CONSTRUCTIONS OF GRAPHS
WITHOUT NOWHERE-ZERO
FLOWS FROM BOOLEAN FORMULAS

MARTIN KOCHOL

ABSTRACT. We show that a negation of tautology corresponds to a family
of graphs without nowhere-zero group- and integer-valued flows.

1. INTRODUCTION

A graph admits a nowhere-zero k-flow if its edges can be oriented and
assigned numbers £1,...,£(k — 1) so that for every vertex, the sum of the
values on incoming edges equals the sum on the outcoming ones. Graphs
which do not admit nowhere-zero k-flows are called k-snarks (see [K2]).
It is well-known that a graph with a bridge (1-edge-cut) is a k-snark for
any k > 2 (see, e. g., [J, K2, Z]). We refer to [K2] for more details about
k-snarks.

Nontrivial cubic 4-snarks are called snarks (see, e. g., [K2]). By nontrivial
we mean cyclically 4-edge-connected (deleting fewer than k edges does not
result in a graph having at least two cyclic components) and with girth
(the length of the shortest cycle) at least 5. Holyer [H] constructed a snark
for any negation of tautology given in a conjunctive normal form. In [K1]
is shown that a similar construction can be applied for bridgeless 5-snarks
if there exists at least one bridgeless 5-snark. In this paper we generalize
ideas from [H, K1] and show that a negation of a tautology corresponds to
a family of k-snarks.

2. PRELIMINARIES

The graphs considered in this paper are all finite and unoriented. Mul-
tiple edges and loops are allowed. If G is a graph, then V(G) and E(G)
denote the sets of vertices and edges of G, respectively. By a multi-terminal
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network, briefly a network, we mean a pair (G, U) where G is a graph and
U = (u1,...,upn) is an ordered set of pairwise distinct vertices of G. If no
confusion can occur, we denote by U also the set {ui,...,un}. The vertices
from U and V(G)\U are called the outer and inner vertices of the network
(G,U), respectively. We allow n =0, i.e., U = 0.

We associate with each edge of G two distinct arcs, distinct for distinct
edges (see also [K2]). If one of the arcs corresponding to an edge is denoted
by z, the other is denoted by z~!. If the ends of an edge e are the vertices
u and v, one of the arcs corresponding to e is said to be directed from u
to v (and the other from v to u). In particular, a loop corresponds to two
distinct arcs both directed from a vertex to itself. Let D(G) denote the set
of arcs on G. Then |D(G)| = 2|E(G)|. If v € V(G), then wg(v) denotes
the set of arcs of G directed from v to V(G) \ {v}.

If G is a graph and A is an additive Abelian group, then an A-chain in G
is a mapping ¢ : D(G) — A such that p(z~!) = —p(z) for every z € D(G).
Furthermore, the mapping 8y : V(G) — A such that

dp(v) = Y, @) (veV(G)

r€wg(v)

is called the boundary of . An A-chain ¢ in G is called nowhere-zero if
¢(z) # 0 for every z € D(G). If H is a subgraph of G, then yy denotes
the restriction of ¢ to H. If (G, U) is a network, then an A-chain ¢ in G is
called an A-flow in (G, U) if dp(v) = 0 for every inner vertex v of (G,U).
The following statement is proved in [K1, K2].

Lemma 1. If ¢ is an A-flow in e network (G,U), then 3, i, Op(u) = 0.

If k is an integer > 2, then by a (nowhere-zero) k-flow ¢ in a network
(G,U) we mean a (nowhere-zero) Z-flow in (G, U) such that |p(z)| < k for
every z € D(G) and |8¢(u)| < k for every u € U.

With every A-flow in a network (G,U), U = (u4,...,uy), is associated
a characteristic vector x(p) = (21,...,25) so that z; = 0 if dp(u;) = 0 and
z; = 1 otherwise. The A-characteristic set xa(G,U) (k-characteristic set
xx(G,U)) of the network (G, U) is the set of all characteristic vectors x(¢)
where ¢ is a nowhere-zero A-flow (nowhere-zero k-flow) in (G, U).

By a (nowhere-zero) A-flowand k-flowin a graph G we mean a (nowhere-
zero) A-flow and k-flow in the network (G, 0), respectively. Our concept of
nowhere-zero flows in graphs coincides with the usual definition of nowhere-
zero flows as presented in Jaeger [J] and Zhang [Z]. The following theorems
are proved in [K2, Section 2] and generalize the classical results of Tutte
[T1, T2).

258



Theorem 1. Let (G,U) be a network and A be an Abelian group of order
k > 2. Then (G,U) has a nowhere-zero k-flow iff (G, U) has a nowhere-zero
A-flow. Furthermore, xx(G,U) = xa(G,U).

