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Abstract

The problem of classification of Hadamard matrices gets to be an
NP hard problem as the order of the Hadamard matrices increase.
In this paper we use a new criterion which inspired us to develop
an efficient algorithm to investigate the lower bound of inequivalent
Hadamard matrices of order 36. Using four (1,—1) circulant matri-
ces of order 9 in the Goethals - Seidel array we obtain many new
Hadamard matrices of order 36 and we show that there are at least
1036 inequivalent Hadamard matrices for this order.
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1 Introduction

A Hadamard matrix of order n is an nx n (1, —1)-matrix satisfying HHT =
nl,. A Hadamard matrix is normalized if all entries in its first row and
column are equal to 1. Two Hadamard matrices are equivalent if one can
be transformed into the other by a series of row or column permutations
and negations. It is well known that if n is the order of a Hadamard matrix
then 7 is necessarily 1,2 or a multiple of 4.

The discussion of Hadamard equivalence is quite difficult, principally
because of the lack of a good canonical form. The exact results which

ARS COMBINATORIA 70(2004), pp. 19-31



have been discovered are as follows : Hadamard matrices of orders less
than 16 are unique up to equivalence. There are precisely five equivalence
classes at order 16, and three equivalence classes at order 20, see [7, 8].
There are precisely 60 equivalence classes at order 24, see [9, 11]. There are
precisely 487 equivalence classes at order 28, see (12, 13]. The classification
of Hadamard matrices of orders n > 32 is still remains an open and difficult
problem since an algorithmic approach of an exhaustive search is an NP
hard problem. In particular for n = 32, Lin, Wallis and Lie [15] found 66104
inequivalent Hadamard matrices of order 32. Extensive results appear in
[16] and [17]. Thus the lower bound for inequivalent Hadamard matrices of
order 32 is 66104.

In this paper we show that there are at least 1036 inequivalent Hadamard
matrices of order 36. In fact this number is obtained as follows: From Se-
berry’s home page http://www.uow. edu.au/~jennie that there are 192 in-
equivalent Hadamard matrices of order 36. These are supplied by E. Spence
(180 matrices) see [18], Z. Janko, (1 matrix of Bush-type) see {10] and V.
D. Tonchev (11 matrices) see [19]. Using an efficient algorithm and the
Magma software we found that 172 of their transposes are inequivalent to
these.

In this paper we also improve this lower bound to 1036 by constructing
672 new Hadamard matrices as described in section 4.

Lam, Lam and Tonchev [14] showed that the lower bound for inequiva-
lent Hadamard matrices of order 40 is 3.66 x 1011.

Before we give a brief description of our algorithm we need the follow-
ing notations and definitions. Let A; = {ej1,a52,...,8jn}, 5 =1,...,¢, of
length n be a set of £ sequences, denoted by A. The non-periodic autocor-
relation function N(s) of the above sequences is defined as

£ n—s

Ny(s) = Z Zaj,-aj,iﬂ, s=0,1,...,n—1. (1)

j=1i=1

If Aj(z) = aj1 +ajoz + ... +a;jnz""! is the associated polynomial of the
sequence A;, then

¢ n n ¢ n-—-1

ADAE) =35 auauetF = Na0)+ D) Na(s)(z® +27°).

i=1i=1 k=1 ji=1s=1
(2

Given Ag, as above, of length n the periodic autocorrelation function Pa(s)
is defined, reducing i + s modulo n, as

& n
PA(S) = Z Z Qj3ij ity s = 0, 1, ey — 1. (3)

j=1i=1
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For the results of this paper generally PAF is sufficient. However NPAF
sequences imply PAF sequences exist.
The following theorem which uses four circulant matrices is very useful in
our construction for Hadamard matrices.

Theorem 1 [3, Theorem 4.49] or [6]. Suppose there exist four circulant
matrices A, B, C, D of order n satisfying

AAT + BBT +cCT + DDT =nlI,
Let R be the back diagonal matriz. Then

A BR CR DR
-BR A DTR —-CTR
—-CR -DTR A BTR
-DR CTR -BTR A

GS =

is a Hadamard matriz of order 4n.

