollaries are the immediate consequences of the above
theorem.

Corollary 3.6 For any (a, d)- antimagic labeling ofK _ ., D,=0ifand only ifd=n+1.
Further, in this case n is odd.

Proof: For any (a, d)- antimagic labeling of K ., D, ="4((n?~1)d ~2a) by equation (3).
Now D, =0 ifand only if (n? - 1)d -2a =0. Putting the value of 2a from equation (4),
we get (n? - 1)d +(2n+1)d—n(n+1)(n+2) =0. This in turn, is true if and only if d=n+1.
In this case n is odd since d is even, by Theorem 3.5. 1

Corollary 3.7 If nisevenand K__,, has an (a, d)- antimagic labeling, then D,>0.1

Proof: If D, =0, then d = n+1 by Corollary 3.6. Since n is even, d is odd contradicting
Theorem 3.5. Hence D, > 0. |

In fact, for any (a, d)- antimagicK___., whenn is even, d =n+2 is the minimum

nar+2?
value of d.
Corollary 3.8 K, , is not (a, d)- antimagic.

Proof: Suppose K, is (a, d)- antimagic. Putting n = 2 in Theorem 3.5, we get
3 <d <4 which implies d =4. Putting d =4 in equation (4), we geta =2, a contradiction
since a 2 3, by Theorem 1.2(b). Hence the result is proved. |

Theorem 3.9 LetK . be (a, d)- antimagic graph.
(i) If n is odd, then a is even and d divides a.
(ii) If n is even, then d divides 2a.

Proof: Let A, B be the bipartition of the vertex set of K__ ., where |A] = n. Then
2{w(v)|ve A}=2{w(v)|ve B} = S=n(n+1)X(n+2)/2 (see proof of Theorem 3.5).
Since n(n+1)%(n+2)/2 is even for any n, we have 2{w(v) | ve A} is even. This
implies that (a+r,d) + (a+r,d) +. ...+ (a*r,d) is even, where a+r,d are the weights of
the vertices in A. Thenna + (r, +r, +. ...+ r )d is even, which implies that na is even.
Sinced is evenand nis odd, we geta s even. Also D, = ((n*~1)d - 2a) by equation (3).
The fact that d must divide Daimplies that d divides a when nis odd and d divides
2awhenniseven. 1
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Theorem 3.10K, , is (a, d)- antimagic if and only if (a, d) = (16, 4).

Proof: ForK, ,, equation (4) in Theorem 3.5 becomes 2a+7d = 60 and the possible
solutions for (a, d) are (9, 6) and (16, 4) subject to the conditions on d stated in
Theorem 3.5. But a = 9 is not admissible by Theorem 3.9(i). Now we display
(16, 4)- antimagic labeling of K in Figure 7. §

Figure 7. (16, 4) - antimagic labeling of K

Theorem 3.11 If K, .is(a,d)- antimagic, then nand d are evenand 0 <d <n%2.

Proof: Suppose K__ is (a, d)- antimagic. Then n is even by Theorem 3.3. Putting
p=2nand q=n?in Theorem 1.2, we get n(n?+1) =2a+(2n-1)d (7). This implies that
diseven. Since (K ) =n, we have a 2 ¥in(n+1) and (7) becomes n(n®+1)2n(n+1)
+(2n-1)d. That is, d <n(n>-1)/(2n-1) <n’*(n- 1)/ (2n - 1) =n%2. Hence the proof
is complete. 1

Example In Figure 8, (27, 2)- antimagic labeling of K, , is illustrated.

& 3
Figure 8 (27, 2) - antimagic labeling of K , ,
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Remark 3.12 In Table 1, all the possible (a, d)- antimagic labelings are
enlisted for the graph K__ ., n < 10. We do not know whether all the labelings
enlisted in Table 1 exist. However we do know that no other (a, d)- antimagic
labeling exists for K, other than those given in the Table 1.

n |n+2 Possible (a, d) - antimagic labelings Remarks
113 |Ni Proved in [4]
2 {4 |Ni Proved (Corollary 3.8)
315 [(16,4) Proved (Theorem 3.10)
4 16 [(33,6),(15,10) ?
517 1(72,6),(50,10),(28, 14) ?
6 18 1(116,8),(90,12),(77,14) ?
719 1(192,8),(72,24) ?
8 110 |(275,10),(258, 12),(207, 18),(190, 20), ?
(156, 24),(105, 30), (54, 36)
9 |11 |(400,10), (324, 18),(286,22), (210, 30)
10]12 (534, 12),(450,20),(429,22), (345,30),(198,44)

Table 1. Possible (a, d)- antimagic labeling ofK__,, forn<10.

