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Abstract. It is known that triangles with vertices in the integral
lattice Z2 and exactly one interior lattice point can have 3,4,6,8 and
9 lattice points on their boundaries. No such triangles with 5, nor 7,
nor n 2 10 boundary lattice points exist. The purpose of this note is
to study analogous property for Hex-triangles, that is, triangles with
vertices in the set H of corners of a tiling of R? by regular hexagons
of unit edge. We show that any Hex-triangle with exactly one interior
H-point can have 3,4,5,6,7,8, or 10 H-points on its boundary and
cannot have 9 nor n > 11 such points.

1. Introduction and notation. There are many interesting results and
problems dealing with lattice polygons, that is, polygons with vertices in
the integral lattice Z°. The fine expository article by Scott [3] references
many of them and is a very good source to get acquainted with the flavor of
the subject of lattice polygons. Geometrically, Z2 is the set of corners of a
tiling of R? by unit squares. The question arises: How the combinatorics of
lattice polygons changes when the square tiling is replaced by another tiling
of the plane with congruent regular polygons? Ding and Reay [1] examined
the problem in the case of the celebrated Pick’s theorem about the area of
lattice polygons. From their results we can infer that there are only slight
changes when Z? is replaced by the corners of a tiling by regular triangles.
However, there are significant changes when Z?2 is replaced by the set H
of corners of a monohedral tiling of R? by regular hexagons with unit edge
(so the area of every tile is 3v/3/2). This indicates that the combinatorics
of lattice polygons and H-polygons (simple polygons in R? whose vertices
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lie in H) are different. We want to check how different they are in the case
of lattice triangles and H-triangles with exactly one interior lattice point
or H-point, respectively.

For a planar lattice polygon (H-polygon) P in R? we denote

b=b(P)=|XNOP| and i=i(P)=|XNintP|,

where X =Z? or X = H.

It is known, see [2, 4], that a lattice triangle in R? with exactly one
interior lattice point can have 3,4,6,8, or 9 points from Z? on its boundary.
Moreover, no lattice triangle A with one interior lattice point and with
b(A) = 5, nor b(A) = 7, nor b(A) > 10 exists.

The main purpose of this paper is to examine analogous results for H-
triangles. Namely, we show that any H-triangle A with exactly one interior
H-point can have 3,4,5,6,7,8, or 10 H-points on its boundary, and cannot
have 9 nor b > 11 such points.

We aim also to comment on the cases of lattice triangles with 5 or 7
boundary lattice points. It is observed here that such triangles exist if and
only if the numbers of their interior lattice points are multiples of 3 and 5,
respectively. .

The main difference between the sets H and Z? is such that the latter
is a lattice but the former is not. However H can be considered to be the
union of a lattice — denoted by H'* - and an ”affine” lattice H~. All points
in HT have three tiling edges leaving the point in the same three directions,
and all points in H~ have edges which leave in the three opposite directions.
Two points = and y are said to have opposite orientations if z € H(H™)
and y € H-(H*). Otherwise we say they have the same orientation.

Let A denote the set of all centers of the hexagonal tiles which determine
H. Every element of A will be called an auziliary point. Clearly HY*UH~U
A is a triangular lattice with the area of each triangular tile V3/4. We will
denote this lattice by T.

2. Results. We prove our results by a sequence of lemmas beginning with
a property of the set H.

Lemma 1. Assume that the origin of R? lies in HY. Ifz € A(H™), then
2z€ H-(A) and 3z € H*.

Proof: Assume that the origin of R? is placed in the left bottom cornex
of a hexagonal tile and that it belongs to H*. Let the z-axis of R? lie along
the bottom edge of the tile, and let the y-axis be perpendicular to z. Denote
@ = (3/2,v/3/2) and 7 = (0,v/3). One can see that the sets H+ (which is
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now a triangular lattice), H~ and A have the following descriptions:
HY ={ai+p7 : a,B€Z}

H- ={(1,0)+ect+p7 : a,Becl},
A={(-1,0)+az+pv : a,fel}.
Assume that = € A. Then z = (-1,0) + a(3/2,v3/2) + 5(0,v/3) for
some integers o and §. Thus
2z = (-2,0)+ 20(3/2,v3/2) + 26(0,v3)
= (1,0) + (-3,0) + 2(3/2,v/3/2) + 28(0, V3)
= (1,0) + (2a — 2)(3/2,V3/2) + (26 + 1)(0, V3)
€ H™.
Similarly

3z = (-3,0)+3a(3/2,v3/2) + 36(0,V3)
(3 — 2)(3/2,V3/2) + (38 + 1)(0, V3)
€ HT.