Corollary 1 If there are four sequences A, B, C, D of length n with entries
from {£1} with zero periodic or non-periodic autocorrelation function, then
these sequences can be used as the first rows of circulant matrices which can
be used in the Goethals-Seidel array to form a Hademard matriz of order
4n. o

In this paper we use a simple algorithm to find four (1,—1) sequences
(A,B,C,D) of length 9, which have zero PAF (P4(s) + Pg(s) + Pc(s) +
Pp(s) =0, Vs = 1,2,3,4) and are given in Hexadecimal (Hex) form in
Table 1. From these sequences we can construct the appropriate circu-
lant matrices A, B,C, D of order 9, which are used in theorem 1, for the
construction of new inequivalent Hadamard matrices of order 36. The in-
equivalence of the Hadamard matrices was checked by an algorithm which
is presented in section 2, and with the help of Magma software.

2 The algorithm

The following algorithm was first given in [4]. In the same paper the authors
prove that this algorithm can be used as necessary and sufficient criterion
to check equivalence of Hadamard matrices.

The Hamming distance distribution (W(z)) and the symmetric Ham-
ming distance distribution (SW(z)), of a projection in k columns, is defined
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to be

Wi(z) = ap + a1z + ... + axz* and
(k—1)/2
Z (a; + ak—i)zt, when k is odd

SW; (:L‘) = ( kt—=2(), /2

Z (a; +ak—:)z* + a§x§, when k is even

i=0
respectively, where a, is the number describing how many pairs of rows of
the projection have distance m.

Example 1 Consider the projections for k = 3 and n = 8. A Hadamard
matrix of order 8 is

1 1 1 1 1 1 1
1 1 -1 1 -1 -1 -1
1 -1 -1 -1 1 1 -1
1 -1 1 -1 -1 -1 1
-1 1 1 -1 1 -1 -1
-1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 1 -1
-1 -1 -1 1 1 -1 1

[ T

Since k = 3 the projections are all possible 3-sets of columns. We will
just illustrate with the sets of columns 2, 3, 4 and 2, 3, 5.

1 1 1 and 1 1 1
1 1 -1 1 1 1
1 -1 -1 1 -1 -1
1 -1 1 1 -1 -1
-1 1 1 -1 1 -1
-1 1 -1 -1 1 -1
-1 -1 1 -1 -1 1
-1 -1 -1 -1 -1 1

We now consider the distance between all pairs of rows of these 8 x 3
matrices. The first set has distance 3 (4 times), 2 (12 times) and 1 (12
times) so its Hamming distance distribution and its symmetric Hamming
distance distribution is

Wa(z) = 0+ 12z + 1222 + 423, SWa(z) =4+ 24z

respectively, while the second set has 0 (4 times) and 2 (24 times) so its
Hamming distance distribution and its symmetric Hamming distance dis-
tribution is

Wa(z) =4 + 2422, SWj(z) =4+ 24z
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respectively. ]

The Hamming distance distribution Wy (z) is invariant only to permu-
tations of columns or rows, or negations of columns while the symmetric
Hamming distance distribution SWj(z) is invariant to permutations and
negations of both rows and columns.

Lemma 1 Two equivalent projections have the same symmetric Hamming
distance distribution.

Lemma 2 All projections of two Hadamard matrices Hy, Hy of order n in
k = 1,2 columns are the same (actually these give only one inequivalent
projection) even thought the Hadamard matrices are inequivalent.

Lemma 3 Let H be a Hadamard matriz of order n. Any two rows of
the Hadamard matriz have Hamming distance distribution and symmetric
Hamming distance distribution Wy (z) = SW,(z) = /2.

Definition 1 Let H be a Hadamard matrix of order n and Py a set of
k columns of H. We define the complementary projection of P, to be the
set of the columns of H which are not contained in P. Obviously the
complementary projection of P consist of n — k columns.

Remark 1 Let H;, H, be two Hadamard matrices of order n. Suppose
r = {r,r2,...,7c} and p = {p1,P2,...,Pk} be two rows of a projection
of Hy and ¢ = {q1,92,...,qx} and s = {sy,52,...,5¢} be two rows of
a projection of Hs. Then SW(z) of rows r,p is equal to SW(z) of rows
g,s if and only if the symmetric Hamming distance distribution of the
corresponding rows of their complementary projections is equal.

