FINITE LINEAR SPACES WITH FOUR MORE LINES
THAN POINTS

VITO NAPOLITANO

ABSTRACT. In 1948 de Bruijn and Erdds proved that every finite
linear space on v points and with b lines fulfils the inequality b > v,
and the equality holds if the linear space is a (possibly degenerate)
projective plane. This result led to the problem of classifying finite
linear spaces on v points and with & = v + s lines, s > 1. This paper
contains the classification of finite linear spaces on v points and with
b=v+4 lines.

1. INTRODUCTION

A finite linear space [5] on v points and with b lines is a pair (P, £),
where P is a finite set of v points and £ is a family of b subsets (the lines)
of P such that: any two points are on a unique line, each line contains at
least two points and there are at least two lines.

The degree of a point p is the number [p] of lines on p and the length of
a line ¢ is its size |£] [13].

Denote by k the maximal line length and by m the minimum point
degree.

The near-pencil on v points is the linear space on v points with a line
of length v — 1 [13].

A (h,k)-cross, 3 < h < k, is the linear space on h+k — 1 points, with a
point of degree 2 on which there are two lines of length h and k respectively
[13].

A linear space is irreducible if every line has length at least three.

A projective plane is an irreducible linear space such that any two lines
meet in a point [13].
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Theorem (de Bruijn - Erdés, 1948 [3]) Let (P, L) be a finite linear space.
Then b > v. Moreover, equality holds if and only if (P, L) is a projective
plane or a near-pencil.

This theorem led to the problem of classifying finite linear spaces with
b = v + s lines, s > 1. This question has been studied in some detail; see
for instance [[6], Chapter 8 and Chapter 9] and the literature quoted there.

In this paper we study the case s = 4. Actually we complete the
classification of finite linear spaces on v points and b = v + 4 lines, since
if b > 16 one can obtain such classification by a theorem of Metsch [6] on
weakly restricted linear spaces. As in [7] we will prove that k > m — 1, and
studying the three different cases k = m — 1,k =m, and k > m + 1 we
obtain the required classification.

1.1. Finite linear spaces with b — v < 3. In this section we recall the
theorems for 1 < s < 3.

The order of a finite projective plane = is the integer n > 2 such [p] =
[{l =n+1for all p€ P and for all £ € L [13].

Theorem I (Bridges, 1972 [2]) Every linear space with b—v =1 is a
punctured projective plane or the cffine plane of order two with a point at

infinity.

Theorem II (de Witte, 1976 [14]) Every finite linear space with two more
lines than points is one of the following:
(1) A doubly punctured projective plane of order n > 3.
(2) The affine plane of order two.
(3) The Fano quasi-plane, which is the offine plane of order two with
the near-pencil on 3 points at infinity.
(4) The affine plane of order three with one point at infinity.

Theorem III (Totten, 1976 [10]) Every linear space with three more lines
than points is one of the following spaces:

(1) The complement of three points in a finite projective plane of order
n,n>4.

(2) The complement of three non-collinear points in the projective plane
of order 3.

(3) The affine plane of order three.

(4) The affine plane of order 4 with a point at infinity.

(5) The punctured affine plane of order 3 with a point at infinity.

(6) The linear space on v = 12 points obtained from the affine plane of
order 3 with a near-pencil on three points at infinity.
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(7) The affine plane of order 3 with a near pencil on four points at

infinity.

(8) The linear space on v = 5 points, with a line of length 3 and all the

(9)
(10)
(11)
(12)

(13)

other of length 2.

The linear space on v = 6 points, with three lines of length 3 and
the remaining lines of length 2.

The linear space on v = T points, with one line of length 5, another
of length 3 and the remaining of length 2.

The linear space on v = 7 points, with a line of length 4, three of
length 3 and the the remaining of length 2.

The linear space on v = 8 points, with a line of length 4, siz of
length 3, the remaining of length 2, and such that on each point
there is a line of length 3.

The linear space on v = 8 points, with a line of length 4, siz of
length 3, the remaining of length 2, and with a point not on any
line of length 3.

1.2. Finite linear spaces with b — v = 4. In this section 7, will denote
a projective plane of order n, and a;, an affine plane of order n.
Now we give the list of finite linear spaces with b — v = 4.

E1l.
E2.
E3.
E4.
ES.
E6.
E7.
E8.
E9.

Q4.

The complement of four points in #,, n > 5.
The complement of four non-collinear points in ny4.
The complement of four points no three of which are collinear in 3.

as with a point at infinity.

