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Abstract

For a vertex v of a connected graph G and a subset S of V(G),
the distance between v and S is d(v, S) = min{d(v,z)|z € S}.
For an ordered k-partition IT = {S;,S5,,...,S¢} of V(G), the
code of v with respect to II is the k-vector en(v) = (d(v, S1),
d(v,S2), ..., d(v,Sk)). The k-partition IT is a resolving par-
tition if the k-vectors en(v), v € V(G), are distinct. The
minimum k for which there is a resolving k-partition of V(G)
is the partition dimension pd(G) of G. A resolving partition
I = {S1,85,,...,Sk} of V(G) is a resolving-coloring if each S;
(1 € i < k) is independent and the resolving-chromatic number
Xr(G) is the minimum number of colors in a resolving-coloring
of G. A resolving partition IT = {S;,S5,,...,Sk} is acyclic if
each subgraph (S;) induced by S; (1 < ¢ < k) is acyclic in
G. The minimum k for which there is a resolving acyclic k-
partition of V(G) is the resolving acyclic number a,.(G) of G.
Thus 2 < pd(G) < a,(G) < x+(G) < n for every connected
graph G of order n > 2. We present bounds for the resolving
acyclic number of a connected graph in terms of its arboric-
ity, partition dimension, resolving-chromatic number, diameter,
girth, and other parameters. Connected graphs of order n > 3
having resolving acyclic number 2, n, or n — 1 are characterized.
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1 Introduction

Let G be a nontrivial connected graph. For a set S of vertices of G and a
vertex v of G, the distance d(v, S) between v and S is defined as

d(v,S) = min{d(v,z) : z € S},

where d(v, ) is the distance between v and z. For an ordered k-partition
I ={S1,5,...,5:} of V(G) and a vertex v of G, the code of v with respect
to I is defined as the k-vector

CH(U) = (d(v, Sl), d(v, Sz), veey d(v, Sk)) .

The partition II is a resolving partition for G if the distinct vertices of G
have distinct codes with respect to II. The minimum k for which there is
a resolving k-partition of V(G) is the partition dimension pd(G) of G. A
resolving partition of V(G) containing pd(G) elements is called a minimum
resolving partition. These concepts were introduced and studied in [4].

Resolving partitions that satisfy certain prescribed properties have been
studied. A resolving partition Il = {5}, S2,..., Sk} of V(G) is independent
if each subgraph (S;) induced by S; (1 < < k) is independent in G. This
topic was introduced and studied from the point of view of graph coloring
in [5, 6]. If IT is an independent partition of V(G), then, by coloring the ver-
tices in S; by i (1 < i < k), we obtain a proper coloring ¢ of G with & colors
that distinguishes all vertices of G in terms of their distances from the color
classes. Thus, such a coloring c of a connected graph G is called a resolving-
coloring. A minimum resolving-coloring uses a minimum number of colors
and this number is the resolving-chromatic number x,(G) of G. Since every
resolving-coloring is a coloring, x(G) < xr(G) for each connected graph G.
In [5, 6] a resolving-coloring is referred to as a locating-coloring and the
resolving-chromatic number as the locating-chromatic number. We refer to
the book {3] for graph theory notation and terminology not described here.

In this paper, we extend resolving-coloring by requiring a property of
color classes that is less restrictive than being independent. For a connected
graph G, a partition II = {S;,S,...,S¢} of V(G) is acyclic if each sub-
graph (S;) induced by S; (1 < i < k) is acyclic in G. The vertez-arboricity
a(G) of G is defined in [1, 2] as the minimum k such that V(G) has an
acyclic k-partition. If an acyclic partition II of V(G) is also a resolving
partition, then II is called a resolving acyclic partition of G. The minimum
k for which G contains a resolving acyclic k-partition is the resolving acyclic
number a,.(G) of G. Since every resolving acyclic partition is an acyclic par-
tition, a(G) < a,(G) for each connected graph G. The relationships among
pd(G), a,(G), and x.(G) are as follows.
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Observation 1.1 For every connected graph G of order n >2,
2 < pd(G) < a,(G) < x+(G) < n.

To illustrate these concepts, consider the graph G of Figure 1(a). Let
Il = {81, 82, 83}, where S; = {z}, S2 = {u}, and S3 = {v,y, 2} as shown
in Figure 1(b). Then the corresponding codes of vertices of G are

(1,2,0)  r(z(I) = (0,1,1)
(2,1,0).

r(ulll) = (1,0,1)  r(vjI)
r(yl) = (1,1,0)  r(z|I)

Since the codes of the vertices of G with respect to II are distinct, Il is a
resolving partition of G. Because no 2-partition is a resolving partition of
G, it follows that II is a minimum resolving partition of G and so pd(G) = 3.
However, II is not acyclic since (S3) = K3. On the other hand, let IT' =
{51,532, 53,53}, where S = {z}, S; = {u}, S; = {v,}, and S} = {z}
as shown in Figure 1(c). It can be verified that II' is a resolving acyclic
partition of G and no 3-partition is a resolving acyclic partition of G. Thus
ar(G) = 4. Furthermore, it was shown in [5] that x,(G) = 5. Therefore,
Pd(G) < a;(G) < x-(G) for the graph G of Figure 1(a).