Example 2 The complementary projections of the projections given in
example 1 are

1 1 1 1 1 1 1 1 1 1
1 1 -1 -1 -1 1 -1 -1 -1 -1
1 -1 1 1 -1 1 -1 1 1 -1
1 -1 -1 -1 1 g 1 1 -1 -1 1
1 -1 1 -1 -1 ™ 1 1 1 -1 2
1 -1 -1 1 1 1 -1 -1 1 1
1 1 -1 1 -1 1 1 -1 1 -1
1 1 1 -1 1 1 -1 1 -1 1

with symmetric Hamming distance distribution SWy_3(z) = SWs(z) =
4 + 24x.
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From Lemmas 1, 2 and 3 it is obvious that:

Corollary 2 All projections of two Hadamard matrices Hy, Hy of order n
ink = 1,2 and k = n columns have the same symmetric Hamming distance
distribution.

Using Remark 1 and the above lemmas we can conclude:

Corollary 3 Let Hy, Hy be two Hadamard matrices of order n. We need
only to check the symmetric Hamming distance distribution of projections
for k = 3,4,...,n/2 because if these have the same symmetric Hamming
distance distribution, then the corresponding complementary projections will
have the same symmetric Hamming distance distribution as well.

The Symmetric Hamming distance distribution algorithm:
(i) Set k=3.

(ii) Find all projections for each Hadamard matrix of a given order n
and k columns by taking ell possible k& columns of the entire n X n
Hadamard matrix. These are (}) projections in total.

(iii) In the projections found in step (ii) calculate the symmetric Ham-
ming distance distributions for any two rows of the projection. These
are (3) symmetric Hamming distance distributions and save different
symmetric Hamming distance distributions and how many times each

of them appear.

(iv) Check if the set of all different symmetric Hamming distance dis-
tributions of the first Hadamard matrix is the same with the set of
all different symmetric Hamming distance distribution of the second
Hadamard matrix.

(v) If the answer in step (iv) is false, then stop and say that these two
Hadamard matrices are inequivalent, otherwise increase k by 1.

(vi) If now k < n/2 then go to step (ii) and continue, otherwise stop and
say that this algorithm can not decide for the equivalence of these
Hadamard matrices.

3 Inequivalent Hadamard matrices of order
36

Some Hadamard matrices of order 36 are constructed, among others, in
[2, 5, 6, 18, 19).
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In this section we discuss the equivalence in Hadamard matrices of order
36. We know from Seberry’s home page http://www.uow.edu.au/~jennie
that there are 192 inequivalent Hadamard matrices of order 36. These are
supplied by E. Spence (180 matrices) see [18], Z. Janko, (1 matrix of Bush-
type) see (10] and V. D. Tonchev (11 matrices) see [19]. We shall refer to
these matrices as Hy,..., Hygo.

When we apply our criterion to these 192 matrices we obtain the fol-
lowing results:

e For k = 2,3, all 192 Hadamard matrices of order 36 have the same
symmetric Hamming distance distributions and thus we obtain only
one of the 192 inequivalent Hadamard matrices of this order. The
result for k = 2 is a computational verification of lemma 2.

e For k = 4, only 173 Hadamard matrices give different symmetric
Hamming distance distributions and thus we obtain only the 173 of
the 192 inequivalent matrices.

e For k = 5, we have found 190 different symmetric Hamming dis-
tance distributions and thus we obtain 190 of the 192 inequivalent
Hadamard matrices of order 36.

e Finally for k = 6, we have found 192 different symmetric Ham-
ming distance distributions and thus we obtain all 192 inequivalent
Hadamard matrices of order 36.

From the above computational results it seems that with & = 6 our
algorithm will give us sufficient partial results on the investigation for in-
equivalent Hadamard matrices of order 36.

However, this algorithm (with k& = 6), cannot decide for the equivalence
of the transposes of these 192 Hadamard matrices. The algorithm needs to
move to k > 6 to decide if these are inequivalent. Thus the computational
time increases. But it is more convenient and more efficient to use the
Magma software to solve this problem. We write a simple program in
Magma and we apply the function “IsHadamardEquivalent” of this software
to decide for the equivalence of the remaining unsolved cases. The book by
Cannon and Playoust {1] was very useful in our study.