The punctured affine plane a4 with a point at infinity.
a4 with a near-pencil on v = 3 points at infinity.
a4 with a near-pencil on v = 4 points at infinity.

a4 with a near—pencil on v = 5 points at infinity.

E10. The punctured affine plane of order 3.

E11. The punctured affine plane of order 3 with a near-pencil on v = 4
points at infinity.
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E12. The punctured affine plane of order 3 with a near-pencil on v = 3
points at infinity.

E13. The linear space on v = 8 points, with a single point of degree m = 3,
on which there are two lines of length 4 and one line of length 2, and with
three concurrent lines of length 3 in a point outside of the two lines of
length 4.

E14. The linear space on v = 7 points, with five pairwise intersecting lines
of length k£ = 3, and with m = 3.

E15. The linear space on v = 7 points, with five lines of length k = 3, with
a single point of degree m = 3 and with two parallel lines of length k = 3.

E16. Let p be the point of degree 3 of E15. Each line of length 3 on p
is parallel to two parallel lines of length 2, and so gives rise to a partition
(parallel class) of the point set of E15.

The linear space obtained from F15 by adding the three infinity points
of these parallel classes and imposing that these new points form a near-
pencil has v = 10 points and b = 14 lines.

E17. The (3, 6)—cross.
E18. The (4,4)-cross.

E19. The linear space on v = 6 points, with a line of length k = 4 parallel
to a line of length 2.

1.3. The result. In this paper we prove the following result.

Theorem 1.1. A finite linear space on v points and with b = v + 4 lines
is one of the linear spaces described in E1,..., E19.

2. SOME PRELIMINARY RESULTS

In this section we recall some classical results on the characterization
of finite linear spaces with a prescribed value for the difference b — v.

Theorem 2.1 (Totten, 1976 [9]). Every linear space with b —v < /v
(restricted linear space) is one of the following spaces:
(1) A near-pencil.
(2) A projective plane of order n with at most n points deleted but no
more than n — 1 from the same line.
(3) An affine plane, or an affine plane with one point at infinity, or a
punctured affine plane with a point at infinity.
(4) A complete projectively inflated affine plane.
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(5) The (3,4)-cross.

Theorem 2.2 (Metsch, 1991 [6], Thm. 8.6 pp. 79). Every linear space
with b—v < Vb (weakly restricted linear space) is one of the following
spaces:

(1) A restricted linear space.

(2) An affine plane of order n with a punctured projective plane on n
orn + 1 points at infinity.

(3) A complete projectively inflated punctured plane.

(4) An inflated affine plane of order 4 or 5 whose space at infinity is
the affine plane of order 2 with a point at infinity.

(5) The linear space obtained from the projective plane of order 3 by
deleting two lines, their point of intersection, and two more points
from each of these two lines.

(6) The (3,5)-cross.

(7) The linear space on v = 7 points, b = 10 lines, with a line of length
4, three of length 3 and the the remaining of length 2.

(8) The linear space on v = 8 points, b = 11 lines, with a line of length
4, siz of length 3, the remaining of length 2, and with a point not
on any line of length 3.

Theorem 2.3 (Vanstone, [11]). A finite linear space with mazimum point
degree n + 1 and with v > n? points is embeddable in a finite projective
plane of order n.

Theorem 2.4 (Doyen, [4]). The finite linear spaces with b — v = 4 and
v <9 are those described in E3, E10, F13, E14, E15, E17, E18, E19.

3. PROOF OF THEOREM 1.1

Throughout this section (P, L) will denote a finite linear space with
b — v = 4, k will denote the maximal line length, m the minimum point
degree, and if L is a line, §; will denote the number of lines parallel to L
and different from L.

Proposition 3.1. If there are two lines £ and €' such that P = £U{, then
(P, L) is one of the linear space described in E17, E18 and E19.

PROOF. Put |¢| = k and |¢/| = k, s0 h < k.

If¢Né =9, thenv=h+kand b= h+k+4. On the other hand,
counting the lines meeting £ and ¢’ we have b = hk + 2. So,
h+k+4=hk+2,

that is
(h=1Dk=h+2.
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It h >3, then 2h < 2k < h+2 and so h = 2, that is impossible. So h = 2
and k =4 and (P, £) is the linear space E19.

feéNne #0,thenv=h+k—-1,andsob=h+k+3. Butbd=
(h=1)(k —1) +2, thus

(h=-1)k-1)=h+k+1,

that is
k-1Dh-2)=h+2-2+2
from which it follows that

(k-2)(h-2)=4
and so h,k > 3 and since k > h we have (h — 2)? < 4, hence
h=3, k=6
or
h=4, k=4

and so (P, L) is the (3, 6)-cross or the (4,4)-cross, that is one of the linear
spaces E17 and F18. 0O

From now on we may suppose that given two lines £ and ¢ there is a
point outside of them, and in particular that m > 3.