() (6) (9)

Figure 1: Illustrating concepts

The example just described also illustrates an important point. When
determining whether a given partition II is a resolving partition of a con-
nected graph G, we need only verify that vertices of G belonging to the same
subset of V(G) in IT have distinct codes since the codes of two vertices in
different subsets in IT have 0 in different coordinates.
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2 Bounds on Resolving Acyclic Numbers of
Graphs

In this section, we establish bounds for the resolving acyclic numbers of
connected graphs in terms of other parameters, beginning with arboricity,
partition dimension, and resolving-chromatic number. We present two use-
ful lemmas. Since a proof of the first lemma is straightforward, we omit
it.

Lemma 2.1 If H is an induced subgraph of a nontrivial connected graph
G, then a(H) < a(G).

Let IT and I’ be two partitions of V(G). Then IT' is called a refinement
of II if each element of II' is a subset of some element of II.

Lemma 2.2 Let G be a nonirivial connected graph and let I1 and I’ be
two partitions of G. If Il is a resolving partition of G and Il' is refinement
of I, then II' is also a resolving partition of G.

Proof. Let Il = {$1,S52,...,S¢} and I' = {51, 53,...,S;}, where k < ¢,
such that each S} (1 <7 < ) is a subset of S; for some j with 1 < j < k.
Let u and v be two distinct vertices of G. We show that eqi(u) # e (v).
Since II is a resolving partition of G, it follows that cn(u) # enr(v). Thus
d(u,S;) # d(v, S;) for some j with 1 < j < k, say d(u,S1) # d(v,S51). If §;
is an element of IT', then d(u, S;) # d(v, S1) and so err (u) # e (v). Thus
we may assume that §; = S} US|, U...US], , where1<1i; <i3 <...<
in < € and h > 2. Observe that at least one of u and v does not belong to
S, for otherwise, d(u, S1) = 0 = d(v, S1). We consider two cases.

Case 1. Ezactly one of u and v isin Sy, sayu € S; andv ¢ S;. Thus
u€ S;p for some p with 1 < p < h and so d(u, S{p) = 0. Since v ¢ 51, it
follows that v ¢ S; and so d(v,S; ) # 0. Hence crv(u) # v (v).

Case 2. u,v ¢ Si. Let z,y € S such that d(u,S,) = d(u,z) and
d(v,51) = d(v,y), say d(u,z) < d(v,y). If z,y € S for some p with
1 < p < h, then d(u, S})) = d(u,z) < d(v,y) = d(v,S;,), implying that
cv(u) # cv(v). Hz € S) and y € S, where1 < p # ¢ < h, then
d(u, S,fp) = d(u,z) < d(v,y) < d(v,5])), again, implying that cr (u) #

e (v).
Therefore, II' is a resolving partition of G. .

Theorem 2.3  For every nontrivial connected graph G,
pd(G) < ar(G) < a(G) pd(G).
In particular, if G is a tree, then pd(G) = a.(G).
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Proof. The lower bound follows from Observation 1.1. To verify the
upper bound, let G be a nontrivial connected graph with pd(G) = k and
a(G) = a. Furthermore, let II = {$1,S5,,...,5:} be a resolving partition
of V(G). If I1 is acyclic, then II is a resolving acyclic partition of V(G) and
so0 a,(G) < |II} = k = pd(G) < a(G) pd(G) since a(G) > 1. Thus we may
assume that II is not acyclic. Let a; = a ((S;)) for 1<i<k.So1<a;<a
by Lemma 2.1. If S;, where 1 < i < k, is not acyclic, then a; > 2 and S; can
be partitioned into a; nonempty subsets, each of which is acyclic. Define a
partition II' of V(G) from II by (1) partitioning each nonacyclic element S
of I into a({S)}) acyclic subsets of S and (2) keeping each acyclic element of
IT the same. So IV’ is an acyclic partition of V(G) with at most 25’:1 a; < ok
elements. Moreover, IT' is a refinement of II. By Lemma 2.2, IT' is also a
resolving partition of G. Therefore, a.(G) < |II'| < ak = a(G) pd(G). In
particular, if G is a tree, then a(G) = 1 and so a,(G) = pd(G). .