If z € H~, then similar calculations yield the result. O

A segment with endpoints in H is called an H-segment. From Lemma
1 we immediately get the following two lemmas.

Lemma 2. If zy is an H-segment such that relint zyNH = @ and relint zyN
A = {a}, then a is the midpoint of xy. Moreover, z and y have opposite
orientations.

Lemma 3. If an H-segment contains two auziliary points, then between
them there are at least two H -points with opposite orientations.

In subsequent lemmas we will use the notion of kth level of a Hex-
triangle A = conv{z,y, z}. We will always label the vertices of A in such a
way that zy has the most points from T = H U A. The line containing zy
is denoted by lo. By [; denote the line parallel to lp and passing through
the first point from T reached during shifting [y towards z. We continue
shifting {p and denote by 5 the line passing through the next point from T
met in this way. In a similar way we define /; for j > 3. Clearly, the lines
are parallel and the distance between !; and ;4 is the same for every j.
We say that A has k levels if z € l;. It is obvious that every Hex-triangle
with one interior H-point has at least two levels.
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Let m; be the relative length of ANl;, that is, the length in relation to
the unit being the distance between two consecutive T-points on zy. Denote
by t; = |l; NANT)|. Clearly my is a positive integer and mg = o — 1. One
can see that for j > 0 we have [m;] < t; < [m;] + 1, where [-] denotes the
greatest integer function.

Lemma 4. If a Hez-triangle A has k levels, then for 0 < j < k we have
m; =mo (1- %)

Lemma 5. If A is an H-triangle with one interior H-point, then A cannot
have:

(i) Two auziliary points on one side and additional auziliary point on
another side,

(ii) Three auziliary points on one side.

Proof: (i) Suppose to the contrary that there is a Hex-triangle A =:
conv{z,y, z} with two auxiliary points on, say zy, and another auxiliary
point a on, say zz. Since t; does not decrease when the number of levels
increase, we can assume that A has two levels and - consequently - that
a € l;. By Lemma 3, to > 6 and therefore mo > 5. From Lemma 4 it
follows that m; > 2.5 Since a € I; N A and m; > 2.5, we have at least
two interior T-points in {; N A. By Lemma 1 the two interior T-points are
H-points, a contradiction.

(ii) We again suppose to the contrary that a Hex-triangle A has three
auxiliary points on, say zy. Lemma 3 implies that to > 9 and mo > 8.
From Lemma 4 we have m; > 4. This guarantees that ¢; > 4. From
among the (at least) four T-points, (at least) three are interior points, and
- by Lemma 1 - (at least) two are H-points, a contradiction. 0

The following observation is an immediate consequence of Lemma 5.

Lemma 6. No H-triangle with one interior H-point and more than three
auziliary points on its boundary exists.

It is still possible that a Hex-triangle with one interior H-point can
have three auxiliary points on its boundary. The next lemma provides a
complete description of such triangles.

Lemma 7. If for an H-triangle A with one interior H-point we have
|[ANBA| = 3, then every side of A must contain ezactly one auziliary and
one H-point in its relative interior. Moreover, two auziliary points cannot
lie on the same level of A.

