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One of the most widely studied classes of graphs are hamiltonian graphs.
In this paper we are interested in the following question: When can we
guarantee a certain set S of vertices to appear on a hamiltonian cycle in
a given order? In [6], Ng and Schultz first explored the following related
concept introduced by Chartrand. A graph is called k-ordered hamiltonian,
if for every vertex set S of size k there is a hamiltonian cycle encountering
the vertices in S in a given order. Clearly, every hamiltonian graph is 3-
ordered hamiltonian. Ng and Schultz [6] showed that k-ordered hamiltonian
graphs must be (k¥ — 1)-connected. Further, they showed the following
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Abstract
We show that in any graph G on n vertices with d(z) +d(y) > n

for any two nonadjacent vertices z and y, we can fix the order of
k vertices on a given cycle and find a hamiltonian cycle encounter-
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Theorem 1 [6] Let G be a graph of order n and let k be an integer with
3 <k <n. Ifd(u)+d(v) >n+2k— 6 for every pair u, v of nonadjacent
vertices of G, then G is k-ordered hamiltonian.

This bound was later improved in [3] and [4] by Faudree et al. for small
values of k.

Theorem 2 [{] Let G be a graph of order n and let k be an integer with
3 <k <nf2. Ifdu)+dv) > n+ (3k—9)/2 for every pair u, v of
nonadjacent vertices of G, then G is k-ordered hamiltonian.

Instead of increasing the bound on the degree sum from the Ore-bound for
hamiltonicity as in these papers, we choose to ask for a higher connectivity
with the resultant effect of being able to lower the degree sum condition.
We will first prove the following theorem.

Theorem 3 Let G be a graph on n vertices with d(z) + d(y) 2 n for any
two nonadjacent vertices ¢ and y. Let k < n/12 be an integer, and let C be
a cycle encountering a vertez sequence S = {z,,... ,zx} in the given order.
If G is [(k+1)/2]-connected, then G has a hamiltonian cycle encountering
S in the given order.

Corollary 4 Let G be a graph on n vertices with minimum degree 6(G) >
n/2. Let k < n/12 be an integer, and let C be a cycle encountering a vertex
sequence S = {Z1,... ,Zk} in the given order. IfG is [(k+1)/2]-connected,
then G has a hamiltonian cycle encountering S in the given order.

The connectivity bound is best possible, as illustrated by the following
graph G;. Let L, K, R be complete graphs with |R| = [(2n — k)/4],
|K| = |k/2), |L| = n — |K| —|R]. Let G, be the union of the three graphs,
adding all possible edges containing vertices of K. Clearly, 6(G1) > n/2,
and G, is | k/2}-connected. Let S = {z1,...,xx} with z; € K if ¢ is even
and z; € R otherwise. The cycle C = ;x5 ...z1%; contains S in the right
order, but no cycle containing S in the right order can contain any vertices
of L.

A graph is called k-ordered, if for every vertex sequence S of size k there
is a cycle encountering the vertices in S in the given order. Now observe
that every k-ordered graph is (k —1)-connected. Thus, we get the following
corollaries (these are very similar to theorems used in [6] and [4]).

Corollary 5 Let G be a graph on n vertices with d(z) + d(y) > n for any
two nonadjacent vertices z and y. Let k < n/12 be an integer, and suppose
that G is k-ordered. Then G is k-ordered hamiltonian.

Corollary 6 Let G be a graph on n vertices with minimum degree §(G) >
n/2. Let k < n/12 be an integer, and suppose that G is k-ordered. Then G
is k-ordered hamiltonian.
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We further prove the following theorem.

Theorem 7 Let G be a graph on n vertices with d(z) + d(y) 2 n for any
two nonadjacent vertices ¢ and y. Let k < n/176 be an integer. If G is
|3k /2] -connected, then G is k-ordered hamaltonian.

The connectivity bound is best possible, as illustrated by the following
graph Ga. Let L2, K2, Ry be complete graphs with |Rz| = Lk/2], |K2| =
2|k/2] -1, |L2| = n—|K2| — |Ra|. Let G, be the union of the three graphs,
adding all possible edges containing vertices of K. Let z; € L2 if ¢ is odd,
and let z; € R, otherwise. Add all edges z;z; whenever li—jl € {0,1,k-1},
and the resulting graph is Go. The degree sum condition is satisfied and
Gs is (|3k/2) — 1)-connected. But there is no cycle containing the z; in the
right order, since such a cycle would contain 2| k/2] paths through Kj.

For the analogous theorem with a bound on the minimum degree we get
a slight improvement on the connectivity bound for odd k.