Theorem 2.4  For every nontrivial connected graph G,

X9 < 0(@) < 2:(0).

Proof. The upper bound follows from Observation 1.1. To verify the
lower bound, let G be a nontrivial connected graph with a,(G) = k and
let IT = {S;,S2,...,Sk} be a resolving acyclic partition of V(G). If Il is
independent, then x,(G) < |II| = k = a,(G). It then follows by Observa-
tion 1.1 that a,(G) = xr(G) > xr(G)/2. Thus we may assume that II is not
independent. If an element S; of II, where 1 < i < k, is not independent,
then (S;) is acyclic and so x({S;)) = 2. Hence S; can be partitioned into
two nonempty independent sets, namely, the two color classes of any proper
minimum coloring of (S;). Define a partition II' of V(G) from II by (1) par-
titioning each nonindependent element of II into two independent subsets
and (2) keeping each independent element of II the same. Thus IT’ is an
independent partition of V(G) with at most 2k elements. Furthermore, IT’
is a refinement of II. By Lemma 2.2, II' is also a resolving partition of G.
Therefore, x,(G) < |II'| < 2k = 2a,(G) and so a-(G) > x-(G)/2. .

A related parameter was studied in (7, 8, 9]. Let W ={w, wo, ..., wx}
be an ordered set of vertices in a connected graph G, and let v € V(G).
The k-vector cw (v) of v with respect to W is defined by

CW(”) = (d(va-wl),d(va wa),..., d(v, wi)).

The set W is called a resolving set if the k-vectors ew (v), v € V(G),
are distinct. The minimum cardinality of a resolving set is the dimension
dim(G) of G. Next we present bounds for a,(G) of a connected graph G in
terms of a(G) and dim(G).
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Proposition 2.5  For every connected graph G,
a(G) < a,(G) < a(G) + dim(G).

Proof. We have seen that a,.(G) is bounded below by a(G) for every
connected graph G. Thus it remains to verify the upper bound. Let
dim(G) = k, let W = {w;,ws,...,wx} be a resolving set of G, and let
H = G — W. Suppose that {V1,V5,...,V,} is an acyclic partition of
V(H). Then the partition Il = {Si, Sz, ..., Sk, V1, Vo, ..., Vo) }, where
S; = {w;}, 1 < i < k, is acyclic. Since the k-vectors cw (v), v € V(G), are
distinct, the codes cr(v), v € V(G), are distinct as well. It then follows by
Lemma, 2.1 that a,(G) < |1I| = a(H) + dim(G) < a(G) + dim(G). m

We have seen that 2 < a,(G) < n for every nontrivial connected graph
G of order n. We now determine all connected graphs of order n > 2
with resolving acyclic number 2 or n. The following observation (see [5]) is
useful.

Observation 2.6  Let II be a resolving partition in a connected graph
G. If u and v are distinct vertices of G such that d(u,w) = d(v,w) for all
w € V(G) — {u,v}, then u and v belong to distinct elements of II.

Theorem 2.7 Letn > 2 and let G be a connected graph of order n.
Then

(a) ar(G) =2 if and only if G = P,.
(b) ar(G) =n if and only if G = K,

Proof. We first verify (a). Let P, : v;,v2,...,vn be a path of order n.
Since the partition IT = {S;, 52}, where S; = {v;} and S> = {v2,v3,...,vn},
is a resolving acyclic partition of V(P,), it follows that a,(P,) = 2. For
the converse, if G is a connected graph of order n with a.(G) = 2. By
Observation 1.1, it follows that pd(G) = 2. However, it was shown in [4]
that P, is the only nontrivial connected graph of order n with partition
dimension 2. Therefore, G = P,.

Next, we verify (b). By Observation 2.6, a,(K,) = n. For the con-
verse, let G be a connected graph of order n with a,.(G) = n and let
V(G) = {v1,v2,...,vn}. Assume, to the contrary, that G # K,. Since
G is connected, n > 3. Moreover, we may assume that d(v;,v3) = 1 and
d(v2,v3) = 2. Let Il = {51, Sa,...,Sn-1} be the partition of V(G), where
S1 = {v1,v2} and S; = {vi41} for 2 <i < n— 1. Then II is acyclic. Since
the second coordinate of cri(v1) is 1 and the second coordinate of cr(vz) is
2, it follows that en(vy) # cn(vz). Thus II is a resolving acyclic partition.
Therefore, a,(G) < |II| = n — 1, producing a contradiction. "



By Theorem 2.7, if G is a connected graph of order n > 3 that is neither
P, nor K,, then
3<a(G)<n-1 (1)

However, the bounds in (1) can be improved, as we show next. The diameter
of a connected graph G is the largest distance between two vertices in G.
Since the complete graph K, is the only connected graph of order n with
diameter 1 and a,(K,) = n, we will only consider connected graphs of order
n > 3 with diameter d > 2.