Proof: The assumption |A N dA| = 3 in conjunction with Lemma 5
implies that every side of A must contain one auxiliary point. First, let
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notice that at least one side of A must contain a point from H in its relative
interior. Indeed, if no side of A contained any H-point, then by Lemma
1 the auxiliary points would have to be the midpoints of their sides and
the endpoints of every side would have to have opposite orientations. Thus
one point would have double orientation, which - of course - is impossible.
So, one side of A must contain an H-point in its relative interior. Suppose
it is zy. Thus ¢o > 4. Clearly, the remaining two auxiliary points cannot
lie on the same level of A, otherwise there would be - by Lemma 3 - two
H-points in the interior of A. It follows that A has at least 3 levels and
therefore — by Lemma 4 — we have m; > 2 and ma > 1. Since there is an
auxiliary point in [, N 8A, we obviously cannot have m; > 2. Som; =2
and t; = 3. Hence, in addition to an auxiliary boundary point in [; N A we
have two H-points, one in the interior and the other one on the boundary of
A. Similarly, we obtain my; = 1 and t2 = 2. This leads to one H-point and
one auxiliary point on the boundary of A and ends the proof. An example
of an H-triangle satisfying the conditions of Lemma 7 is shown below. [J

Fig.1: Hex-triangle satisfying conditions of Lemma 7.

Lemma 8. No H-triangle with one interior H-point and four interior
auziliary points exists.

Proof. Assume to the contrary that an H-triangle A contains four
interior auxiliary points. First, we shall show that the auxiliary points
cannot lie on one line. If they were on one line then the line could not
pass through any H-point, otherwise between any two auxiliary points
there were two H-points, which is impossible. Moreover, the line would
have to be — as one can easily check — parallel to one side of A, say zy.
Consequently, we can assume that the auxiliary points lie on !;. Another
consequence of the above observations is that on lp and I3 we have only
H-points with the same orientation, and on {; there are only H-points but
with opposite orientations. We can also assume that A has three levels.

Consider the line p passing through the vertex z and the existing interior
H-point (lying on l3). Since the two H-points have opposite orientations,
Lemma 3 implies that p intersects /; at an auxiliary point and Iy at an
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H-point. Clearly, on one side of p there are two interior auxiliary points of
A. We denote the part of /; containing two interior auxiliary points by /; 2
and the relative length of A Nl 2 by m; 2. Similarly, the part of l; lying
on the same side of p as l; 2 does is denoted by l2,2 and the relative length
of ANy, is denoted by ma 2.

The definition of !, 2 implies that m; 2 > 2. By similar triangles we
have

Thus ma g =m; 2 - -21- >2- % > 1. This means that l 2 NintA contains an
H-point. So we obtained two H-points in {2 NintA, a contradiction.

Now we consider the case when the four interior auxiliary points do not
lie on one line. From the fact that there are four such points it follows that
two of them, say a and b, lie on a line that is not parallel to any side of
A. The points a and b cannot be collinear with any vertex of A, otherwise
by Lemma 3 we would have two interior H-points lying between a and b,
which is impossible. If we translate the line passing through a and b to
every vertex of A then at one vertex, say z, the translate will intersect the
interior of A. We can assume that the translation carries a to = and b to
an interior point z’. Since a and b are both auxiliary points, z and z’ are
both H-points with the same orientations. Consider the triangle xz"c (see
Fig. 2), where

' =z+4+2(z'-2z) and c=z+2(a-1).

"

e

Fig.2: Triangle zz"c.

One can see that z” and ¢ are both H-points (with opposite orientations)
and b is the midpoint of z”7c. Since b € intA, at least one of the two H-
points z” or ¢ must lie in intA. The one point from among z” and ¢ plus
z’ give us two interior H-points lying in A, a contradiction. O

In the next lemma we summarize the relationships between the set A
of auxiliary points and a Hex-triangle with one interior H-point.

Lemma 9. For any Hexz-triangle A with one interior H-point we have
|[ANdA| <3 and |JANintA| < 3.
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Now we shall study sufficient conditions for the existence of Hex-trian-
gles with exactly one interior H-point. We express the sufficient conditions
in terms of the numbers of T-points on each side of the Hex-triangle. Denote
by o, B and « the relative lengths of the sides of A, that is, the lengths with
respect to the units that are distances between consecutive T-points on the
lines containing respective sides of A. We can assume that o > 8 > 7.
Thus & = mg and ty = o+ 1. Also 8+ 1 and « + 1 represent the numbers
of T-points on the other two sides of A.