Theorem 2. If a network (G,U) admits a nowhere-zero k-flow, then it
admits a nowhere-zero (k +1)-flow. Furthermore, xx(G,U) € xk+1(G,U).

Thus the study of nowhere-zero k-flows is, in certain sense, equivalent to
the study of nowhere-zero A-flows where A is an Abelian group of order k.
But flows with values from finite groups are easier to handle than integral
flows. With respect to this fact, we define a (nowhere-zero) k-flow and k-
chain in a network (G,U) to be every (nowhere-zero) A-flow and A-chain
in (G,U), respectively, where A is an Abelian group of order k. Similarly
we shall use notation xx(G,U) instead of x4(G,U) (which is correct by
Theorem 2).

3. CONSTRUCTION

A network is called k-proper (k-improper) if every vector from xx (G,U)
has all coordinates equal 1 (0). In [K2, Proposition 2.2.] is proved the
following.

Lemma 2. If a graph G is a k-snark, then (G, (u1,u2)) is k-proper for
every two different vertices u1 and uz of G. Furthermore, if uy and ug are
joined by an edge e, then (G — e, (u1,u2)) is k-improper.

It is known that the Petersen graph P is a snark (see Fig. 1). Thus, by
Lemma 2, (P, (u1,u2)) is a 4-proper network.

Uy Uy

P

Fic. 1

A network (G, U) is called k-even (k-odd) if every vector from xx(G,U)
has an even (odd) number of nonzero coordinates. The following statement
is proved in [K2, Propositions 6.1 and 7.1].
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Lemma 3. Let G be a k-snark and H be the graph arising from G af-
ter deleting edges (u,v1), (u,uz), (u,us) where u,u;,uz,uz are pairwise
different vertices of G. Then (H, (uy,...,un)) is k-even.

Let v be a vertex of P and vy, vs,v3 be the vertices of valency two in
P - v (see Fig. 2). By Lemma 3, (P — v, (v1,v2,v3)) is a 4-even network. If
uy,...,Us are the vertices of valency one in K , and n > 2 is even (odd),
then (Ky,n, (u1,...,un)) is k-even (k-odd).

V2

Vi

V3
P-y

Fi1G. 2

A network (G, (u1,u2,u3)) is called k-inverting if each of its k-charac-
teristic vectors is either (1,0,1), or (0,1,1).

Proposition 1. Letr be an odd (even) positive integer, (G, (u1,. . ., ur42))
be a k-even (k-odd) network and (G',(u,...,ul,,)) be a k-proper net-
work. Identify the sets of vertices {u1,ui},...,{ur,u.} to new vertices
v1,...,Vr, Tespectively. Then the resulting network (G”, (Ur41, Urs2, Uhyy))
is k-inverting.

Proof. Follows directly from the definitions. O

A network (G, (u1, ug, u3)) is called k-oriented if each of its k-character-
istic vectors is either (0,0,0), or (1,1,0), or (1,1,1).

Proposition 2. Let (G, (u1,u2,u3)) and (G, (u}, ub,u})) be two distinct
k-inverting networks and H the graph obtained after identifying the sets of
vertices {uz,u5} and {u3,us} to new vertices vo and v, respectively. Then
the network (H, (u1,u},v3)) is k-oriented.

Proof. Let ¢ be a nowhere-zero k-flow in (H, (u1,u},v3)). If dp(u;) =
dp\c(u1) # 0, then Oy (u2) = —0p|c:(u5) = 0 and By (u}) = Bp(u}) #
0 (if we write dy|i, we always mean d(g|c)).

If Op(u1) = Opig(u1) = 0, then dpig(uz) = —Bpier(up) # 0 and
dpjcr(u}) = Bp(uj) = 0. Furthermore, by Lemma 1, we have 8y (u3) =
-0y |c(u2) = dp|e(up) = —~0p|cr(u3), whence dyp(vs) = 0.
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Uy Vs

G

FiG. 3

Thus xx(H, (u1,u},v3)) € {(0,0,0),(1,1,0),(1,1,1)}. O

Consider the 4-proper network (P, (u1,u2)) from Fig. 1 and the 4-even
network (P — v, (v1,v2,v3)) from Fig. 2. Identify the vertices v; and u; to
a new inner vertex. The resulting network (G, (v2,vs, u2)) is 4-inverting
by Proposition 2 (see Fig. 3). From two copies of this network we get a
4-oriented network (G2, (v2, v5,w3)) (see Fig. 4).

Va2

W3

V2
G,

FiG. 4

A network (G, U) is called k-stable if every vector from xx(G, U) has all
coordinates equal.