Theorem 2.8 If G is a connected graph of order n > 3 and diameter
d > 2, then
loggy1n < pd(G) <ar(G)<n—-d+1

Proof. First, we show that a,(G) < n —d+ 1. Let u and v be vertices
of G for which d(u,v) = d, and let Py1y : u = vy, v2, ..., Ugp1 = V
be a u — v path of length d in G. Let Il = {S5,,S,,...,Sn—a+1} be the
partition of V(G), where S; = {v1,v2,...,v4}, S2 = {v4+1}, and each set
S; (3 £i < n~d+1) contains exactly one vertex from V(G) — V(Pyq1).
Then II is acyclic. Since, for 7 with 1 < j < d, the second coordinate of
cn(v;) is d — j + 1, the codes cn(v;) (1 < j < d) are distinct. Thus IT is a
resolving acyclic partition of G and so a,.(G) < |l =n—d+1.

Next we show that pd(G) > logy,, n. Let pd(G) = k and let II be a
resolving k-partition of V(G). Since each coordinate of the code of a vertex
in G with respect to Il is a nonnegative integer not exceeding d and all codes
are distinct, it follows that (d + 1)" > n. Hencelogy,, n < k = pd(G). The
result then follows by Observation 1.1. =

The girth of a graph is the length of its shortest cycle. Next, we provide
bounds for the resolving acyclic number of a connected graph in terms of
its order and girth.

Theorem 2.9 IfG is a connected graph of order n > 3 and girth £ > 3,
then
3<a(G)<n—-£¢+3.

In particular, if G is a cycle of order n > 3, then a,.(G) = 3.

Proof. Since £ > 3, it follows that G is not a path and so a.(G) > 3
by Theorem 2.7. To verify the upper bound, let C; : vy,vs,...,v¢,v1 be
a cycle of length £ in G, let d = |£/2], and let II = {5}, S5,,...,Sn—t+3}
be the partition of V(G), where S1 = {v1}, S2 = {v,v3,...,v4}, S3 =
{vd+1,Vda42,...,v¢}, and each of S; (4 < i < n— £+ 3) contains exactly one
vertex in V(G)—V(C,). Since C; is a cycle of smallest length in G, it follows
that (Sz) and (S3) are acyclic, implying that II is acyclic. Furthermore,
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cn(n) =(0,1,1,...), en(v) = (i—1,0, min{i,d—i+1},...)for2<i < d,
and en(vi) = (€-i+1, min{i—d,£—i+2},0,...) ford+1 < i < £ Since
the codes of vertices of G are distinct, II is a resolving acyclic partition of
V(G). Thus a,(G) < |II| = n — £+ 3. Observe that if G is a cycle of order
n, then £ = n and s0 a,.(G) = 3 by (1). =

Since the girth of K, is 3 and the girth of C, is n, by Theorems 2.7
and 2.9, a,(G) =n—-£+3 for G = K, or G = Cy. In fact, K,, and Cy,
are the only connected graphs G of order n > 3 and girth £ > 3 such that
a,(G) =n — £ + 3, as we show next.

Theorem 2.10 Let G be a connected graph of order n > 3 and girth
£>3. Thena,(G)=n—£€+3 ifand only if G = K, or G = C,,.

Proof. We have seen that a,.(G) =n—£+3for G= K, or G = Cy,. Thus
it remains to verify the converse. Assume that G be a connected graph of
order n > 3 with girth £ > 3 such that a,(G) =n - £+ 3. If £ =3, then
a-(G) = n and, by Theorem 2.7, G = K,. Thus we may assume that £ > 4.
We show in this case G = C),.

Assume, to the contrary, that G # C,. Let C; : v1,v2,...,0¢,v1 be a
smallest cycle in G, where € < n. Since G is connected and G # C,,, there
exists a vertex v € V(G) — V(C¢) such that v is adjacent to a vertex of Cy,
say vv; € E(G). We consider two cases.

Case 1. £ = 4. Then G contains a subgraph obtained from the 4-
cycle vy, v2,v3,v4,v1 by adding an edge vv;. Since £ = 4, it follows that
vuz,vvy ¢ E(G); while the edge vug may or may not be present. Let
I = {S51,52,...,Sa—¢+2} be a partition of V(G), where S; = {v,u1},
S = {v2,v3}, S3 = {v4}, and each of S; (4 < i < n — £ + 2) contains
exactly one vertex from V(G) — (V(C¢) U {v}). Then II is acyclic. Since
d(v,S3) = 2, d(v1,S3) = 1, d(ve,S3) = 2, and d(v3,S3) = 1, it follows
that c(v) # en(v1) and en(ve) # en(vs). Thus II is an acyclic resolving
partition of G and so a,.(G) < |II| = n — £ + 2, which is a contradiction.
Therefore, G = Cj.