The matrices numbered 1 and 174 given by E. Spence (see [18]) are
symmetric and so are equal to their transposes. Thus we have in total 190
Hadamard matrices to check for equivalence. After the application of the
above program we obtain that the transposes of matrices Hy,. .., Hygo num-
bered HY, i=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,
922,23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46,47, 48,49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69,70, 71,72,73,74,75,76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
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90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109,110,111,112,113,114,115,116,117,118,119,120,121,122,123, 124, 125,
126,127,128, 129,130,131, 132,133, 134, 135, 136, 139, 140, 141, 142, 143, 144,
145,146, 147,148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162,163, 164, 165,166, 167,168,169,170,171,172,173,176,178, 187,188 are
inequivalent with the 192 known Hadamard matrices, while the other 18
of the 190 transposes are equivalent. Thus we have shown that there are
192 + 172 = 364 inequivalent Hadamard matrices. We shall refer to these
matrices as Gy, ...,G3e4-

Moreover, using a simple algorithm we have constructed several Goethals-
Seidel Hadamard matrices of order 36 and when we checked these for equiv-
alence we obtain that 663 of these are inequivalent to the 364 matrices
constructed before. We shall refer to these matrices as F,..., Fge3. These
663 matrices can be constructed using the information given in Table 1.
We will denote the new inequivalent Hadamard matrices we have found by
F;,, i =1,1,...,663, and these are given in table 1. Nine of their trans-
poses are inequivalent to all 364 + 663 = 1027 Hadamard matrices. These
matrices are FT, i = 18,26,94,98,384, 385,545,553 and 663 and have
been marked with a * in table 1. To obtain these 672 inequivalent matrices
we have constructed (using four circulant matrices in the Goethals-Seidel
array) and checked in total 2000000 Hadamard matrices.

Finally we have shown that there are at least 1036 inequivalent Hadamard
matrices of order 36.

4 The new results

In this section we present the new Hadamard matrices of order 36, we have
found. In Table 1 we give the first row of the corresponding circulant (1, —1)
matrices of order 9 (in Hex form), which can be used in the Goethals-Seidel
array to obtain the 663 new inequivalent Hadamard matrices of order 36.
In this table any two digits represent a sequence of length 9. To obtain the
sequences in (1, —1) form we convert the two digits from Hex form to binary
form. If there exist an overline then the first element of the sequence is 0
otherwise is 1. Then we replace 0 by —1 and we have the desirable (—1,1)
sequences. In the sequel we move to the next two digits (in Hex form) and
we do the same thing. Thus we obtain the four sequences which can be used
in the Goethals-Seidel array. For details see the following explicit example.

In the next example it is shown how to convert sequences of this form
to the (1, —1) sequences of length 9.

Example 3 The last solution in _table 1 is given by CAACTECO. The
first two digits in Hex form are CA. Observe that there is an overline
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and thus the first digit of the sequence is 0. These two digits in Hex
form can be written in binary form as 10601010. Thus we have that the
sequence is 011001010 and if we replace 0 by —1 we obtain the sequence
A={-11,1,-1,-1,1,-1,1,-1}.

The second two digits in Hex form are AC. Observe that there is no
overline and thus the first digit of the sequence is 1. These two digits in
Hex form can be written in binary form as 10101100. Thus we have that
the sequence is 110101100 and if we replace 0 by —1 we obtain the sequence
B={1,1,-1,1,-1,1,1,—1,-1}.

Fifth and sixth digits in Hex form are 7E. Again we observe that there
is no overline and thus the first digit of the sequence is 1. These two digits
in Hex form can be written in binary form as 1111110. Since these are
less than eight digits, in this case seven, we add one zero at the beginning
(1 =101 =001 = 0001 =0...01 in all arithmetic systems) and we obtain
01111110. Add the fist digit we found and replace 0 by —1 to obtain the
sequence C = {1,-1,1,1,1,1,1,1,-1}.