Theorem 8 Let G be a graph on n vertices with minimum degree 8G) 2
n/2. Let k < n/176 be an integer. If G is 3|k/2]-connected, then G is
k-ordered hamiltonian.

Again, the connectivity bound is best possible, as illustrated by the follow-
ing graph G3. Let L3, K3, R3 be complete graphs with |R3| = [(n—k)/21,
|Ks| = 2|k/2) — 1, |Ls| = n — |K3| = |Rs|. Let Gj be the union of the
three graphs, adding all possible edges containing vertices of Ks. Let
z; € Lg if i is odd, and let z; € Rg otherwise. Add all edges z;z; whenever
s — 7] & {0,1,k — 1}, and the resulting graph is G3. The degree condition
is satisfied, and Gs is (3|k/2] — 1)-connected. But there is no cycle con-
taining the z; in the right order, since such a cycle would contain 2|k/2]
paths through K3.

2 Proof of Theorem 3

Assume that C is a maximal cycle encountering S in the given order. If
C is hamiltonian, we are done. So, assume |C| < n, and let H be a
component of G — C, say |H| = r. The sequence S splits C into k segments

[1:10:122], eesy [:z:kCzl].
Claim 1 There is at most one adjacency of H in each segment [z:Czit1]-

Suppose the contrary. Let z,y be two adjacencies of H inside [z;Cziy1] with
no other adjacencies of H in (zCy). Letve HNN (z). Let |(zCy)| = s.
Since v is not insertible in C we get

n—-r—s+1

dv) <r—-1+ 3
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Insert the vertices of (zCy) one by one into [yCz]. If all of them can be
inserted, we can extend C through v, so there is a vertex w that can not
be inserted. We get

d(w)53_1+9"”;—8+1,

s0
dv) +d(w) <n-1,
a contradiction. This proves the claim. 0o

By claim 1, C has at most k adjacencies to H. Let v € H, and w € C
be a vertex not adjacent to H. Then

n<d@)+dw)<(r-1+k)+(n-r—-1)=n+k-2.

Thus, w is adjacent to all but at most k — 2 vertices of G — H. Further,
v is adjacent to all but at most k — 2 vertices in H. We claim that His
hamiltonian connected as follows: Either H is complete and we are done, or
two vertices v, u € H are not adjacent. Then |H| > 1(2)—"21@1 -k>2%-k
using Claim 1 and the degree sum condition. Now oy (H) > [H| -k +2>
|H|/2 + 1, which implies hamiltonian connectedness.

Claim 2 G — C has at most one component.

Suppose the contrary, let H' be another component with |H'| = r'. Let
v € H,v' € H'. Since G is [(k + 1)/2]-connected, H can be adjacent to at
most |(k — 1)/2] vertices from S, else there is a contradiction with Claim
1. The same is true for H'. Thus, for some i, z; € N(H) U N(H'). But

now,

3n < 2(d(z:) + d(v) + d(v")) <
An—r—r" =)+ (r—1+k)+('-1+k))=
2n + 4k — 6,

a contradiction that proves the claim. D

Since G is [(k+1)/2]-connected, there is a segment [z;Cz;42) with two
adjacencies y, z of H. By claim 1, we may assume that y € [z;CZj41), and
z € (zj41Czj42). If |[H| > k we can even guarantee that [((N(y)UN(z))N

H|>2.
Claim 3 [C| > n/2.

Suppose |C| < n/2. Then |H| > n/2, and y,z could be picked such that
uy, vz € E(G) for two vertices u,v € H. Find a hamiltonian path Pin H
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from u to v. Observe that N(zj+1) U N(zj42) C C. If 241242 € E(G),
then the cycle uPvzC~z;412j42Cz; u is longer than C, a contradiction.

Thus, z;4+12j+2 € E(G). But now

d(zj+1) ‘;‘d(zﬁz) tos ™

>

the contradiction proving the claim. (]
For the final contradiction we differentiate two cases.

Case 1 There exists a vertez w € (yCzj41) U (2Cxj42).

Let N = N(zj4+1)NN(z;j4+2)NN(w). Since none of the vertices z;4+1, Zj+2, w
is adjacent to H, each is adjacent to all but at most k — 2 vertices of the

cycle. Thus, |N| > |C| - 3k + 6.
Claim 4 For some i, |N N[z;Cziy1]| 2 4.
Suppose not, then
n/2 < |C| < 3k +|C| — |N| < 6k -6,

a contradiction for n > 12k. (m]