Case 2. ¢ > 5. Since C; is a smallest cycle in G, it follows that
v is adjacent exactly one vertex of Cy;. Let d = |£/2] and let IT =
{S1,852,...,Sn—t+2} be a partition of V(G), where S; = {v,v;}, S2 =
{ve,vs,...,va}, S3 = {Vd+1,Vd+2,-..,Ve},and each of S; (4 <i < n—-£€+2)
contains exactly one vertex from V(G) — (V(C,)U{v}). Since C; is a small-
est cycle in G, it follows that (S2) and (S3) are acyclic and so II is an acyclic
partition of V(G). Since en(v) = (0,2,2,...), en(v;) = (¢ — 1,0, min{i,d —
i+1},...)for2<i<d, and en(v;) = (€—i+1, min{i —d,{—-i+2},0,...)
for d+1 < i < ¢, it follows that II is a resolving partition of G. Thus,
a,(G) < || = n — £ + 2, which is a contradiction. Therefore, G =Cp. =
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We have seen that if G is a connected graph of order n > 2, then
2 < pd(G) < ar(G) < xr(G) < n. It was shown in [4, 5] that pd(K,) =
xr(K») = n and pd(P,) = x-(P,) = 2. Moreover, for n > 3, pd(Cy) = 3;
while x,(Cr) = 3 if n is odd and x,(C,) = 4 if n is even. It then follows
by Theorems 2.7 and 2.9 that pd(G) = a.(G) = x-(G) if G = K,, P, for
n 2 2 or G = C, for each odd integer n > 3.

3 A Characterization of Connected Graphs
of Order n with Resolving Acyclic Number
n—1

Connected graphs of order n > 3 with partition dimension n — 1 are charac-
terized in (4] and connected graphs of order n > 4 with resolving-chromatic
number n — 1 are characterized in [6]. In this section, we determine all non-
trivial connected graphs of order n with resolving acyclic number n - 1. In
order to do this, we first study the resolving acyclic numbers of connected
bipartite graphs.

Theorem 3.1  Let r,s be positive integers. If G is a connected bipartite
graph with partite sets of cardinalities r and s, then

r+1 ifr=
a:(G) < { max{r, s} ifr# z. (2)

Moreover, the equality in (2) holds if G = K, ;.

Proof. Let Vi = {u;,us,...,u;} and Vo = {v1,vs,...,...,v,} be the
partite sets of G, where 1 < r < s, say. First, we assume that G # K, ,.
There are two cases.

Casel. r = s. Since G # K, we may assume that u,_,v, € E(G) and
urvr € E(G). If r = s = 2, then G = P, and, by Theorem 2.7, a.(G) =
2<3=r+1 Ifr=523,letll = {5,85,,...,5-} be the partition
of V(G), where Si = {u,-,'v,-} for 1 < i <r- 2, Sr—l = {ur_l,v,_l,ur},
and S, = {v;}. Observe that d(u;,S;) is odd and d(v;, S;) is even for
1 < i £ r—2. Furthermore, d(u,-1,S;) = 1, d(v,-1,S;) is even, and
d(u,, Sy) is odd but different from 1. Thus the codes of vertices of G with
respect to IT are distinct and so II is a resolving acyclic partition of G.
Hence a,(G) < |II| = .

Case 2. r < s. Since G # K, ,, we may assume that s > 3 and
urv, € E(G) and u,v,—1 € E(G). Let Il = {5, S,...,S,} be the partition
of V(G), where S; = {us,v:}if1<i<r-1,8;={n}ifr<i<s—-2
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Ss—1 = {vs-1,vs}, and S; = {u,}. Observe that d(u;,S,—1) is odd and
d(v;,Ss-1) is even for 1 < i < 7. Also, d(v,,S;) = 1 and d(vs-1,S,) # 1.
Thus, the acyclic codes of vertices of G with respect to II are distinct.
Therefore, II is a resolving acyclic partition and a.(G) < |II| = s.

Finally, we show that the equality in (2) holds for K, ,. It was shown
in [4] that pd(K,,) =r + 1 and pd(K,s) = s if r < s. It then follows by
Observation 1.1 that a,(K,;) > r+ 1 and a,(K,,) > s if r < 5. On the
other hand, if r = s, then I = {S1, S2, ..., Sr41}, where S; = {u;, v;}
for1<i<r-1, S, ={ur}, Sr41 = {v,} is a resolving acyclic partition
V(Kr.r); whileif r < s, say, then II' = {5}, S3, ..., S;}, where S} = {u;, v}
for 1 <i<randS]={v}forr+1<1i<s,is aresolving acyclic partition
V(Kys). Thus ap(K,,) =7 +1 and e, (K;,) =sifr <s. .

