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Abstract

Partial paraliclisms that admit a collincation group that fixes
one spread T, fixes a line of it and acts sharply two-transitive on the
remaining lines of £ are completely classificd.

1 Introduction.

A ‘parallelism’ in PG(3,q) is aset of 1 + g+ g spreads of PG(3,q) which
forms a covering of the line set.

Various of the known infinite classes of parallelisms can be constructed
using groups.

For example, the two infinite classcs of Penttila and Williams {16] admit
a collineation group transitive on the spreads of the parallelism. In this
situalion, the spreads arc all Desarguesian.

At least some of the various infinite classes of Johnson [6], [7] and [8]
can be obtained from the following construction process:

Let ¥, &’ be two spreads of PG(3, q) containing a given regulus 12 and
let G be a collincation group of ¥ which has the following properties:

(i) G fixes a linc € of 12 and is sharply 2-transitive on the lines of X —{¢},

(ii) G acts regularly on the set of lines not. in ¥ which are disjoint from
er

(iii) G acts on £’ and is regular on X' — .

Aurthermore, when such a collincation group exists, a parallclism may
be obtained as follows: Let £ denote the spread obtained by the derivation
of R. Then

Y Ugec g

is a parallclism.
The Johnson parallelisms [6] may be obtained for a particular group G
where both £ and ¥’ are Desarguesian. Furthermore, in 12}, the authors
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completely enumerate the set of paraliclisms which may be constructed in
this manner when both ¥ and ¥’ are Desarguesian spreads and where G is
a central collineation group of ¥ with fixed axis £.

The first author recently completcly determined the parallelisms in
PG(3,q) which admit two-transitive groups (sce [9]). In this situation,
it turns out that the only possible parallclisms arc the two parallclisms in
PG(3,2), which are equivalent to the Lorimer-Rahilly and Johnson-Walker
translation planes of order 16.

[urthermore, Biliotti, Jha and Johnson [1] determine the possible col-
lincation groups which can act transitively on the spreads of a parallclism.

Note that in the abovc construction process, the group G fixes a spread
X and acts transitively on the remaining spreads of the parallelism. In this
article, we determine the parallelisms which admit such groups. To be more
precise, we provide some definitions and terminology.

Dcfinition 1 A ‘partial paralleliszn’ in PG(3,q) is a sel of spreads which
are mulually disjoint on lines.

A spread X ‘skew’ Lo a partial parallelistn P is a spread such that {E}UP
is a partial parallelism.

A collineation group of a partial parallelisin is o subgroup of I'L(4, q)
which permules the spreads of the purtial parallelism.

A ‘skew collincation group’ of a parltial parallelistn P is a collincalion
group of P which is also a collinealion group of a skew spread ¥ (o P.

Our main result determines the partial parallelisms which admit a skew
collincation group that fixes a linc of a skew spread ¥ and acts sharply
2-transitive on the remaining lines of ¥ and is given as follows.

Thecorem 2 Let P be a partial parallelisrn in PG(3,q), forq > 2 and q # 8
which admils a skew spread X. If there exisls a skew collineation group of
P and of ¥ that fires a cornponent £ and acls sharply 2-transitively on the
components of ¥ — {£}.

Then

(i) £ is Desarquesian.

(i) {£}U P is a purallelisin in PG(3,q).

(#i) For each regqulus IR of ¥ conlaining ¢, there is a unique spread ¥’
of P conlaining the opposile requlus R* of R. In addition, G fizes ¥’ and
is regular on the components ¥’ — R*.

(tv) G acts lransilively on Lhe spreads of P.

(v) The spreads of P are spreads which may be derived from conical flock
spreads that admil a collinealion group lhal fires a base regulus and acls
transilively on the remaining g — 1 base reguli.

(i) If G is bnear (i.c. in GL(4,q)) then the spreads of P are lall
spreads.
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(vii) If ¢ = p" where (r,q® — 1) = 1 then the spreads of P are Hall
spreads.

2 Skew Collineation Groups.

We assume the hypothesis of the theorem stated in the introduction and
give the proof as a series ol lemmas.

Lemma 3 ¥ is Desarguesian.

Proof. First of all note that G is a subgroup of I'L(4, q) of order exactly
7%(q% = 1). Let ¢ = p™. Consider G | € < I'L(2,q). Supposc there are no
clations in G with axis €. Then % must divide gr which implics that ¢
divides r so that that (p,7) = (2,1). Since we have assumed that g > 2,
we must have an clation in G. But, G is 2-Lransitive on the components of
¥ — {€} which implics that the set of clations with axis £ is transitive on
£ — {£}. 1t follows that the spread is a semificld spread.