Proposition 3.2. k> m —1.
PROOF. Counting in double way the point-line pairs (p, £), with p € ¢,
we have:

®)  vm< Yo=Y 1 < bk = (v + 9k,

pEP tel

and so
v(m - k) < 4k.

Assume by way of contradiction that k¥ < m — 2, then m > 4 and
20 < 4k. fm > 5 fromb> k(m—1)+1 > 4k + 1 it follows that
b>2v+1,andso4=b—v >v+1>m+1> 6, that is impossible! Hence
m = 4 and so k = 2. Therefore [z] = 4 for every z € P and v = 5, and so
from equation (x) it follows that 20 < 18, a contradiction!

Hence k > m — 1 and the assertion is proved. O
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3.1. k =m — 1. In this section we are going to prove the following result.

Proposition 3.3. If k =m - 1, then (P, L) is either the punctured affine
plane of order 3, or the affine plane of order 4, (that is E10 or E5).

First we observe that m > 4. Indeed if m = 3, then k£ = 2 and so
v =m+ 1 = 4. Since on 4 points there are only two linear spaces, the
near-pencil and the affine plane of order 2 and they fulfill the inequality
b — v < 2, we have a contradiction.

If m > 5, then b > (m~1)2+1> 17 > 42, and so by Theorem 2. 2,
we have that m = 5 and (P, £) is the affine plane of order m — 1 = 4.

If m =4, then v < (m - 1)%2 <9, and so by Theorem 2.4 we have that
(P, L) is the punctured affine plane of order 3.

3.2. k = m. In this section we will prove the following result.

Proposition 3.4. Let (P, L) be a finite linear space with b— v = 4, then
(P, L) is one of the linear spaces described in E1,E2,E3, E7, E8,E9, E11,
E12,E14 and E15.

The following lemmas are the proof of Proposition 3.1.

Before to start with the proof of the lemmas, we recall that the projec-
tive plane of order 2 is also called the Fano plane.

Lemma 3.5. If all points have constant point degree m, then (P, L) is one
of the linear spaces E1, E2 and E3.

PROOF. Since each point has degree m, then each line of length m has
no parallel line, andsob=m(m—-1)+1=m?—m+1. Putn=m-—1,
thenv=n24n-3,b=n2+n+1, and all points have degree n+ 1. Since
(P, L) is not a near—pencil, it follows that n > 3. From Theorem 2.3 it
follows that (P, £) is embeddable in a projective plane of order n > 3, and
so it is the complement of four points in a projective plane of order n > 3.
It follows that (P, L) is one of the linear spaces described in E1, E2 and
E3. O

Hence we have to consider the non-constant point degree case.

So from now on, there is at least a point = of degree at least m + 1.
Hence & > m(m — 1) + 1 + 1. Throughout this section n = m ~ 1, and so
b>n?+n+2andv<n®+n+1.

Lemma 3.6. Ifn > 4, then (P, L) is one of the linear spaces described in
E7,E8 and E9.
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PROOF. Since n > 4 = b — v, by Theorem 2.2 it follows that (P,L) is
an inflated affine plane of order 4, that is one of the linear spaces described
in E7,E8 and E9. O

Lemma 3.7. Ifn = 3 then (P, L) is one of the linear spaces E11 and E12.

PROOF. From n = 3 it follows that 4 > 9+3+2 = 14 and v < 13, and
)

10<v<13 and 14<b<L 1T

From Theorem 2.2 we have that if b > 16 then v = 12 and (P, £) is the
linear space E11.
Hence we have to study the cases v € {10,11}.

Consider the case v = 10.

If there is a line L of length & with all points of degree m, then from b = 14
it follows that L has exactly one parallel line. Let H be this parallel line
to L. By Proposition 3.1 there is a point z outside LU H, and [z] = m.
Since v = 10, on z there is a line T of length k& meeting L. Let y a point of
H\ {HNT}, the parallel line on y to T' meets L in a point of degree m + 1,
a contradiction! So each line of length k has exactly one point of degree
m + 1, and so each line of length k& has no parallel line. It follows that
either there is a single point of degree m + 1 on which there are all lines of
length k, or there is a single line of length k = m. In both cases there is a
point of degree m on which there is no line of length %, and so counting v
on a point of degree m we have: v <4-2+1 =9, a contradiction!