Let i be as in the last claim, and let v;,v2,v3,v4 € N N [z;Cz;iy1] be
the first four of these vertices in that order.
If vy € (yCzj41], define a new cycle as follows:C' = 2C~vyz;42CyuPuz
(see Figure 1).
If vg € (2Czj42), let C' = 2C~zj42v4CyuPuz.
Otherwise observe that by claim 1, there is at most one adjacency = of H
in [v;Cv,4).
For i # j + 1, define the new cycle C’ as follows:
If z € [1,Cv2), let C' = 20~ 2j41v3Z;42Cvawvs CyuPuz (see Figure 2).
If z € [u3Cuy), let C' = 20~ 241023 42Cv1wu3 CyuPuz.
Otherwise, let C' = 2C~%41v2Cv3%j4+2Cv1wvs CyuPuz.
For i = j + 1, a very similar construction works:
let C' = 2C~vgwv1 C~ xj41v2Cv3242CyuPuz.
In any case, no vertex in C — C' is adjacent to H, so all of them have high
degree to C and thus high degree to CNC'. Therefore, we can insert them
one by one into C' creating a longer cycle, a contradiction.
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Figure 1: a possible C'

Figure 2: a possible C’
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Case 2 Suppose (yCzjt+1) U (2CTj42) = 0.
Let N' = N(zj4+1) N N(zj42). Then |N'| 2 |C| - 2k + 4.
Claim 5 For some l, |[N' N [z;Cz141]| > 5.
Suppose not. Then
n/2 <|C| < 4k +|C| - |N'| < 6k — 4,

a contradiction for n > 12k. o

Let [ be as in the last claim, and let z;,22,23,24,25 € N' N [£1CZ14.1]
be the first five of these vertices in that order. At most one of them
is adjacent to H, say z2. Now a very similar argument as in the last
case gives the desired contradiction, just replace zj+1 by 21, Tj+2 by zs,
and w by z;. One possible cycle would then be (for ! < ¢ < j): C' =
20" x4 22C232j42C 2102 Cv325Cv1 24vsCyuPoz (see Figure 3). m]

Figure 3: a possible C'
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3 Proof of Theorems 7 and 8

By Corollary 5, all we need to show is that G is k-ordered. For this purpose,
we will use a slightly stronger concept.

We will say that a graph G on at least 2k vertices is k-linked, if for
every vertex set T = {1,%2,... , Tk, Y1,¥2,- - , Yk} of 2k vertices, there
are k disjoint z;y;-paths. The property remains the same if we allow rep-
etition in T, and ask for k internally disjoint z;y;-paths. Thus, as an easy
consequence, every k-linked graph is k-ordered.

An important theorem about k-linked graphs is the following theorem
of Bollobas and Thomason:

Theorem 9 [1] Every 22k-connected graph is k-linked.
The following lemmas will be used later.

Lemma 10 If a 2k-connected graph G has a k-linked subgraph H, then G
is k-linked.

Proof: Let T = {z1,%2,... , Tk, ¥1,¥2,--- » Yk} be a set of 2k vertices in
V(G). Since G is 2k-connected, there are 2k disjoint paths from T to V(H)
(trivial paths for vertices in T N H). Now we can connect these paths in
the desired way inside H, since H is k-linked. O

Lemma 11 If G is a graph, v € V(G) with d(v) > 2k —1, and if G — v is
k-linked, then G is k-linked.

Proof: Let T = {z1,Z2,--- ,Tk,¥1,Y2,--- ,Yx} be a set of 2k vertices in
V(G). K v € T, we can find disjoint z;y;-paths inside G — v. Thus assume
that v € T, without loss of generality we may assume that v = z;. If
y1 € N(v), we can find disjoint z;y;-paths for all i > 2 in G — v — 1, since
G —v—y, is (k—1)-linked. Adding the path vy; completes the desired set
of paths in G. If y; & N(v), then there exists a vertex z; € N(v) —T, since
d(v) > 2k — 1. We can find disjoint z;y;-paths for i > 2 and a ziy1-path in
G — v, which we can then extend to an z;y;-path in G. &)

Further, we will use a theorem of Mader about dense graphs:
Theorem 12 [5] Every graph G with |V(G)| =n > 2k — 1, and |E(G)| 2
(2k — 3)(n — k+ 1) + 1 has a k-connected subgraph.

Corollary 13 [5] Every graph G with |V(G)| =n > 2k — 1, and |E(G)| 2
2kn has a k-connected subgraph.

Proof of Theorem 7. Let G be a graph fulfilling the stated conditions.
Let S = {z1,-.. ,Zx} be a set of k vertices. To show that G is k-ordered
we need to find a cycle C including the vertices of S in the given order.

Corollary 5 will then provide Theorem 7. Let K be a minimal cutset of G.
Let L and R be two components of G — K with |L| < |R].
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Case 1 Suppose |K| > 2k.

The degree sum condition forces |E(G)| > n?/4 > 44kn. By Corollary 13,
G has a 22k-connected subgraph H, which is k-linked by Theorem 9. By
Lemma 10, G is k-linked and thus k-ordered.