The following corollary is a consequence of Theorems 2.8 and 2.9.

Corollary 3.2 If G is a connected graph of order n > 3 with a,.(G) =
n — 1, then the diameter of G is 2 and the girth of G is at most 4.

We are now prepared to determine all connected graphs of order n > 3
with resolving acyclic number n—1. If n = 3, then G = P; or G = K3. Since
a-(P;) = 2 and a,(K3) = 3, it follows that P; is the only connected graph
of order 3 with resolving acyclic number 2. If n = 4, i.:en, by Theorem 2.7
and (1), any connected graph G of order 4 such that G # P4, K4 has
a.(G) = 3. For n > 5, by the proof technique used in [4], we have the
following characterization. For a vertex v in a graph G, let N(v) denote
the set of all vertices of G that are adjacent to v.

Theorem 3.3  Let G be a connected graph of ordern > 5. Then a,(G) =
n -1 if and only if G € {Cs + K1, Kin-1,Kn — €, K1 + (K1 U K, _2)}.

Proof. It is straightforward to verify that the graphs mentioned in the
theorem have resolving acyclic number n — 1. For the converse, assume
that G is a connected graph of order n > 5 with resolving acyclic number
n — 1. If G is bipartite, then the diameter of G is 2 by Corollary 3.2 and
so G = K,,; for some integers r and s with n = r 4+ s > 5. It then follows
by Theorem 3.1 that G = K ,—1. If G is not bipartite, let Y be the vertex
set of a maximum clique of G. Since G is not bipartite, G contains an odd
cycle C. By Corollary 3.2, the girth of G is at most 4 and so C = Cj.
Therefore, |Y| > 3. Let U = V(G) — Y and then |U| > 1 since G is not
complete.

Assume first that |[U| = 1. Then G = K, + (K, U K}) for some integers
s and ¢t. Since G is connected and G is not complete, s > 1 and ¢t > 1.
Let V(K,) = {u1,uz,...,us}, V(&) = {v1,02,...,%}, and V(K1) = {w}.
If s >t let T = {S51,5,...,5:41}, where S; = {u;,v;} (1 < i < ),
S;i = {w;} t+1 < i< 8),and Sg41 = {w}. Then II is acyclic. Since
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d(u,w) =1 for u € V(K,) and d(v,w) = 2 for v € V(K,), it follows that I
is a resolving acyclic (s + 1)-partition of V(G). Hence a,.(G) < s+ 1. By
Observation 2.6, a,.(G) > s. However, a,.(G) # s, for otherwise s =n — 1
and G = K,. Therefore, a,.(G) = s + 1. Since a,(G) = n — 1, it follows
that s=n—2and ¢t = 1. Therefore, G =K,,_2+ (K;UK))=K, —e. If
s<tletll ={S),S2,...,St4+1}, where S; = {u;,v;} (1 <i<3s),S;={vi}
(s+1<1i<t), and Si+1 = {w}, is a resolving acyclic partition of V(G).
Thus a.(G) < t+1. By Observation 2.6, a,(G) > t. However, a,(G) # t, for
otherwise £ = n — 1 and s = 0, implying that G is disconnected. Therefore,
ar(G) = t+1. Since a.(G) =n—1, we havet = n—2 and s = 1. Therefore,
G=K:+ (K1 UKy-2)

Next we assume that |U| > 2. If n = 5, then [Y| = 3 and |U| = 2.
It is routine to verify that Cs + K, is the only graph with the desired
properties. For n > 6, we claim that U is an independent set of vertices.
Assume, to the contrary, that U contains two adjacent vertices u and w.
Since Y is the vertex set of a maximum clique of G, there exist v € Y such
that uv ¢ E(G) and v' € Y such that wv' ¢ E(G), where v and v' are not
necessarily distinct. We also consider these two cases.

Case 1. There exists a vertez v € Y such that uv,wv ¢ E(G). We now
consider two subcases.

Subcase 1.1. There exists a vertex x € Y that is adjacent to exactly one
of u and w, say u. Since |Y'| > 3, there exist a vertex y € Y that is distinct
from v and z. Let IT = {S), Sz, ..., Sn—2}, there $; = {u, w}, S =
{v, =}, Ss = {y}, and each of remaining sets S; (4 < i < n — 2) contains
exactly one vertex from V(G) — {u,v,w,z,y}. Then (S;) is acyclic for all
1<i<n-2. Since cn(u)=(0,1,...), en(v)=(2,0,...), en(w)=(0,2,...),
and cn(z)=(1,0,...), it follows that II is a resolving acyclic (n—2)-partition
of V(G), a contradiction.