Thus, by Cordero-Itigucroa [3}, ¥ is a gencralized twisted field spread
as q #£ 8.

Thus, we now have a generalized twisted ficld spread within PG(3, ),
which implics, in the notation of Biliotti, Jha and Johnson [2] that when

a L]
zxm=xm — cxP mF

defines the gencralized twisted pre-semificld then a = r or 2r (in which case
the plane is Desarguesian) so a = r . In this case, the results of Biliotti, Jha
and Johnson show that (2r,a) = (2r, a,b) and since a = r, it [ollows that
(2r,7,b) = r so that b = 7 or 2r. In cither case, we have a Desargucsian
spread. =

Lemnma 4 Let E denote Lhe elalion group oblained in the proof of the pre-
vious lemmma. Then cach [2 orbil of spreads of P has lenglh q.

Proof. Consider a spread ¥’ of P. Then [y has order dividing q. To
sce this, we note that the axis of /5 appears in the affine planc corresponding
to £’ as a Bacr subplanc fixed pointwise by /9. By the structure of Bacr
groups of Foulser [4], the assertion follows. Assume that the length of the
E orbit of &', O(X'), is strictly larger than g. We note that 2 is normal in
G s0 that the [5-orbits of a particular length of spreads of P are permuted
by G. Since the number of spreads on P is < g(g + 1), there arc say k
[2-orbits of length O(X') so that 1 £ k < g+ 1.

Therelfore, the stabilizer of ¥ has order which is divisible by

|y | (g = 1)/(k,q* = 1).
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If G = EH, for H a subgroup which fixcs two components of ¥, then clearly
Hsy normalizes Eyv. Since [ is sharply 2-transitive on the components of
L — {¢}, then each non-identity clement of /1 fixes exactl ¥y two componcnts
of £. Thus, Hys normalizes Ey» and no non-identity element of Hy» can
centralize a non-identity clement of /95y as non-trivial clations fix exactly
one component. This implics that |/y»| < q — 1 since |Exv| < q. However,
k < g+ 1 so that

9-1 > (¢"=1)/(ka* - 1) 2 (¢* - 1)/k
> (-1)/(ag+1)=q-1.

Hence, we have a contradiction and thus the proofl. m

Lemma 5 There is a Dickson nearfield (1), +,+) of order h™ and kernel
GF(h) where h™ = q? such that for G = EH then H may be chosen Lo
have the following form:

(Om : (z,y) — (@™, (y « m = y"™m)m);m € CF{(q?) ~ {o})

Jor i a fized integer between 0 and g* = 1.
Proof. Sce Johnson and Pomareda [13]. =

Lemma 6 (3) {X}UP is a parallelism in PC(3,q) and G acls transilively
on the q(q + 1) spreads of P.

(i) The spreads of P are derived conical flock spreads.

(i) Furthermore, there is a sel of q + 1 elalion subgroups [5; each of
order q, for i =1,2,...,q+ 1, such that I£ - (1) = U;’:;(E,- —(1)).

Proof. Each spread of P is fixed by an clation group 5 of order
exactly g. This group acts on the fixed spread as a Bacr group of order
q. This implics by Johnson (5] and Payne and Thas [15] that the net of
degree g + 1 defined by the Baer group is, in fact, a regulus net and the
planc obtained by derivation of this regulus net is a conical flock planc.

Consider any orbit of J¢ of spreads of P. Any such orbit has length ¢
and there is a subgroup /2° of order q which fixes a given spread of this
orbit. Since /7 is clementary Abelian, it follows directly that /5~ fixes cach
spread of this orbit.

Now consider /57 acting on the spread of ¥. We know [rom Johnson
[5] that /2~ is ‘regulus-inducing’ in the sense that the axis of £~ and the
15~ -orbit of any 2-subspace disjoint from the axis defines a regulus. Since
G acts 2-transitively on the components not equal to £ of ¥, it follows that
G acts transitively on the set of g(g + 1) reguli of ¥ that contain €. The
subgroup /57 defines a set of g reguli of ¥ containing €. The stabilizer of a
regulus 12 of X containing £ has order (g —1). Thus, there is a st of g+ 1
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‘regulus-inducing’ groups {Ffs;i = 1,2,...,q+ 1} = {[~g;g € H}, which
are clearly disjoint.