Since we want to apply Pick’s theorem, it will be convenient to use a
linear transformation to map T into Z2 and A into a lattice triangle A'.
Clearly, we can assume that the linear transformation carries = into the
origin. Obviously, the numbers of T-points on the sides of A and lattice
points on the respective sides of A’ are the same. Thus

a+p+v=bA4")=b.

The area argument presented below is very similar to that in Lemma 3
from [4]. We repeat it here hoping that this will be with a convenience to
the reader.

The two sides of A’ meeting at the origin are of the form a(ai,a2) and
B(b1,b2) for some integers ay,az, by, b2. Computing the area of A/, u(A’),
by means of the well-known determinant formula we get

1

aay, aag || _
2

Bby  Bb,

for some t € N. On the other hand, using Pick’s theorem we have pu(A’) =
% +i(A’) — 1. The interior lattice points in A’ are images of some auxiliary
points and one H-point in A. So i(A’) =1+ i4, where i4 is the number
of images of interior auxiliary points in A, Thus

a; Qa2

1
b by || 2%

af

PINEE

b
.u(A’ = 5 +?"A1

where — by Lemma 8 - i4 € {0,1,2,3}. Equating the two expressions for
the area of A’ we see that

b+2i4 = apt.

This implies that b+ 2i 4 is divisible by «, 8 and 8. If we choose another
vertex of A to be carried into the origin then we will similarly obtain that
b+ 2i4 must be also divisible by v, ay and S~.

Summarizing the above observations we can see that the existence of
Hex-triangles with one interior H-point has been reduced to solving the
problem:
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for given b > 3 and i4 € {0, 1,2, 3} find triples (e, B, ) of positive
integers satisfying the following conditions

()a+tB+vy=0b,

a=2827,

@) o>,

(4) all the numbers a, 8, v, af, ary and By divide b + 2i4.

Lemma 10. No lattice triangle with b > 15 boundary points and 1 + k,
k € {0,1,2,3}, interior lattice points exists.

Proof: If a lattice triangle with b > 15 and i = 1 + k, where ¥ =0, 1,2,
or 3, existed, then its triple would satisfy conditions (1)-(4) above. By
condition (4) we would have for some n € N

b+ 2k = nap. 1)
Using condition (3) we would get
b+ 2k =naf > ngﬂ,
which can be rewritten as
b(nB — 3) < 6k, k=0,1,2,3. - (2)

Since b > 15, inequality (2) could be true only when nf —3 <1 or ng8 < 4.
This inequality is true when

{n Voo {n=2 or {n=3 or {n=4 or
B=1 B=1 B=1 B=1

n=1 n=1 n=1 n=2
8=2 B=3 g=4 % 1 8=2
First, we show that 8 = 1 cannot happen. Indeed, if 3 = 1, then by

condition (2) also v = 1, and by condition (1) & = b — 2 and equality (1)
would have the following form

i

b+ 2k = naf =n(b—2)
which clearly makes sense only when n > 1. Solving the latter equality for

b and estimating we obtain

_2k+2n
T on-1

because k € {0,1,2,3} and n € {2,3,4}.

b <10
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Second, we shall show that » = 1 cannot happen either. Assume that
n =1 and S € {2,3,4}. By condition (1), @ = b — 8 — . Hence equality
(1) has now the form

b+2k=(b—B—7).