Finally the last two digits in Hex form are C0. Observe that there is
no overline and thus the first digit of the sequence is 1. These two digits in
Hex form can be written in binary form as 11000000. Thus we have that
the sequence is 111000000 and if we replace 0 by —1 we obtain the sequence
D={1,1,1,-1,-1,-1,-1,-1,~1}.

Then, we use corollary 1, and theorem 1 to obtain the corresponding
Hadamard matrices. ]
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Table 1: First rows of circulant matrices of order 9 (in Hex form).

F782A7TD8
FTE2BE66
DBDCSETE

DFC26243
DFD87D15
DFE86213*
B7E213BE
BBD8F202
BF90ATD38
BFC6BE66

6B84TA14
6B5F438BF

T5E43D0A
7TB8AF202
7BD4F202

7D483C77
7TDAS813BE
7DDA2CTT

TDFCACST
7FA4ECD5
TFC2ADY4
7FDOAD94
7FDAATDS

7FEA5963
49DCSETE
4FC4AFDOA
4FDA38BF

53F238BF
59D06250
5BD06250
5D44C013
5D8A3280
5DA2737TF
5DC63D0A
5DD6C013
5DE638BF
5DF673D0
5F404BCE
5F8A13BE
5FC229BD
5FCC4B28
5FD87ED6
5FE6DY0A
5FF63BAT
27D23D0A

F7B07TD15
F7ESBE66
DBF89D13
DFC47D15
DFDAD13B
DFECIDB8
BBC4F202
BBE213BE
BF9273D0
BFC8BES66
6BC65FTD
6D88TA14
T7480B41
7BA238BF
7BE27ED6
7D804C57
7DCA13BE
TDE6SDSOA
TF44A7D8
TFAA09E4
TFC47597
7TFD26243
7FDC4574
7FECT9AB
49EA110E
4FC8FD9%4
4FF6ECDS5
B3F438BF
E9EEAS803
5BEEAS803
5D48C013
5D9038BF
5DA83280
5DC83D0A
5DD83D0A
5DESF6B9
5DFA1968
5F442CT7T
5F90DI0A
BFC47ED6
5FD029BD
BFDA2CTT
5FE829BD
SFFA4BCE
2B105827

F7C074CD
FIF2A7TD8
DF48D13B
DFDo6213*
DFE26243
DFF23BAT
BBC6F202
BBF6D13B
BFA473D0
BFDCD20D
6BD85F7D
6FA238BF
TTA2F202
7TBA8F202
7TBFAATDS
7D84DS0A
7DD29C22
7DECDS0A

7F884574

TFACTD15*
TFC67597
7FD4BE66
7FE2AD9%4
TFF24C57
49F89D15
AFCA3D0A
1FFA6243
57B03D0A
59FCECDS
5BFA73D0
5D820C22
5D940E34
5DACOES4
5DCA3380
5DDACO13
5DEC38BF
5DFC6213
5F482C77
5F984B28
5FC6TED6
5FD20C22
BFDCAT14
5FEAE6F6
BFFC4C57
3BB03D0A

29

F7C2BE66
F7F4ATD8
DFA273D0
DFD273D0
DFE4ECD5
DFF43BAT
BBC8F202
BF84A7TDS
BFB273D0
BFE6ATD8
6BECTA1d
6FD238BF
TIDA0B41
TBC27EDS6
7D203BA7
7D8A13BE
7DD413BE
7DEEA7DS8
7Fo47D15*
7FB2ECDS5
7TFC87597
7FD6ATD8
7TFE4D7AE
7FF44CB57
4F20ECD5
4FD43D0A
B3C65F7D
57E43D0A
5B887A14
5BFCECDS5
5D8438BF
5D985F7D
5DB06250
5DCC5F7D
S5DDCF202
5DF20C22
5F10A7D8
5F804C57
5FA20C22
5FC87ED6
5FD413BE
5FE229BD
5FECDY0A
27945F7D
2BE43D0A

