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ABSTRACT

Recently, Babson and Steingrimsson (see [BS]) introduced generalized
permutations patterns that allow the requirement that two adjacent letters
in a pattern must be adjacent in the permutation.

Following [BCS], let exm (respectively; fxm) be the number of the occur-
rences of the generalized pattern 12-3-...-k (respectively; 21-3-...-k) in
m. In the present note, we study the distribution of the statistics exm and
frm in a permutation avoiding the classical pattern 1-3-2.

We also present some applications of our results which relate the enu-
meration of permutations avoiding the classical pattern 1-3-2 according to
the statistics ex and fi to Narayana numbers and Catalan numbers.

1. INTRODUCTION

Permutation patterns: Let a € S, and 7 € S be two permutations.
We say that a contains 7 if there exists a subsequence 1 < i3 <i2 <-+- <
i, < n such that (ay,,...,0s,) is order-isomorphic to 7; in such a context
7 is usually called a pattern (or classical pattern). We say a avoids T, or is
T-avoiding, if such a subsequence does not exist. The set of all T-avoiding
permutations in S, is denoted S,(7). For an arbitrary finite collection of
patterns T, we say that o avoids T if a avoids any 7 € T'; the corresponding
subset of permutations of S,, which avoid T is denoted S,(T"). We denote
by S(1-3-2) by set of all 1-3-2-avoiding permutations of all sizes including
the empty permutation.
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While the case of permutations avoiding a single pattern has attracted
much attention, the case of multiple pattern avoidance remains less inves-
tigated. In particular, it is natural, as the next step, to consider permu-
tations avoiding pairs of patterns 71, 72. This problem was solved com-
pletely for 71,7 € S; (see [SS]), for 71 € S5 and ™ € Sy (see [W]), and
for 71,7 € Sy (see [B, K] and references therein). Several recent papers
[CW, MV1, Kr, MV2, MV3] deal with the case 7, € S3, T2 € S, for various
pairs 71, T2. Another natural question is to study permutations avoiding 7
and containing 72 exactly ¢ times. Such a problem for certain n,72 € S3
and t = 1 was investigated in [R], and for certain ; € S3, 72 € S in
[RWZ, MV1, Kr, MV2]. The tools involved in these papers include contin-
ued fractions, Chebyshev polynomials, and Dyck paths.

Generalized permutation patterns: In [BS] Babson and Steingrimsson
introduced generalized permutation patterns that allow the requirement
that two adjacent letters in a pattern must be adjacent in the permutation.

We write a classical pattern with dashes between any two adjacent let-
ters of the pattern, say 1324, as 1-3-2-4. If we write, say 24-1-3, then we
mean that if this pattern occurs in permutation m, then the letters in the
permutation 7 that correspond to 2 and 4 are adjacent (see [C]). For ex-
ample, the permutation 7 = 35421 has only two occurrences of the pattern
23-1, namely the subsequences 352 and 351, whereas 7 has four occurrences
of the pattern 2-3-1, namely the subsequences 352, 351, 342 and 341.

Claesson [C] gave a complete answer for the number of permutations
avoiding any single 3-letters generalized pattern with exactly one adjacent
pair of letters. Later, Claesson and Mansour [CM] presented a complete
solution for the number of permutations avoiding any double 3-letters gen-
eralized patterns with exactly one adjacent pair of letters. Besides, Kitaev
[Ki] investigated simultaneous avoidance of two or more 3-letters general-
ized patterns without internal dashes.

On the other hand, Robertson, Wilf and Zeilberger [RWZ] found a simple
continued fraction that records the joint distribution of the patterns 1-2
and 1-2-3 on 1-3-2-avoiding permutations. Recently, generalization of this
theorem were given by Mansour and Vainshtein [MV1], by Krattenthaler
[Kr], by Jani and Rieper [JR], and by Briindén, Claesson and Steingrimsson
[BCS].

In the present note, we generalize [M, Th. 2.1] and [M, Th. 2.9] and give
an analogue for the continued fraction theorem from [BCS] for generalized
patterns. We prove it by using the arguments from [BCS] with a simple
changes. In the last section we present applications of our results.
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2. MAIN RESULTS

For all k£ > 1, we denote by ax(r) the number of the occurrences of the
pattern 1-2-3-...-k in . In [BCS, Th. 1] the following result is proved.

Theorem 2.1. (P. Brindén, A. Claesson, and E. Steingrimsson, [BCS, Th.

1)) The generating function . ]I x;"(") is given by the following
reS(1-3-2) k21
continued fraction:

1
X0
NONE

j xg:)xg)xg:)

(")

in which the (n + 1)st numerator is H T
k=0

For all k > 3, we denote by ex(r) (respectively; fix(7)) the number of
occurrences of the generalized pattern 12-3-...-k (respectively; 21-3-...-k)
in w. Furthermore, let ea(7), f2(r), and e1(7r) f1(m) denote the number
of occurrences of the pattern 12, 21 and 1, respectively, and let eo(7) =
fo(w) =1 for all 7.