After solving it for b and evaluating for different values of 3, keeping in
mind that v < 8, we obtain

2 14 when
b=ﬁ_+ﬁ7_+2’fs{ 12

when
-1 % when

DO
o
AW

Lastly, consider the case when n = 2 and 8 = 2. Now equality (1) has
the form

b+ 2k =4o
wherea=b—-2-+vand 1 <+ <2. Thus
b+2k=4b—-8 -4y

and since 1 <y<2and 0 <k <3 we get
_8+2%k+4y 22
=——73 <3

In either of the three cases considered we get b < 15, a contradiction.
The proof is complete. 0

b

In view of Lemmas 9 and 10 it is obvious that for finding all possible
triples (o, 83, ~) satisfying conditions (1)-(4) we can restrict the domains of
bandig to: 3<b<14and0 <i4 < 3. One can check that the table below
provides the only solutions to the system (1)-(4). From the prospective of
our main result the most important part of the table is the one when b > 9.
However, to have a full account of possible solutions of the system (1)-(4)
we provide also the triples for 3 < b < 8.

b
ia 3 1 5 5 7 8
0 (1:111) (2v1v1) _ (3$2)1) - (4v212)
1 (1»111) (211"1) - (2$2y2) (3$371) (51211)
(4,1,1)
2 (1,11 | (21,1) ] (381,1) - - (4,3,1)
(6,1,1)
3 AL | @LD | - @22 | - -
(3,2,1)
(4,1,1)
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b
ia 9 | 10 J11] 12 [13] 14
0N1G33| - -1 - |- -
1 - (G2 = - |- =
2 @2 | - | @A) | - -
(8,2,2)
3G | @42 | - | (633) ] - | (10,2,2)
(8,1,1) (9,2,1)

Having the above table we are in a position to prove the main result of
this paper.

Theorem. If A is a Hex-triangle with one interior H-point, then b(A) €
{3,4,5,6,7,8,10}.

Proof: Figures 4 and 5 provide Hex-triangles with one interior H-point
and the required numbers of boundary points. Therefore, in order to prove
our theorem it is enough to show that no other numbers of boundary point:
are possible.

Let (o, 8,7) be the triple of a Hex-triangle A with one interior H-point.
Obviously

a+B+72bA).

This in conjunction with Lemma 10 implies that no A with b(A) > 15
exists.

If a Hex-triangle with one interior H-point and b(A) < 15 exists, then
its triple is among the triples provided by the above table. We shall check
which of these triples have indeed a realization. Since the crucial part of
the table is the one when b > 9 we examine every triple in this part. We
eliminate some of these triples and describe possible realizations of others.

We start with eliminating all triples with a > 8. If a = mp > 8, then
on lp we can only have H-points with the same orientation, otherwise we
would have three auxiliary points, which by Lemma 5 is impossible. If
lo contains only H-points with the same orientations then on {; there are
only auxiliary points and on lo H-points with opposite orientations or vice-
versa. Consequently, A has at least three levels and by Lemma 4 we have
my = mo(l — 1/k) > 8(1 —1/3) > 5. This guarantees too many auxiliary
or H-points in {; NA. So, no Hex-triangle with one interior H-point having
triple (e, B,7) in which a > 8 exists.

Now we shall eliminate the triple (7,2,1). Here 8 = 2 and this guarantees
that in the relative interior of one side of A, say zz, there is a T-point .
If 2 and z have the same orientation, then u is an H-point with the same
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orientation as x and z and, as it is easy to check, the line [, passing through
u contains at least two interior H-points. When z and z have opposite
orientations, then u is an auxiliary point and A has two levels. Any A
with such a triple has m; > 3 with different types of points on {;. This
means that there are three interior T-points in {; N A and two of them are
H-points. Hence, no A with such a triple exists.

Elimination of the triple (4,4,2). We can even show that no lattice
triangle with such a triple exists. If a lattice triangle with such a triple
existed, then its sides would be of the form 4a, 4b and & c= 4b— 4a for some:
lattice vectors (vectors with integer coordinates) @ and b. Since b—a = 1/47
and b — @ is obviously a lattice vector, so must be 1/4Z But then 1/2¢ and
3/4¢ would be also lattice vectors, which would imply v > 4. Thus no
Hex-triangle with triple (4,4,2) exists.