FTDOBE66
F7F874CD
DFAS80BC2
DFD6D13B
DFE69DBS
DFF84C57
BBDO13BE
BF88D20D
BFB473D0
BFECATDS
6BF238BF
75B03D0A
T7FAD20D
7BD238BF
7D442C77
TDA29C22
7DD62CTT
7DF63BAT
TFA26243
7FB4ECD5
7TFCABE66
7FD87597
7TFESADY%
4950110E
4FA83D0A
4FD8FD93
53D85FTD
59C4BDF3
5BC4BDF3
5D401968
5D88F202
5DA09C22
5DC43D0A
5DD2737F
5DE46250
5DF49C22
5F203BA7
5F84DY0A
5FA813BE
5FCA13BE
5FD62C77
SFE4BDA7
SFEEA7TD8
37A23D0A
2BEE5827



2D8438BF
2DC83D0A
2F4813BE
2FD613BE
37504DFE
37D0SBFB
3944F202
39B0FD94
3OFCT597
3BAOTEDSG
3BCACBS6F
3BEA4DFE
3D40314D
3DS07EDG
3IDAC3D0A
3DC85BFB
3DD8sBFB
3DFA314D
3F84EDB7
3F947ED6
3FCAEF34
3FE6EDBT
3FFADE59
1488D20D
14B473D0
16482C77
16CA13BE
T6ECDS0A
174413BE
17B0A4DE
17D4DB37
17FA314D
18D6A7D8
19COEDB7
T9EATS60
1A442C77
TAC67ED6
TAD62C77
1B5013BE
1B94BDF3
1BB07A%E
1BD0A4DE
1BDC4BZ8
TBECF95A
1BFCD7AE
1CB4BDA7

2D88F202
2DCC5FTD
2F8ADB37
35B03D0A
37807597
37D23D0A
39807597
39D23D0A
3B44F202
3BA23D0A
3BD23D0A
3BFATED6
3D4413BE
3D926250
3DB26350
3DCADB37
3DDAI13BE
3DFCAD9%4
3F880ADB
3FA4BDAT7
3FD229BD
3FEA31B6
455E13BE
1480A7D8
T4DCD20D
16804C57
16D29C22
16EEATDS
174813BE
17C45BFB
17D613BE
17FCADY%4
T8DAATDS
T9C27EDS
I9FAATDS
TA483CT77
TACSTEDS
TADA2CTT
1BSOD7AE
TBAOBDA7
1BC2A4DE
1BD26250
1BE2A4DE
1BF2BDAT7
1C84EDB7
TCE6EDB7

Table 1: cont.

2D985F7D
2DD83D0A
2FASDB37
35E43D0A
37945F7D
37E85BFB
39945F7D
39DAF202
3B807597
3BASCB6F
3BD4ACB6F
3BF6TD15
3D4813BE
3DA2F6B9
3DB46250
3DD2F6B9
3DE67ED6
3F204C57
3F8AEF34
3FASEF34
3FD4EF34
3FECEDB7
T3A238BF
149273D0
T4E6ATD8
168A13BE
16D413BE
16F2DA%6
1780AD%4
17C65BFB
T7D85BFB
1844A7D8
18E4D7AE
19D07ED6
TA10A7D8
1A8A13BE
TACA13BE
TAEAE6F6
1B82BDA7
1BA26250
1BC4F D94
1BD43D0A
1BE47TA8]
1BF4BDA7
1C92BDA7
1D40314D
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2DC43D0A
3DDCF202
3FCADB37
37107C74
37A23D0A
37EE7C74
39A23D0A
39E4F D94
3BSACB6F
3BACSF7D
3BDAF202
3BFABE66
3D80ADY4
3DA46250
3DC45BFB
3DD4DB37
3DECTEDS6
3F44EDCD
3F90EDB7
3FB2BDA7
3FDAEDCD
3FEE74CD
13D238BF
14A473D0
T4ECATDS8
16A209C22
16D62CT7
16F63BA7
T78ADB37
17C85BFB
T7DA13BE
18047D15*
19A238BF
19D238BF
TA203BA7
TAA29C22
1AD20C22
TAFA4BCE
15884B28
TBA83D0A
1BC8FD9%
TBD8FDY4
1BESA4DE
1BF6ECD5
1CA4BDA7
TD4413BE