Note that cach F; fixes a sct of exactly q(q + 1) Bacr subplancs of £
(of the associated affine planc) and thesc are components of spreads of P.
Hence, each [5; fixes spreads of P and we have seen above that £; fixes gz;
spreads. Since ([5;, f2;) for ¢ # j is I, it follows that E; cannot fix a spread
fixed by E;. Hence, [; fixes exactly g spreads and the group H acting
transitively on the set {57 = 1,2,...,q + 1} is also transitive on the sct
of spreads fixed by the subgroups f9;. This implics that ]/ is transitive
on the spreads of P and the number of these spreads is q(q + 1). Thus,
{X} UP is a parallelism. This completes the proof of the lemma. =

Lemma 7 For each requlus R of £ incident unith £, there is o unique spread
in P containing the opposite regulus R*. This spread is a derived conical
Nlock spread which is derived using the regulus R.

Proof. We have scen that the spreads of P are derived conical flock
spreads with associated derived reguli containing £ (the opposite regulus
contains £ as a Bacr subplane). What we don’t yet know is whether these
reguli arc reguli of .

In a Dickson nearficld of order A" = ¢2, there is a cyclic subgroup of
order (¢2 — 1)/n. In the representation of the group // mentioned above,
we consider the stabilizer of the standard regulus 12 ol ¥ corresponding to
GF{q) U (00) where we take £ as z = 0 and ¥ coordinatized by G F(q?).
Now Hp has the following orm:

(Om : (@,y) — (@7, (y xm = ymm)m);m € GI(q) — {0})
for 4 a fixed integer between 0 and 2 — 1.

Now we have the kernel homology group Kern ol order g—1 acling both
on ¥ and the parallelism. Henee, by multiplication of the kerncl homologics
(z,y) — (zm ™, ym ™), we obtain the corresponding group in HHpKern

(&, y) — (27, (y xm = y"™m));m e CI(q) - {0}).

We note that o, = 1 if and only if m € Cg2_1y/,, where the notation
denotes the cyclic subgroup of GF(g?) — {0} of order (g2 — 1)/n.

We assert that, for some m € G17(q) — (1), m € Cg2.1ym. If this were
not the case, then ((¢% — 1)/n,q — 1) = 1 which implics that (¢ — 1,n)=
(9 — 1){2,q — 1). Letting h = p*, this says that

pH D291 divides ¢2.

However, ¢ — 1 > r for all ¢ = p". Hence, cither q— 1 =r and g = 2
orgq—1>rsothat L =1 and ¢ — 1 = 2r, implying that ¢ = 3. But, then
322 =132 4 contradiction.
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So, there is an clement acting on the spread of the form:
7 (z,y) — (z,ym) lor m € GF(q) — {0}.

This element normalizes a group £~ which fixes exactly ¢ spreads ol P.
Now 7 acts on a spread ¥’ fixed by £~ where £~ is a Bacr group of order
g acting on ¥’. Hence, the associated regulus net has g 4 1 Baer subplancs
incident with the zero vector and 7 must fix two of thesc Baer subplancs
(assuming that the order of 7 is a prime). Consider the second of these Baer
subplanes M within the structure of the affine plane 7y; corresponding to
. If M is not a component of 7y, it cannot be fixed by 7 as 7 is a central
collincation group of ¥ and M is disjoint. from the axis or coaxis of 7.
Henee, M is a component of . But, /£ acts transitively and regular on
the remaining q Bacr subplanes of the associated regulus net. Thus, the
opposite regulus Lo this regulus in ¥/ is a regulus on X containing £. =

Lemma 8 For cach spread X' conlaining an opposile regulus 12*, where IR
is a regulus of ¥ containing €, the group G acts reqularly on L' — I2*.

More generally, G is semi-reqular on the sel of Buer subplancs of ¥
which are disjoinl from ¢.

Proof. We have scen that we may assume that there is a group
((z,y) — @, (y*m =y ~m));m € GF(q) — {0})

acting on the spread containing the opposite regulus to the standard regu-
lus.

We see that the basic assertion follows from the stalement about regu-
larity.

The Bacr subplancs of ¥ disjoint from z = 0 (the axis of [£), have the
general form y = z% + zb for all a # 0,b € GF(q?).

The image of an clement of the group above corresponding to m is:

y=z% "m+zb’m =z axm) + z(b*m)

where * denotes Dickson nearficld multiplication. This Bacr subplanc is
fixed il and only il
axm=aand bxm=0b.