We now present an analogue of Theorem 2.1 where the statistic ay, is
replaced by e, for all k.

Theorem 2.2. The generating function Y,  [] z3* (™ is given by the
n€S(1-3-2) k31
following continued fraction:

o (o)
l-z1+ xlwg ) — [BNA]
1-x +x1z£") Gy _ 1%z T3

1- BNORE) M

Ty + 2125 T3 ‘x4

in which the (n + 1)st numerator is x1 - H :z:,(c")

Proof. Let m be a nonempty permutation avoiding 1-3-2 such that 7 =
(n',n,7") and j = 7~1(n), and every element in 7’ is greater than every
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element in #”. Thus 7'/, 7" € §(1-3-2), so

ex(n') + ex—1(7') + ex(#”), forall k> 3;
ex(m) en)texn)+1—0bp g, k=2 ,
ei(n’) +ex(n”) +1, k=1

where 4, g is the Kronecker delta.
It follows that the generating function

C(z1,22,...) = Z H :z:;“(")
nES(1-3-2) k>1
satisfies (see [M, Th. 2.1])
C(z1,z2,...) =1+ 2,C(z1,22,...)+
+ 2122C(21, T2, - - - )(C(z1, T2Z3, Z3Z4,-..) — 1),
which is equivalent to

1
b
1—z + 2122 — 122C(Z1, T2T3, T3Z4, ... )

C(zla T2,T3,T4y--- ) =
and the theorem follows now by induction. O

Similarly, it is easy to see that

fe(®) + fe—1(n") + fr(7"), for all & > 3;
Jr(m) fo(7") + fo(m") + 1 =g, k=2; ,
HE )+ (@) + 1, k=1

where 0, g is the Kronecker delta. Consequently, by using [M, Th. 2.9]
and the argument of the proof of Theorem 2.1 we get the following result.

Theorem 2.3. The generating function ) II =z /i "(") is given by the
r€S(1-3-2) k>1
following continued fraction:

T
0 1
xlmg") - T

(050 _ 1
71
@, 0 6 _ 1

1-

T1%o

123 T3 T4

Following [BCS], we define A to be the ring of all infinite matrices with
a finite number of non zero entries in each row, that is,

A={A:NxN - Z| for all n (A(n,k) = 0 for almost every k)},
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with multiplication defined by (AB)(n,k) = },, A(n,i)B(4,k). With
each A € A we now associate a family of statistics {< q, Az >}k>1 defined
on S5(1-3-2), where q = (q1,42,¢3,...) and
< q, A >= ZA("’ k)g;.
i>1

Following [BCS), let us define mathematical objects with respect to A
as follows. Let q = (g1,42,...), where the g; are indeterminates; for each
A € A and 7 € §(1-3-2) we define three objects as follows:

The weight n(n, A; q), the weight u(m, A; q), and the weight v(r, A; q) of
w with respect to A, by

TI(W, A; q) = H q’fa,moﬂ’ p,(7r, A; q) = H q,fe,Ak>1r’
k>1 k51

v(m A;q) = [] 54>,
k31

respectively, where a = (@a3,a2,...), € = (e1,e2,...) and £ = (f1, f2,...)
are the statistics which we defined earlier.

The generating function with respect to A of the statistics {< a, Ax >
}x>1, statistics {< e, Ax >}i>1, and statistics {< f, Ay >}k>1 is respec-
tively defined by

Fa@= ). amAq), Gal@= Y B u(m4a),

r€S(1-3-2) r€S(1-3-2)
Ha(@= > v(m4q).
©€S(1-3-2)
The continued fractions with respect to A are respectively defined by
1
CA(q) = H q;:l(l'k) )
| ke +1
A2,k
I1 ‘Ik-£1 )
E>0
] — =
Da(q) -
A = k )
a 11 ¢p®
k>1

l-g+q I Qf..(.ll’k) -
k>1

A(2,k k>1
l-q+aq J] qk.;(.zl ) -
k>1
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and by

Q1

E =1-

A(q) 1 A(LK) _ 1
Q1 Hk21 Q41 1 Q1

A(2,k 1
Ui 1'L=>1 ‘Ik ) -

The main result in [BCS] can be formulated as follows.
Theorem 2.4. (P. Bréndén, A. Claesson, and E. Steingrimsson, [BCS,
Th. 2]) For A € A, Fa(q) = Cpa(q) where B = [(;)], and conversely
Ca(q) = Fp-14(q)-

Given the above definitions, we get an analog of Theorem 2.4 for the
statistics ex and fi as follows.