Proposition 3. Let (G, (u1,1,%1,2,41,3)), --. , (Gn, (Un,1, Un,2,Un,3)) be
k-oriented networks and G the graph obtained from G1,...,Gy, after identi-
Jying the sets of vertices {u1,3, 2.2}, {u2,3,u32}, ..., {¥n-1,3, tn,2}, {tn,3,
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u1,2} to new vertices v1, v2, ... ,Un_1, Un, respectively. Then the network
(G, (u1,1,u2,1,...,un,1)) is k-stable.

Proof. Let ¢ be a nowhere-zero k-flow in the network (G, (v1,1,u2,1,-- -,
Un,1)) and assume that there exists an index  so that 8¢(u;,;1) = 0. Without
loss of generality we can assume that i = 1. Then 8p(uy,1) = 8ypg, (u1,1) =
996, (u1,2) = 099G, (u1,3) = 0. Therefore dpg, (uz,2) = —Bp)g, (u1,3) = 0
and 3yig, (uz,2) = Op|G,(u2,3) = Op|a,(u2,1) = Bp(usz,1) = 0. Similarly,
using induction, we can show that d¢(uj,;) = 0 for every j = 1,...,n. This
implies the statement. 0O

A network (G, (u1,...,us)) is called k-satisfaction testing if u, is k-
proper.

Proposition 4. Let (G, (u1,...,u%r4n)) be a network and let (G, (u,...,
Ur11)) @ k-proper network, r > 1. Identify the sets of vertices {u;, ui}, ...,
{ur,uy} to new vertices vy, ..., vy, respectively. Then the resulting network
(G",(Urs1y- -y Urgn, ULy1)) is k-satisfaction testing.

Proof. Follows directly from the definitions. O

Construction 1. Suppose that C is a Boolean formula given in a con-
Jjunctive normal form, i. e., C is a set of clauses {C},...,C,} in variables
Y1,¥2,...,Ym and each clause C; consists of literals I; 1,1; 2, ... yli;n, where
a literal l; ; is either a variable y, or its negation 7,. If we have a truth as-
signment to the variables of C, then a clause is satisfied if at least one of its
literals has value “true”. C is satisfiable if there exists a truth assignment
which satisfies all the clauses in C. Let C be not satisfiable.

Take a k-satisfaction testing network (Gj, (83,15« vy Uipngy Uipn,+1)) for
each clause C; of C. The outer vertices u; 1,..., Uy, are called the outputs
of G.'.

Let y, be a variable in C which appears in just p clauses of C. Then
take a k-stable network (H,, (Us,1,-.-,0sq)), ¢ = p. The outer vertices
Us,1,.--,Vs,p are called the outputs of H,.

Assume that the operation of negation of a variable appears ¢ times in C.
Then, for r = 1,...,t, let (Fy, (wr,1,wy,2,wr3)) be a k-inverting network.
The vertices wy,1 and wy, 2 are called the outputs of F,.

Now we construct a new network (G,U) from these networks. The con-
struction runs as follows. Suppose the literal /; ; in clause C; is y;. Then
identify one output from G; with one output from H, to a new inner vertex
(of (G,U)). If l; j is F,, then take one F, and identify one output from G;
with one output of this F;. to a new inner vertex and identify one output
from H, with the second output of F,. to another new inner vertex.
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Repeating this process for all clauses and its literals we get (G,U). Its
outer vertices are the outer vertices of all networks used in the construction
which have not been outputs. We claim that (G,U) is a k-snark. On the
contrary suppose there exists a nowhere-zero k-flow ¢ in (G,U). Then
take a truth assignment to the variables of C so that a variable y, has
value “true” if dp g, (vs,1) # 0, and value “false” otherwise. By Lemma
1, for each clause C;, there exists at least one output u;; of G; so that
9y|c, (u;,5) # 0. But then, in our assignment, each clause is satisfied, that
means C is satisfiable. Thus (G,U) is a k-snark.

In some special cases we can deduce also a converse, namely that C is
not satisfiable if (G,U) is a k-snark (see [H, K1]). Construction 1 gives
nontrivial k-snarks for k = 3,4, and if the 5-flow conjecture is false, then
also for k = 5 (see [K1]).

Formula y; A7, is a negation of tautology and has literals C; = y1 and
C; = 7,. Taking one copy of the 4-inverting network (G1, (v2, v3, u2)) from
Fig. 3, two copies of the 4-satisfaction testing network (Kz2, (w1, wz)), one
copy of the 4-stable network (K3, (u1,u2)), and applying Construction 1
we get a 4-snark (G3, (wa, wh, uz)) indicated in Fig. 5. Taking two copies
of this network and identifying pairs of corresponding outer vertices to new
inner vertices we get a bridgeless 4-snark.

Wy

U

F1G. 5
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