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ABSTRACT. The redundance R(G) of a graph G is the minimum, over all
dominating sets S, of 3 .1+ d(v), where d(v) is the degree of vertex
v. We establish a sharp upper bound on the redundance of trees and
characterize all trees that achieve the bound.

Preliminaries. A dominating set S for a graph G is a subset of the
vertices of G such that every vertex v € G is either in S or is adjacent to an
element of S. The redundance of a graph G, R(G), is the minimum, over
all dominating sets S, of I(S) = }_,cs1 + d(v), where d(v) is the degree
of vertex v; I(S) is the influence of S.

Goddard et al. [1] showed that if T is a tree on at least two vertices
then R(T') < 3n/2 -1, where n = |V(T)|. For every k > 1 they produced a
graph on 4k + 2 vertices that attains the bound. Here we refine the upper
bound so that it is sharp for all values of n and characterize the trees that
attain the bound.

We note that it is an easy exercise to show for any bipartite G that
R(G) < |V(G)|/2+|E(G)|; applying this to a tree with n vertices and n—1
edges leads to the bound 3n/2 - 1.

The Fundamental Observation. Suppose that a vertex v in G is ad-
jacent to p, > 1 pendant vertices. Any dominating set S for G must contain
either v or every one of the pendant vertices; the corresponding contribution
to the influence of S is either 1+d(v) or 2p,. If every nonpendant vertex is
adjacent to at least one pendant vertex, then R(G) = )_, min(1+d(v), 2p,),
where the sum is over all nonpendant v. A bit of experimentation makes it
appear that this sum is largest when 1 + d(v) and 2p, are equal, or nearly
so, for every nonpendant v. They are equal when p, = (1 + d(v))/2, or
equivalently, when v is adjacent to to p, pendant vertices and n, = p, — 1
nonpendant vertices.

Suppose the tree T has m > 1 nonpendant vertices, and that p, = n,+1
for all nonpendant v. Then T has n = 4m — 2 vertices and redundance
6m — 4 = 3n/2 — 1, showing that the bound is sharp when n =2 (mod 4).
(This is also true for the special case n = 2.) Such trees are easy to
construct, by starting with a tree on m vertices and adding pendant edges
to each vertex.

It turns out that this bound, 3n/2 — 1, is not sharp for other values of
n, but it is very close. In all cases trees that do achieve the appropriate
upper bound have pendant vertices adjacent to every nonpendant vertex,
with 2p, equal, or nearly equal, to 1 + d(v) for every nonpendant v.

When p, = n, + 1 for all nonpendant vertices v, we may form a domi-
nating set S that achieves the redundance 3n/2 — 1 by placing either v or
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every pendant vertex adjacent to v into S, for every nonpendant v. This
means that when p,, = n,+1 for all nonpendant v, given a vertex w, we may
find two dominating sets that realize the redundance, one that contains w
and one that does not. More generally, if p, is non-zero for all nonpendant
v, let ky, = py —ny — 1. If k, > 0, a dominating set that realizes the re-
dundance will contain v, while if k, < 0, such a dominating set will contain
all of the pendant vertices adjacent to v. If we replace v by the pendant
vertices, or replace the pendant vertices by v, respectively, the resulting
dominating set has influence |k,| greater than the redundance. Thus, given
a vertex w, we may find two dominating sets, one that contains w and one
that does not, but in one of the two cases we pay a ‘penalty’ of |k,|.

The Characterization. We are now ready for the precise statement
of the upper bounds and the description of the extremal graphs.

THEOREM 1 The following are sharp bounds on R(T'), where T is a
tree on n > 1 vertices:

3n_2 ifn=0 (mod4);
R(T) < |3 -1] ifn=1,3 (mod 4);
3/ _1 ifn=2 (mod4).

T is a tree with redundance equal to the upper bound if and only if every
nonpendant vertex v has k, = 0 except:

1. If n = 0 (mod 4), either one nonpendant ver-
tex v has k, = £2, or two have k, = 1, or two
have k, = —1.

2. If n =1 (mod 4), one nonpendant vertex v has
v =~

2. If n = 3 (mod 4), one nonpendant vertex v has
ky, =1.

Proof. It is simple to check that trees with the claimed properties have
redundance as claimed. Moreover, it is easy to construct trees with the
desired form, by starting with any tree and adding pendant edges at each
vertex so that each of the original vertices v becomes a nonpendant vertex
with the desired value of k,.

The remainder of the proof is by induction; n = 2 is trivial. Suppose
first that T on n vertices has a nonpendant vertex v that is adjacent to
no pendant vertex; we will show that R(T') is strictly less than 3n/2 — 2.
Vertex v is adjacent to vertices w;, i1 =1,...,k, k > 2, and each w; is in a
tree T; on n; > 2 vertices, as indicated in the figure.
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Let j be the number of trees T; that are extremal with n; = 2 (mod 4);
without loss of generality, these trees are T,...,T;. Choose sets S; in T;
that realize R(T;). We consider a number of cases.