The last triple which we eliminate is (4,4,4). Clearly, we can assume
that A with such a triple has four levels. Hence, by Lemma 4, m; = 3 and
mg = 2. If all points on lp were H-points with the same orientation then
- since m; = 3 - on l; we would have to have auxiliary points, on ly H-
points with opposite orientations, on I3 H-points with the same orientation
as on |y and eventually on l4 again auxiliary points. As A is a Hex-triangle
this cannot happen. So we can assume that on Iy there are both H-points
and auxiliary points. It can be easily checked that this can happen only
when an auxiliary point is the midpoint of zy, and z and y have opposite
orientations. If 2z has the same orientation as z, then on zz there can be
only H-points with the same orientation. On yz, in turn, the midpoint is
an auxiliary point. Now one can check that the only interior T-point on Iy
is an H-point (with the same orientation as y), and there is an additional
H-point (also with the same orientation as y) on I;. Hence no Hex-triangle
with one interior H-point and triple (4,4,4) exists.

Triple (6,2,2). Reasoning similar to that in the case of triple (7,2,1)
leads to the following H-triangle which is the only realization of the triple.

/ \ / \\ / '

Fig.3: Hex-triangle with triple (6,2,2).

Triples (6,3,3) and (5,3,1). Here 8 = 3 which implies that A has at
least three levels. For similar reasons as above we can assume that A has
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three levels. Since in both cases m; > 3 we cannot have H-points and
auxiliary points on ly (and therefore on ly, ls,..., either), otherwise there
were two interior H-points on /3. Thus on Iy there have to be H-points with
the same orientation, on {; auxiliary points, on lo H-points with opposite
orientations, and z € I3 has the same orientation as  does. One can check
that every triangle with triple (5,3,1) has exactly one auxiliary point on
its boundary and therefore b(A) = 8 in this case. Triangle zyz; on Fig.
4 shows that triple (5,3,1) has a realization. For any triangle with triple
(6,3,3) we have |} N 8A| = 2, which means that there are two auxiliary
points on its boundary. Hence b(A) = 10 and triangle zyz; on Fig. 4
illustrates that triple (6,3,3) has indeed a realization.

Triple (3,3,3). If all points on lo are H-points with the same orientation,
then on !; we have to have only H-points but with opposite orientations.
Then on I, there are two boundary auxiliary points and b(A) = 7. If on lp
there is an auxiliary point then b(A) < 8. It can be shown that in this case
we either have b(A) = 7 or b(A) = 6. The triangle on Fig.1 is a realization
of the latter case. Now the proof is complete. O

|

= — > AN s .
SN - ul\\ TN U U 1/ N

R A N T e

Fig.4: H-triangles with ¢ = 1 and b = 3, b(yui1u2) = 4, b(zyus) = 5,
b(zyus) = 6.

Fig.5: H-triangles with i = 1 and b(zyz1) = 7, b(zyz2) = 8, b(zyz3) = 10.

Figures 3, 4 and 4 do not cover the entire spectrum of Hex-triangles with
one interior H-point. The reader is invited to construct other examples.
Obviously, for every number b > 3 there exists a Hex-triangle without
interior H-points and exactly b boundary H-points.



Remark. It is probably of interest to notice that lattice triangles with
b =15 and b = 7 exist if and only if ¢ = 3t and i = 5s, respectively.

First we comment on the case b = 5. Triple (3,1,1) is the only possible
one, no matter what is i. By Pick’s theorem the area of such triangles is
equal to 3/2 4+ i. On the other hand, see Lemma 3 in [4], the area must
be a multiple of 3/2. So, for some n € N, 3/2 4+ ¢ = n3/2, or equivalently
2¢ = 3(n — 1). This implies ¢ = 3¢ for some t € N. One can check that the
lattice triangles with vertices (0,0), (3,0) and (2,3 + 2j), j > 0, are of the
type (3,1,1) and contain 3(j + 1) interior lattice points.

For b = 7 the above table provides the triple (3,3,1). In a similar way as
in the case of triple (4,4,2) it can be shown that no lattice triangle with such
a triple exists. The other way of splitting 7 (not provided by the table) is
(5,1,1). Proceeding in a similar way as above one can check that the triple
has a realization if and only if i = 5s. Note that the lattice triangles with
vertices (0,0), (5,0) and (4,3 + 2j), j = 0, are of the type (5,1,1) and have
5(j + 1) interior lattice points. O
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