Since

axm=a=ax*l
in a Dickson ncarficld, we have that e = 1 which implics that the group
clement is the identity. This proves the lemma. &

Now the theorem is proven except to show that when the original group
G is taken within G1(4, q), the spreads of P are 11all spreads. I the group
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G is in GL(4,q), it follows that the corresponding Dickson nearficld has
kernel GF(q) or GF(q?%). In the latter case, the Dickson nearficld is a ficld
and we obtain the group:

((2,9) — (z,ym);m € GF(g) - {0})

acting on the spread containing the opposite to the standard regulus. In
the former case, q is forced to be odd and we may represent the Dickson
nearficld where z * m = z%mn if m is a non-square and z * m = zm if
m is squarc in GF(q?). Since m € GF(q) is always square, it follows
that o,, = 1. Now this group leaves invariant each Desarguesian spread
containing /2 and the group Gy then acts regularly on the components not
in I of cach such Desarguesian spread. Given a component & of ¥ — RR*,
there is a unique Desarguesian spread p containing £ and R. Hence, the
group Gy acts regularly on X — 2* and on p — IR and both contain ¢,
Thus, the derived spread £ = p so that ¥ is Hall, I (r,q? — 1) =1, then
h" = g% = p?" = p'" where n divides 2 — 1. But, (n,2r) =nso that n =1
or 2. We then have the previous situation.
This completes the proof of the theorem stated in the introduction.

3 The Structure of the Spreads.

In this scction, we give the complete representation of the spreads of a
partial parallelism with a skew collineation group G that acts two-transitive
on the lines different from a given line of a spread 2.

By the previous seetion, we may choose the skew spread as a Desarguce-
sian spread in PG(3,q). We choose the regulus R in veetor form and given
as follows:

0 ] Yu € GF(q),

n

where the underlying vector space V4 has vectors (z1, 2, y1,¥2) for all z;,
yi € GI'(g) and i = 1,2.
We represent the Desargucesian spread £ by the following:

u+pl
A u

.’l:=(),y=.’l:[ ]V’It,té(]/“(q)

where 22 + pz — v is irreducible over G'1°(g). The axis of the ¢lation group
I is z = 0 and I has the following form:
1 0 udpl vl

- 0 1 I un .
Iy = < 0 0 I 0 Vu,t € GI (q)> .
0 0 0 1
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Furthermore, the group /{1 developed in the previous section is as follows:
H = {(z,y) — (" m},y""m*"1);Vm € GI'(¢%)).

In this representation, the mapping denoted by o, is an automorphism
of GI'(g?). In order to explicate the spreads, we need to determine the
form of H written over G I7(q) and to determine the form of the spread 3,
where the notation is taken as development in the previous section.

Let {1, ¢} be a basis for CI7(q%) over GF(q) and lct

(z1e + z22)°™ = (z{™(etm + B,n) +25™,

for all z; € GI7(q) for i = 1,2 for some am, B, € GI'(q).
Henee, we oblain, writing (z1,z2) = z1e+z2 ¢

I = ((3;1’7:2’.1}1::'/2)"—) (I(I,m’xgm:yrm:y‘gm)AM)
[ @ B, 0 O
0 1 0 0 mt 0
such that A = 0 0 am B, and M = [ 0 mit! }
0 0 0 1
[ T I’Y’l’ "T'l . -
where m = L Yrm ,+ p 1 ] , for a unique pair (U, tm) # (0,0)

of clements of GI°(q) x GI(q).

We now determine (g, 8,,) relative 1o p and «.
Since the collincation

o {4 p pTn T Oy a,,
g (@, ze,y1,92) — (T, 257, 1Y)
is a collincation of ¥, it follows immediately that

. u+pl vyl
y—x[ { N

is mapped by g onto:

_ Om B T wm 4 pTmpTm ATy, am B
V=T 0 Lom uom 0o 1 |

The matrix of this previous component, is:

u’™ + ﬁml'am + p”m{'(’m - 2I’amﬁm (xr;nl (,Yﬂmtdm + pa.,.,'a',,. - ﬁm)ﬂm
to ma’" 'U,a"" + tamﬁ'n .
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Since, up to isomorphism, we may choose any Desargucsian spread ¥
to initiate our parallelism construction, we may choosc p = 0 and v a non-
squarc when ¢ is odd. When q is even then since the polynomial z2 + pz ++
is non-singular, we may assume that ¥ = 1 by dividing by v = €2 to obtain
the corresponding irreducible polynomial z2 4 (p/e)z + 1.

Hence, when p =0 then 8, = 0.

Thus, we obtain the following requirements:

P’ am) = p7mi7™ and
7(La"' (-Ym) = (2;;;1 ('Yamtam + pomtam - ﬁrn"am )-Bm'

Now assumec that q is odd. Then, p=0=4,,, and

('™ 0m) = o, (Y"™1™) so that
2 mel
84 m = 7n *

When ¢ is even then v = 1 and

aye = p°~ and
am = 0y (140" 4 B,,)B,.