Figure 9. (72, 6) - antimagic labeling of K, ,
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It is felt that one can use trial and error method for the given values of n to
achieve the (a, d)- antimagic labeling listed in Table 1. It would be of great interest
to formulate a general rule to achieve the same. In Theorem 3.10, we have proved
thatK  is (16, 4)- antimagic. In Figure 9, we have illustrated a (72, 6)- antimagic
labeling of the graph K, ,. Hence we propose the following conjecture.

Conjecture 1 Forany oddn >3, the graph K, is (Y2(n+1)(n’-1), (n+1))- antimagic.

4. On (a, d)- antimagic labeling of Unicyclic graphs.

It is observed by Bodendiek et al. [4] that even cycles are not
(a, d)- antimagic. We give a categorization of the (a, d)- antimagic labeling of unicyclic
graphs in the following theorem.

Theorem 4.1 Let G be an (a, d)- antimagic unicyclic graph of order n.

() Ifniseven, then(a, d)=(2,2).

(i) Ifnisodd, then(a,d)=(2,2)or((n+3)/2,1).

Proof: Since p =q=n, equation (1) in Theorem 1.2 implies that 2(n+1) =2a +(n-1)d.

(i) Ifnis even, then d must be even. Since even cycles are not (a, d)- antimagic,
5(G) = 1 which implies that (n-1)d < 2nand henced=2anda=2.

(i) If n is odd and G is not a cycle, then d = 1 or 2 which correspond to
a = (n+3)/2 or 2 respectively. If G is an odd cycle, then a 2 3 since
5(G)=2.Thend £ 2 - 2/(n—1) <2, which implies thatd =1 anda=(n+3)/2. 1

The graph C_ ©mK, is a unicyclic graph with p = q = n(m+1) obtained from the
cycle C_by attaching m pendent edges at each vertex of the cycle C.

Theorem 4.2 The graph C ©mK, is (a, d)- antimagic if and only if m=1.

Proof: When m = 1, C ©K is called crown that is proved (2, 2)- antimagic in [8].
Now to prove the necessary part, suppose C ©mK has (a, d)- antimagic labeling.
We have to consider the following two cases:

CASE 1. n(m+1)iseven.

Using Theorem 4.1(i), we havea =2 = d. Then all the end edges should be
labeled with distinct even positive integers. There are mn end edges and there are

218



exactly n(m+1)/2 even integers between 1 and n{m+1). Then mn < n(m+1)/2 which
impliesm=1.

CASE 2 :n(m+1) is odd.

By Theorem 4.1(ii),d = 1 or 2. Whend =2 then a=2 and hence as in CASE 1,
mn < (n(m+1) -1)/2 which implies that m < (n—1)/n. Hence m < 1 which is not
admissible. When d = 1, a = (n(m+1) +3)/2. Then all the integers from 1 to
((n(m+1) +3)/2) -1 should be used to label only the edges of the cycle C_. Then
((n(m+1)+3)/2) -1 < n, implying that m < 1, again not admissible. Hence the proof'is
complete. ]

The graph G =C @P , called ‘dragon’ consists of a cycle C, together with a
pathP_, one end vertexu, of P_is joined withanode v, of C . That is, V(G)=V,uV,,
where V = {v v, ..., v } of vertices ofcycleC and V,= {u,u,,...,u } of the
pathP_. E(G)=E(C) U E(P_)u {v,u,}. C.@P,contains m+n vertices and equal
number of edges.

Theorem4.3 If m=norm=n-1, thegraphG=C @P _,n23,is(2, 2)- antimagic.

Proof: We define an edge labeling f: E(G) — {1,2, ..., n+m} as follows:
fluy,)=2(m-i),i=1,2,....,m-1.
f{v,u,)=2m
flvv,)=2i-1,i=1,2,....,n.(Herev_,=v ) Hence,
w(V)={2(m+n),4,8,...,4(n-1)} and w(V,)= {4m-2,4m—6, .. ., 6,2}.
Therefore, when m=n, w(V) = {4n,4,8, .. ., 4(n-1)}{4n-2,4n-6, . ., 6, 2}.
Whenm=n-1,w(V)={4n-2,4,8,...,4(n-1)} U {4n-6,4n-10,. . ., 6, 2}.
In both cases f'is (2, 2)- antimagic labeling for C @ P . B

Example (2, 2)- antimagic labeling of C,@ P, and C,@ P,are shown in Figure 10.

Figure 10. (2, 2) - antimagic labeling of C@P,and C.@ P,
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Theorem 4.4 Let G=C_@P_be of even order. G is (a, d)- antimagic if and only if
m=norn-1.

Proof: If m = n or n-1, then G is (2, 2)- antimagic, by Theorem 4.3.
Conversely, suppose G is (a, d)- antimagic. By Theorem 4.1(i), G is only
(2, 2)- antimagic. In this case, we can use even integers only to label the path edges
and odd integers only to label the cycle edges. This is possible only when m =n or
n-1. Hence the result is proved. |
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