Now consider the case v = 11.

From b = 15 it follows that a line of length & has either two points of
degree m + 1, or a point of degree m + 2, or a point of degree m + 1 and a
parallel line, or all points of degree m and two parallel lines.

On each point of degree m there are at least two lines of length k = m.
Each line of length k = m has at least two points of degree m, and so any
two lines of length m meet in a point.

Claim: each line of length k has at least a point of degree at least m+ 1.

Let L be a line of length & with all points of degree m. Let H be a line
parallel to L, and T be a line of length m meeting L. If H meets T, then the
parallel line to T on a point of H different from 7' N H meets L in a point
of degree m + 1, a contradiction! So H is parallel to each line of length m,
it follows that |H| = 2 and the points of H have degree m + 2 = 6. Each
line of length & has all points of degree m, on a point of degree m there
are two lines of length & and two lines of length 3, otherwise H would have
length 1. Thus there are 5 lines of length %, either 8 of length 3 and three
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of length 2, or a single point of degree m + 2, and so on a point of degree
m + 1 there are a line of length 2 and four of length 3. In the former case
b= 16, in the second v = 10, and so in both cases a contradiction!

If a line L of length k has a point of degree m + 2 then each line of
length k meeting L in a point of degree m has two parallel lines and so L
has a parallel, that is impossible!

So each line of length k has one point of degree m + 1 and one parallel
line. Thus there is no point of degree m + 2. Let L be a line of length k,
z a point of degree m of L and H(# L) be a line of length k on z. Let
y be the point of degree m + 1 of L, and z be the point of degree m + 1
of H. Let ¢ the line on y parallel to H, then |¢| = 2, otherwise L has two
parallel lines, let p be the second point of ¢, the parallel line T on p to L
meets H in z, and |T| = 2. The line pz has length at least 3, otherwise
counting v via the lines on p one gets: v <2+ 14143+ 3 =10, that is
impossible! Let u and w be the other two points of L, then pu has length
3 and pw has length 4 (or vice versa), so on y there is a parallel to pw and
this parallel meets h in 2, and so it is the line yz, and so three points p,y
and z give rise to three lines of length 2. On each of these three points there
are two lines of length 2, two of length 4 and one of length 3. Consider
the linear space obtained from (P, £) by deleting the three points p,y and
z and so the three lines py, pz, yz, it has 8 points and 12 lines, each point
has degree 4 and lines have length 2 or 3. There are four lines of length
2 which partition the point set of this linear space, and so adding a point
at infinity to this parallel class we get the affine plane of order 3, and so
(P, L) is the punctured affine plane of order 3 with a triangle at infinity,
thatis E12. 0O

Lemma 3.8. If n = 2 then (P, L) is one of the linear spaces described in
E14 and E15.

PROOF. If n = 2, then v < 7, and so the assertion easily follows from
Theorem 2.4. O

3.3. k> m+ 1. In this section we are going to prove the following propo-
sition.

Proposition 3.9. If £ > m + 1 then (P, L) is one of the linear spaces
E4,FE6,E13 and F16.

First consider the case m > 4.

From b > k(m — 1) + 1 > m? it follows that b > 16, and so b—v < V/b,
and by Theorem 2.2 we have that there is a single point of degree m and
(P, L) is one of the linear spaces E4 and E6.



So we may assume that m = 3, and the following lemmas are the proof
of Proposition 3.5.

We distinguish two cases.
CASE 1. There is a single point p of degree m.

Let p be the point of degree 3, counting v via the lines on p we obtain
v < 3(k - 1) + 1. Since b > 3k, from b — v < 4 it follows that

3k<b<3k+2 3k—4<v<3k-2.

Lemma 3.10. If m = 3, then (P, L) is one of the linear spaces E13 and
E16.

PROOF. If on p there is a single line of length k&, then counting v on p

we have
k—-4<v<k+k-2+k-2,

and so v = 3k — 4, and on p there are two lines of length k — 1 and one line
of length k. From b = 3k it follows that the line of length & has no parallel
lines and that its points different from p have degree m + 1 = 4. Let = be
a point of a line of length k — 2, = has degree k, on it there are one line
of length k¥ — 1, k — 2 lines of length 3 and one line of length 2. So there
are 2k — 4 lines of length 2, one line of length &, two of length k¥ — 1 and
(k — 2)? of length 3. Thus

Bk=b=1+2+2k—4+k>—4k+4,

and so
k* -5k+3=0.