Theorem 2.5. Let A € A. Then
Ga(q) = Dpa(a), Hy(q) = Epa(q),

Da(q) =Gp-14(q),  Ea(q) = Hp-14(a),
where B = [(J)], (}) =0 forallk<0orn<k.

Proof. By using the definitions and the same arguments as in the proof of
Theorem 2 in [BCS}, we obtain that

pmAiq) =Tl 6™ ""’Z’ oo
= Hk>1 H_7>1 % (5.k)e; ")( )
AQGGk)\ %\

= szl (Hk31 a5 G ))

Let zj41 = HkZI q,‘?(j‘k). Theorem 2.2 yields

(n-l
- .‘ ( n-t ’ n-l 1 not e 'A )
15 - (quok)) [T
i1 321 \k>1 k>1
Consequently, again, by definitions we have G4(q) = Dpa(q). Observing
that B~1 = [(-1)i-f (;'.)] € A, we also obtain D4(q) = Gp-14(q).
Similarly, we have Eps(q) = Ha(q) and F4(q) = Hpg-14(q). (]
Remark 2.6. The general approach which is described in [BCS] for the
statistics ax(m) also works with others statistics. Its works in particular
for the statistics ex(m) and fr(w). So, a natural question to be asked is

the following: Is there any description for all the statistics for which this
approach will work? We re not able to offer an answer to this question.
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3. APPLICATIONS

In the current section, we present examples of applications of the results
in the above section.

3.1. Narayana numbers. Let N(n,k) = %(})(,},) be the Narayana
numbers. We denote the corresponding generating function for the Narayana
numbers we denote by N(z,t). Then

N(z,t):= Y N(n,k)z*t" =1+ 2tN*(z,t) — 2tN(z,t) + tN(z, ).

n,k>0
This allows us to express N(z,t) as a continued fraction:

1

t
1- tz
1- 7
1_

1- =

N(z,t) =

Proposition 3.1. The number N(n,k) equals the number of permutations
T € Sp(1-3-2) with ex(w) = k.

Proof. Let A(n,k) = (n,k),(1,1) + O(n.k),(2,2) Where § is Kronecker delta, so
by applying Theorem 2.5 we get that

1
N'(x, t) = Z xez(“)tl"l = n =
_ reS(o3-2) 1—1t—xt+ztN'(z,t)
_ 1
- b
1—t—gt+ A
l—t—zt+ —

so N'(z,t) satisfies the same functional equation as N(z,t), hence N'(z,t) =
N(z,t). O

Again, the same argument work also to statistics on fi as follows.

Proposition 3.2. (see Simion [S]) The number N(n,k) equals the number
of permutations 7 € Sp(1-3-2) with fo(m) =k.
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Proof. Let A(n,k) = &(n k),1,1) + O(n,k),(2,2) Where § is Kronecker delta, so
by applying Theorem 2.5 we get that

N'(zt)= 3 ofmirl =1 t 1 =
rest-s-2) S )
¢
=1 1 ,
ot — z
1- 1
Tt — Z

1— —

so N"(z, t) satisfies the same functional equation as N (z, t), hence N”(z, t) =
N(z,t). O

3.2. Increasing subsequences. Following to [BCS], we define as follows.
The subsequence m;, i, 417, . .. mi, (k > 2) of 7 is called 2-increasing sub-
sequence if mi; < m;,,, 15 < ij41 and 41 + 1 < i2. Hence, the total number
of 2-increasing subsequences in a permutation is counted by e; + €3 + . ...
An application of Theorem 2.2 gives the following continued fraction for
the distribution of e; +e3 +...:

Z z° (m)+es (1r)+...tl1r| —
7€S(1-3-2)

_l—t(l—a:)—

zt

2
1-#(1—a2) — Tt

)
1-¥-t(1—:z:4)~m—t

The subsequence m;, 7,417, ... ™, (kK > 2) of 7 is called almost 2-

increasing subsequence if mi, < mi,,, i; < i34 for j = 2,3,...,k — 1,
i1+1 < i3 and 7;,41 < p;,. Hence, the total number of almost 2-increasing
subsequences in a permutation is counted by fa+ f3+.... An application

of Theorem 2.3 gives the following continued fraction for the distribution
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of fot+fa+...:

3 h@Hm by - g ¢
m€S(1-3-2) zt — 7

2t —

z8t — "

3.3. Catalan numbers. The nth Catalan number is given by Cn = 7 (2:) ,

and the corresponding generating function is given by C(z) = J
Theorem 2.5 yields for the statistic s = 0 (s(#) = 0 for all 7) the follow-
ing. The generating function C(z) for the number of permutations avoiding
1-3-2 can be expressed, again, in terms of continued fractions:

C'(z) := PO C'(z):=1- T

In the above two cases C'(z) = C"(z) = C(z).
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