1. If w; € S; for some ¢ > j, replace sets S;, 1 < i < j, by new sets
S; that do not include w; and realize R(T;) (this is possible, as we

remarked above). Then S = Uf=1 S; is a dominating set for T,

and
I(S)<2( In-1)+ _zk; (3n-3) +k-i

i=1 i=j+1
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2. Ifw; ¢ S; foralli > j > 1, replace S; by one that includes w; and
realizes R(T}), and replace sets S;, 2 <i < ], by ones that do not

include w; and realize R(T;). Then S = U S; is a dominating
set for T, and

k
3 3
I(S)<1+Z( n.—l)+.z (-2-n,~—§)
i=1 i=j+1
3 1, 3 1 3 5
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3. Suppose j = 0 and w; ¢ S; for all i and for every i, elther n; is

0 (mod 4) or T; is not extremal. Then S = {v} U U Siis a
dominating set for T', and

I(S)<Z( n,-2)+k+1_-‘;3 —k-

=1

n—2
-

toln-
le

4. If j = 0 and w; ¢ S; for all i and, without loss of generality, n;
is either 1 or 3 {mod 4) and T} is extremal, replace S; by a new
dominating set S; that contains w; with I(S;) < 3n;/2 - 3/2 +
1. This is possible by the remark above, since by the induction
hypothesis, R(T}) = 3n,/2 — 3/2 and |k,| < 1 for all nonpendant

win T;. Then S = Uf_l S; is a dominating set for T, and

n—2
>

le

3 3 .1 3
I(S)<1+1+Z( n,—i)_§n+§_.2.k<

Now suppose that every nonpendant vertex in T is adjacent to a pen-
dant vertex. If k, > 0 and & < 0, then by moving a pendant edge from v
to w we get a tree on n vertices with redundance strictly larger than R(T'),
so R(T) is not maximum.
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Let m denote the number of nonpendant vertices in T, and let k =
ky, taking the sum over all nonpendant vertices v. Note that n = m +
(1+ny,+k))=4m+k—2. If k>0 then k, > 0 for all v, and likewise
if% < 0 then k, <0 for all v.
Suppose first that k > 0, so R(T) = 3, min(1 +d(v),2p,) = 3,1+
d(v). Then

RT)= 1+d@w) =) 1+2n, +1+k, =6m+k—4,
v v

where the sums are over all nonpendant v.

If k=0 (mod 4) then n =2 (mod 4) and 6m+k—4 < 3n/2 -1, with
equality only if £ = 0. Thus R(T') has the maximum value 3n/2 — 1 only if
k, = 0 for all nonpendant v.

If k=1 (mod 4) then n =3 (mod 4) and 6m + k — 4 < 3n/2 ~ 3/2,
with equality only if £ = 1. Thus R(T) has the maximum value 3n/2 — 3/2
only if one k, = 1 and the remainder are 0.

Ifk=2 (mod 4) thenn =0 (mod 4) and 6m +k—4 < 3n/2 -2, with
equality only if k = 2. Thus R(T) has the maximum value 3n/2 — 2 only if
either one k, = 2 and all others are 0, or k, = k,, = 1 for two vertices and
the remainder are 0.

If k=3 (mod 4) then n =1 (mod 4) and 6m + k — 4 < 3n/2 — 3/2,
so R(T') does not realize the maximum value.

Now suppose that k£ < 0, so R(T) = ), min(1 + d(v),2p,) = 3, 2py.

Now
R(T) =Y 2= 1+n,+k, =6m+2k—4,
v v

where the sums are over all nonpendant v.

If k =0 (mod 4) then n = 2 (mod 4) and 6m + 2k — 4 < 3n/2 -1,
with equality only if ¥ = 0. Thus R(T) has the maximum value 3n/2 — 1
only if k£, = 0 for all nonpendant v.

If k=1 (mod 4) then n =3 (mod 4) and 6m + k — 4 < 3n/2 — 3/2,
so R(T') does not realize the maximum value.

If k=2 (mod 4) thenn =0 (mod 4) and 6m +k—4 < 3n/2 - 2, with
equality only if ¥ = —2. Thus R(T’) has the maximum value 3n/2 — 2 only
if either one k, = —2 and all others are 0, or k, = k,, = —1 for two vertices
and the remainder are 0.

If k=3 (mod 4) then n =1 (mod 4) and 6m + k —4 < 3n/2 — 3/2,
with equality only if kK = —1. Thus R(T) has the maximum value only if
one k, = —1 and the remainder are 0.
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