The parallelism is determined once the spread different, from £ and
containing t is determined. (Note that the parallelism is obtained by the
derivation of R of the spread in question.)

Henee, we consider a conical flock spread X of the following form:

r=0y=zx [ utglt) JO) ] Yu,t € GI°(q)

A u

where [ and g are functions on G1(g). (The reader is dircetly to the survey
article by Johnson and Payne [11] or the article by Gevaert and Johnson
[10] Lo see that the representation of the spread is as maintained.)

We need only consider the action of the group:

{(z,y) — (27, y"™m) for all € GI(q))

on the spread ¥ :

This group must fix the standard regulus and act regularly on the re-
maining ¢ — 1 reguli /2, for L # 0 determined by the clement £ in the
(2, I)-entry of the matrix spread set. Tenee, we take £ = 1, g(1) = g,
J(1) = J and apply the above group clements.

So, the clement
0
v==[2 7],
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where p = 0 if ¢ is odd, and v = 1 il q is even, maps (after an appropriate

- v
addition by an clement 0

-1 T yn Tm
x[ Un B ] [ 9 ! ] [ Xm 'r';zm } which gives:

2 ] to make the (2, 2)-entry 0) to

@
I

0 1 10 0
y = I[g’mm 0;.'(!1""‘ﬂmm+f""'m)].
QM 0

Now il ¢ is odd then 8, = 0 so we obtain:

Y=z g°mm ) f7mm)
: | agamn 0 !

where o2, = 7= 1. We note from the previous section that the indicated
group G p is regular on X7 — 2, so it follows that the function m +— «,,m
is bijective on GF(q) — {0}. Let agm = L(m) = Ly, so that the spread is

il

1,0 -2 ro
y z [ w4 o g b gl [,

bin u

] Yau, by, € GI'(q),

where afn = 4™ -1

When g is even v = | so we obtain:

u + 07-'»‘] gnm l’"t (1.,"2 (gam ﬂru"'m + ]'O'mt'u)

=z [ ] Vu,t € GI(q),

Lyn n
where
Qp = p°m7 ! and
-1 4
Xy = am (1 + P ™+ ﬁm)ﬁm'

(Note that, in this case, am = a,n il and only if p~~!m = p?»~1nil

and only if p?=m = p°~n. liquivalently, pxm =p+nifand only if m=n
as we obtain a Dickson ncarficld multiplication *.)
We summarize as follows:

Theorem 9 Lel P be a partial parallelisrm an PG(3,q) for g > 2 and q# 8
which admils o skew spread X such thal there admils o skew collinealion,
group of P and of ¥ thal fires a component € and acls sharply 2-transilively
on the componenls of ¥ — {£}.

Then

(1) L is Desarquesian.
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(i) {E£}U P is a parallelism in PG(3,q).

(ii) For each requlus R of £ conlaining ¢, there is a unique spread X'
of P conlaining the opposile requlus R* of R and Cp fizes ¥’ and is reqular
on the components X' — I2*.

(v) C acts transitively on the spreads of P.

(u) The spreads of P are spreads which may be derived from conical flock
spreads that admil a collinealion group lhal fizes a base requlus and acts
transilively on the rernaining q — 1 buse regulus.

The spreads of ¥ and the derived versions of the spreads of P may be
represenled as images under G = 51 of £ where ¥ is given by

z = 0,y==zx [ u.tp,' Zj ]Vu,t € GF(q),
where p = 0 ¢ q s odd, and y=1 2f q is even.

G = IJl] is given as follows:
1 0 udpl Al

. 0 1 l u .
I = < 0 0 | 0 Vu,l € Gl (q)> and
0 0 0 1

I = ((xlax2|ylay2) L— ('T(]"",I;"‘,.’I‘l’mu.’/;'")AM)
[y B, 00
( 1 0 0
such that A = ) and

0 0 om B,
0 0 0 1

ro, i
m 0
M = il
0
where m = Ui+ Pl Vo
L bin Usn

Jor a unique puir (um, by) # (0, 0).

Furthermore, the spread for X'* is giuven when q is odd by,
’ ! y

-t
y = =z [ Ut o {]“"‘L"‘

L'"l

-2 ro
mt .
(Iﬂl f‘u "I.) ] v‘u’ ’,," € (:1; (q),

where ufn = A7 -1

and when q is even, we oblain:

1/ = [ u + am]yoml'"l um'l(gﬂ". ﬁrnl'"l + fﬂml'm.)

bin u

] Vu,t € GI(q),
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where

p" 1 and

Ay = ("7;;](1 +p°m +ﬁm)ﬂm'

Qg

]
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