Subcase 1.2. Every vertex of Y is adjacent to either both u and w or to
neither u nor w. If v and w are adjacent to every vertex in Y — {v}, then
the induced subgraph ((Y — {v}) U {u, w}) is complete in G, contradicting
the defining property of Y. Thus, there exists a vertex y € Y such that y
is distinct from v, and y is adjacent to neither u nor w. Since the diameter
of G is 2, there is a vertex z of G that is adjacent to both u and v. Let
Il = {S1, S2, ..., Sn—2}, where S; = {z, y, w}, S2 = {u}, Sz = {v}, and
each of the remaining sets S; (4 < ¢ < n —2) contains only one vertex from
V(G) - {u,v,w,z,y}. Since y is not adjacent to w, it follows that (S;)
is acyclic and so II is acyclic. Since en(z)=(0,1,1,...), en(y)=(0,2,1,...),
and en(w)=(0,1,2,...), it follows that II is a resolving acyclic (n — 2)-
partition of V(G), a contradiction.

n



Case 2. There ezist distinct vertices v and v’ inY such that uv,wv’ ¢
E(G). Necessarily, then vw,v'u € E(G). Since [Y| > 3, there exists a
vertex y in Y distinct from v and v'. Also, at least one of the edges yu and
yw must be present in G, say yu. f yw ¢ E(G), let I = {81, Sa, ..., Sn—2},
where S; = {u,w,y}, S2 = {v}, Ss = {v'}, and each of the remaining sets
S; (4 < i < n - 2) contains only one vertex from V(G) - {u,v,v',w,y}.
Since yw ¢ E(G), it follows that II is acyclic. Because cn(u)=(0,2,1,...),
en(w)=(0,1,2,...), and en(y)=(0,1,1,...), it follows that II is a resolving
acyclic (n — 2)-partition of V(G), a contradiction. Thus, we assume that
yw € E(G). Since n > 6, there exists z € V(G) — {u,v,7',w,y}. We
consider two subcases, according to whetherz € Y orz € U.

Subcase 2.1. £ € Y. Then I ={S1, Sz, ..., Sn—2}, where S; = {v},
S, ={v'}, S3 = {z, w}, Ss = {u,y}, and each of the remaining sets S; (5 <
i < n—2) contains only one vertex from V(G) - {u,v,v',w, z,y}. Thus Il is
acyclic. Since cn(z)=(1,1,0,...), en(w)=(1,2,0,...), en(v)=(2,1,1,0,...),
and en(y)=(1,1,1,0,...), it follows that II is a resolving acyclic (n — 2)-
partition of V(G), a contradiction.

Subcase 2.2. £ € U. Then there exists ¢’ € Y that is not adjacent to z,
for otherwise, z € Y. We consider four subcases, according to whether g’
is one of v,v',y or not.

Subcase 2.2.1. y' = v. Let Il ={S1, Sa, ..., Sn—2}, where S; = {v},
Sy ={u, v'}, S3 = {z, w}, Sa = {y}, and each of remaining sets S; (5 <
i < n —2) contains exactly one vertex from V(G) - {u,v,v',w, 2,y}. Since
cn(u)=(2,0,...), en(v')=(1,0,...), cn(z)=(2,*,0,...), where * is either 1
or 2, and cn(w)=(1,1,0,...), it follows that II is a resolving acyclic (n - 2)-
partition of V(G), a contradiction.

Subcase 2.2.2. y' = v'. Let I ={S1, S2, ..., Sn—2}, where S; = {y},
S, ={v'}, S3 = {u, w}, S4 = {z,v}, and each of remaining sets S; (5 <
i < n —2) contains exactly one vertex from V(G) — {u,v,v',w, z,y}. Since
en(v) = (1,1,0,...), en(w) = (1,2,0,...), en(z) = (*,2,%,0,...), where
* is either 1 or 2, and cpy(v)=(1,1,1,...), it follows that II is a resolving
acyclic (n — 2)-partition of V(G), a contradiction.

Subcase 2.2.3. y' = y. Let II ={S1, Sa, ..., Sn—2}, where §; = {y},
Sy ={v}, S3 = {v', =}, S4 = {u,w}, and each of remaining sets S; (5 <
i < n — 2) contains exactly one vertex from V(G) — {u,v,v',w,z,y}.
Since cn(v')=(1,1,0,...), en(z)=(2,%,0,...), en(u) = (1, 2, 1, 0, ...), and
cn(w) = (1,1, *,...), where x is either 1 or 2, it follows that II is a resolving
acyclic (n — 2)-partition of V(G), a contradiction.