Since k is an integer we have a contradiction.
Hence on p there are at least two lines of length k.

If on p there are two lines of length k, then 3k — 4 < v < 3k -3.

If v = 3k — 4, then on p there are two lines of length k& and one of length
k—2. From 3k = b = 3+ (k—1)m, it follows [z] = m+1 for each z on a line
of length k, and lines of length k have no parallel line. Thus k = m+1 = 4,
and so on p there are two lines of length 4 and one of length 2. Let z be
the second point of the line of length 2 on p, then on x there are k — 1 lines
of length 3. If y belongs to a line of length k, then on y there are one line
of length 3, one of length k and ¥ —2 = m — 1 = 2 lines of length 2. Hence
v =28, b=12 and (P, L) is the linear space E13.

Ifv=23k-3, then b = 3k + 1. A line of length k contains either a
point of degree m + 2 or a parallel line. If L is a line of length &k with a
parallel line £, since ¢ has length 2 it meets the other line of length & that
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has a point of degree k£ + 1 and a parallel line a contradiction. So lines of
length k have no parallel line. So they have a point of degree m + 2, and
so k = m + 2, hence each point of a line of length k different from p has
degree m + 2, a contradiction since b = 3k + 1.

So v =3k -2, b=3k+2, and on p there are three lines of length k.
Let L, L, and L, be the three lines on p.

If 6 = 0, then for each point not in L [z] = k, and so each point of
(P, L) has degree k. It follows that on each point z different from p there
are one line of length k and k-1 lines of length 3. Let b; denote the number
of lines of length i. Hence

(3k — 2)(k — 1)

(v—1)(k—1) = 3bs = :

From b = b3 + b = 3k, it follows that
3k? -~ 14k +5=0,

a contradiction since k is an integer.

So 6z > 1. Thus there is a line ¢ parallel to L, and so both Ls and
L3 have a point of degree at least £ + 1 and so they have a parallel line,
hence each of them has exactly one parallel line and exactly one point of
degree k + 1, one of degree m and the remaining of degree m + 1. So
k = m + 1 = 4. Each line of length k has a point of degree k +1 = 5. It
followsthat v =3k ~2=10and b=v +4 = 14.

On a point of degree k + 1 = 5 there are a line of length k, two lines
of length 2 and two of length 3. On a point of degree k there is no line
of length 2. Hence there are three lines of length 2, eight of length 3 and
three of length 4. There are three points of degree k+1 = 5. Let us denote
these three points by 00,002 and 003.

The linear space obtained from (P, L) by deleting the three points oo;,
i = 1,2,3 is a linear space on v = 7 points, b = 11 lines, m = 3 = k,
with few lines of length 3 and with two parallel lines of length 3. Its points
have degree m and m + 1, and so by the previous section it follows that
it is the linear space E15. Let {1,2,3,4,5,6,7} be the points of E15,
and {123, 345, 561, 276, 147, 46, 37,24, 57, 36,25} be the lines of £15. The
triple of lines {123,46,57}, {561,24,37} and {147, 36,25} are three parallel
classes of E15, and so adding oo, to first triple, 0oy to the second and oo3 to
the third triple, and adding the lines 003002, 001003 and cop003 we obtain
(P, L) and so (P, L) is the linear space E15 with a near—-pencil on 3 points
at infinity, that is the linear space £16. [0
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CASE 2. There are at least two points of degree m.

In this case v < k + 4 and there is a single line of length k. Denote by
L the unique line of length k.
Since b > 2k + 1, from b — v < 4 it follows that

k<.

Now we are going to prove the following result.

Lemma 3.11. There is no finite linear space with b—v = 4, two points of
degreem, k>m+1, and m = 3.

PROOF. If k < 5, then v < 9 and by Theorem 2.4 it follows that there
is no finite linear space withm =3,4 <k <5and b—v < 4.

If k=7, then b = 15, v = 11 and the points of the line of length k = 7
have all degree m = 3. Since on a point of degree 3 there are one line of
length k& and two lines of length 3, then there are at least fourteen lines
of length 3, and this is in contradiction with the fact that the four points
outside the line of length k give rise to six lines of length 3.

If K =6 then
9<v<10, and13<b< 14.

By Theorem 2.4 it follows that v = 9 cannot occur.

If v = 10, b = 14, on a point of degree m there are one line of length k
and two lines of length 3. The line of length k contains at least five points
of degree m, and so there are ten lines of length 3 contradicting the fact
that the four points outside of the line of length k give rise to six lines of
length 3. O
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