Case 2 Suppose 3|k/2] < |K| <2k —1.

First note that L and R are the only components of G — K. Otherwise, let
z€L,y€R,2€ G- (KULUR), then

3n < 2d(z) + 2d(y) + 2d(z)
< 2|L} + 2|K| + 2|R| + 2|K| + 2(n - |L| - |R|)
<2n+4|K| < 2n + 8k,
a contradiction.

Claim 1 R is k-linked, and L is k-linked or complete.

Let v € L,w € R. Then
n<dv)+dw)<|L|-1+|K|+|R|-1+|K|<n+2k-3.

Thus w is connected to all but at most 2k — 3 vertices in R. Therefore, R
is 2k-connected. Again,

|E(R)| 2 |R[(IR| — 2k +2) 2 |R|(n/2 — 3k + 2) 2 44k|R|.

Thus, R has a 22k-connected and therefore k-linked subgraph, and so R is
k-linked by Corollary 13, Theorem 9 and Lemma 10.
If L is complete we are done. Otherwise, let z,y € L with zy ¢ E, then

|L|2‘““’)—’2”"(y2-|x|2§-2k+1.

Every vertex in L is connected to all but at most 2k — 3 vertices in L,
therefore L is 2k-connected. By a similar argument as before, L is k-linked,
establishing the claim. m]

Claim 2 For every vertez v € K, at least one of the following holds:
1. dr(v) > 2k,
2. dp(v) > 2k,
3. dp(v) = |L].
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Suppose the claim is false for some vertex v € K. Let € L — N(v),
y € R— N(v). Then

2n < d(z) + 2d(v) + d(y)
< |L| + |K| + 2(|K| + 4k) + |R| + | K|
< n+3|K| + 4k < n + 10k,

a contradiction. m]
The last claim yields a partition of K as follows:

Kp = {ve€K|dgr(v) > 2k},
K, {‘UGKldL(’U)Z2k}—K}z,
Kiz = {veK|di(v)=|L|} - (KrUKL1).

Note that either Kz, = @ or K12 = @, and that the graph induced on K2
is complete, since all vertices in K12 have degree less than 4k.

Now let R’ = (RU Kg),L' = (LU K1y U K15). By Claim 1, Claim 2
and Lemma 11, R' is k-linked and L' is k-linked or complete.

For the last part of the proof, let Sp = L'N S, Sp = R'NS. Create
a new graph G’ as follows: For every i with z; € Sy and z;—1,%i4+1 € Sr,
add a vertex z} with N(z!) = N(z;) U {z;}. It is easy to see that G’ is
|3k/2]-connected. Therefore, G' — Sr is (|3k/2] — |Sr|)-connected. Using
this fact, we can find independent paths in G’ — Sg from each of the vertices
in Sy U «} into R’ — Sg, since | Sy U z§| < min {k,2|S.|} < 3k/2—|Skl.
Denote the set of last edges of these paths by M. Now contract the edges
z;z} to get back to G.

The existence of the cycle C is now guaranteed, since we can pick ap-
propriate vertices in Sy U(M N L') and in SpU (M N R'), and then use the
fact that R’ is k-linked and L’ is k-linked or complete to find the necessary

connections. This completes the proof of Theorem 7.
O

Proof of Theorem 8. Observe that the connectivity only played a role in
the last part of the previous proof. Let G be a graph as in Theorem 8. If
G is |3k/2]-connected, we are done by Theorem 7. Thus, we may assume
that k is odd and G has a minimal cut set of size 3|k/2]. Further, we know
that G splits in two parts L' and R’, each of which is k-linked (observe that
the degree condition forces |L| > 2k) by the proof of Theorem 7.

Since k is odd, there are two consecutive vertices in S on the same side,
we may assume z; and zy is such a pair. Since G is (3(k — 1)/2)-connected,
there exists a matching M = {ey,... ,e3(x-1)/2} of edges between R' and
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L'. We can renumber the edges of M such that e;NS C {z;}foralli < k~2,
and ex—1 NS C {Tk—1,2x}. Let Zx+1 = z1. To construct the cycle C, we
need to find z;z;y,-paths for all ¢ < k. If z; € L' and z;4, € R, or if
z; € R' and z;4, € L', we want to find a path from z; to e; through L’ (R)
and a path from e; to z;1, through R'(L'). Note that this case can only
occur if ¢ < k ~ 1. If z,z:4, € L'(R'), we want to find a z;7;41-path in
L'(R'). The simultanuous existence of all these paths is guaranteed since

R' and L' are k-linked. This completes the proof of Theorem 8.
]
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