Subcase 2.2.4. y' ¢ {v,v',y}. Let 1 ={Si, S3, ..., Sn—2}, where §; =
{v}, S2 ={v'}, S5 = {¥', w}, S4 = {v,y}, and each of remaining sets S; (5 <
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¢ < n — 2) contains exactly one vertex from V(G) — {u,v,v',w,z,y}. Since
en(y)=(1,1,0,...), en(w)=(1,2,0,...), en(u)=(2,1,1,0,...), and cn(y) =
(1,1,1,0,...), it follows that II is a resolving acyclic (n — 2)-partition of
V(G), a contradiction.

Therefore, in any case, U is an independent set. Next we claim the
N(u) = N(w) for all u,w € U. It suffices to show that if uv € E(G), then
vw € E(G). Suppose that uv € E(G) for some vertex v of G. Necessarily
v € Y. Assume, to the contrary, that vw ¢ E(G). Since Y is the vertex
set of a maximum clique, there exists ¥y € Y such that uy ¢ E(G). Since
G is connected and U is independent, w is adjacent to some vertex of
Y. First assume that w is adjacent only to y. Since w and y are not
adjacent to u, it follows that d(w,u) = 3, which contradicts the fact that
the diameter of G is 2. Thus, there exists a vertex z in Y distinct from
y such that wz € E(G). Let Il = {S1,S52,...,Sn—2}, where §; = {w,z},
Sy = {u,v}, S3 = {y}, and each of the remaining sets S; (4 < i < n—2)
contains only one vertex of V(G) — {u,w,z,v,y}. Then (S;) is acyclic
for all 1 < i < n—2. Since cr(u)=(%,0,2,...), where * is either 1 or 2,
en(v)=(1,0,1,...), en(w)=(0,2,1,...), and en(z)=(0,1,1,...), it follows
that II is a resolving acyclic (n — 2)-partition of V(G), contradicting the
fact that ,(G) =n—1.

So far, we have, for n > 6, V(G) = Y UU, where (Y) is complete,
U is independent, |Y| > 3, |U| > 2, and N(u) = N(w) for all u,w € U.
Next we show that for each u € U, there exist at most one vertex of Y not
contained in N(u). Assume, to the contrary, that there are two vertices
z,y € Y not in N(u). Let w be a vertex of U that is distinct from u.
Thus wz,wy ¢ E(G). Since G is connected, there exists z € Y such that
z € N(u) = N(w). Let I = {S1,52,...,5:-2}, where S; = {y,z,w},
Ss = {u}, S3 = {z}, and each of the remaining sets S; (4 < i < n —2)
contains only one vertex of V(G) — {y,2,w,u,z}. Since wy ¢ E(G), it
follows that (S;) is acyclic and so II is acyclic. Since en(y)=(0,2,1,...),
cn(2)=(0,1,1,...), and en(w)=(0,2,2,...), it follows that II is a resolving
acyclic (n — 2)-partition of V(G), a contradiction.

Now either N(u) =Y or N(u) =Y — {v} forsomev e Y. U N(u) =Y
then G = K;+ Ky fors=|Y|>3and t = |U| > 2. If N(u) =Y — {v},
then G = K, + (K1 UK,), where V(K1) = {v},s=|Y|-1>2 and
t = |U| > 2. However, K, + (K1 UK;) = K, + Ki11. In either case,
G =K,+ K;, wheret > 3 and so s < n — 3. Let V(K,) = {u1,u2,...,Us}
and V(-K—t) = {’Ul,'vz,.. .,vt}. Ifs= t, let II = {51,32,. . .,SH.]}, where
S; = {u;,v;} (1 <1< 5-1), 85, = {us}, and Sp41 = {v,}. Since d(u,vs) =1
(u € V(K,)) and d(v,v5) = 2 (v € V(Ky)), it follows that II is a resolving
acyclic (s + 1)-partition of V(G). Hence a,(G) < s+1<n-3+1=
n — 2, which is a contradiction. If s > ¢, let Il = {S1,9:,...,Ss+1}
where S; = {us, v} 1 <i<t-1), 8 = {w;} (t+1 < i < s), and
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Ss+1 = {v¢}. Since d(u,v;) =1 (u € V(K,)) and d(v,v;) = 2 (v € V(Ky)),
it follows that II is a resolving acyclic (s + 1)-partition of V(G). Hence
e-(G) <s+1<n-3+1=n-2, which is a contradiction. If s < ¢,
let II = {Sl,Sz,...,St}, where Si = {u,-,vi} (1 < ) < 3) and S,' = {'U;'}
(s+1 <1 <t). Since II is a resolving acyclic t-partition of V(G), it follows
that a¢,.(G) <t < n — 2, which is a contradiction. =
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