2DC63D0A
2DEC38BF
2FD4DB37
37207D15
37C25BFB
37FCT507
39ACSFTD
39FABE66
3B945F7D
3BBOFDY%
3BEAFD94
3BFC7597
3D8ADB37
3DA8SDB37
3DC65BFB
3DD613BE
3DF66243
3F5031B6
3F92BDA7
3FB4BDAT
3FDCOADB
3FF64C57
1484A7D8
14B273D0
16442C77
16A813BE
16DA2CTT
1740314D
17A8DB37
T7CADB37
T7E4A4DE
T8ACTD15*
19A8F202
T9E87ED6
TA404BCE
TAA813BE
TAD413BE
1B20ECDS5
TB90F95A
1BACBDF3
TBCA3D0OA
1BDA38BF
1BEA13BE
TBFA6243
1CB2BDA7
1D4813BE



1D80AD94  1D8229BD
TDA2F6B9  1DA46250
1DB46250 1DC45BFB
1DD2F6B9 1DD4DB37
1DE67ED6 1DECTEDS6
1E944A4DE 1EACA4DE
22506CE4 9282A7D8
32A4A803 22A85827
23C074CD  23C2BE66
23CA3827  22DOBE66
22D87C74  22DA1BCS
29ESBE66  J2EA6CE4
22F4ATD8  23F874CD
23927A14 3A0A714
93B27A14  23B47TAI4
23E44B28  23ESFB5D
23F6A22F  23F80ADB
24A273D0  24A80BC2
24D273D0  24D6D13B
24E4ECD5 24E69DB8
24F43BA7  24F84C3T7T
258320BD 288513BE
958B13BE 2590F8D6
25950DE7 38972C77
25A313BE  25A5C013
25ACC017  25AF3CE4
25B7D13B  25B8F202
89367TABE  8DF27ABE
51C45F24  51C65F24
58C65F 24 58C85F24
5C135F24  5C1B5F24
B75B641C  BTDA®BA1C
D14A8980 DIBA8980
D7A28980  D7D28980
B1EB641C 51ED641C
96858980 A42A48980
9DA2D9F9 9DD2D9F9
A3A4360C  A3B4DIF9
DBEA360C  5A3CD9F9
32EBE2E7 32EDE2E7
B3A8979F  B3A9979F
CA35979F CAB9979F

Table 1: cont.

1D8ADB37
1DASDB37
1DC65BFB
1DD613BE
1DFA314D
TEEEADY4
2984A22F
22B07D15
32C47C74
32D20BC2
22E0AD94
PBECA22F
23245ETE
23A2F202
53B65ETE
23EAT91C
23FAD20D
54C26243
34D87D15
34E86243
25101BC5
358729BD*
95917202
38A02CT7
2BAT2CTT
95B038BF
25B90541
8D867ABE
51C85F24
58D85F24
B62A11E3
BA128980
DIDA8980
D7D6641C
5112641C
A4A4F8980
9DD6360C
A3B7360C
5A36DIF9
3248E2E7
B3CA979F
CAAC7ECO
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1D907ED6  1D926250
1DAC3D0A 1DB26250
1DC85BFB 1DCADB37
1DD85sBFEBE 1DDA13BE
1DFCAD94 1E4829BD
22441BC5 22481BC5
228A5827 2392A803
22B2A803 22B4A803
22C67C74 23C87C74
22D45827 22D61BC5
22E2BE66  22E6A22F
22F0AD94  22F2A7DS8
23480841 23804574
23A47A14 23B04B78
23D60B41  23DA0B41
23F2A714 23F4AT14
23FC4574 9448D13B
34C47D15  34D06243*
2dDAD13B  24E26243
24ECODB8  24F23BA7
2544F3E3 28822C77
3580F202 358A0DE7
259338BF 2594C017
95A113BE ~ 35A2C013
25A80DE7  25A90DE7
25B1F202 25B3F8D6
25BBIBC5  893C7ABE
D2C47418  D2DC7418
51D85F24 58C45F24
5C8E5F24 5CECSE24
B6EA11E3  BT744641C
BADAS8980  D1488980
D748641C  D74A841C
D7DABAIC  BTE98980
92248980 92EA8980
9D4A360C  9D29360C
9DDA360C  A3A2360C
A3BAD9F9 D62A360C
5A86360C  5A6F360C
3225E2E7  B32B979F
CAATO79F CABI9T9F



