Even (m_1, m_2, \ldots, m_r) -cycle systems of the complete graph

Shung-Liang Wu National Lien-Ho Institute of Technology Miaoli, Taiwan, R. O. C.

ABSTRACT. Let K_n be the complete graph on n vertices. In this paper, we find the necessary and sufficient conditions for the existence of (m_1, m_2, \ldots, m_r) -cycle system of K_n , where m_i $(1 \le i \le r)$ are positive even integers, and $\sum_{i=1}^r m_i = 2^k$ for $k \ge 2$. In particular, if r = 1 then there exists a cyclic 2^k -cycle system of K_n if and only if 2^k divides $|E(K_n)|$ and n is odd.

1 Introduction

The m-cycle $(v_0, v_1, \ldots, v_{m-1})$ is the graph induced by the edges $\{(v_i, v_{i+1}), (v_0, v_{m-1}) \mid i \in Z_{m-1}\}$. An m-cycle system of a graph G = (V, E) is an ordered pair (V, C), where C is a set of m-cycles such that every edge of E belongs to exactly one m-cycle of C. Similarly, a (m_1, m_2, \ldots, m_r) -cycle is the union of edge-disjoint m_i -cycles for $1 \leq i \leq r$, and a (m_1, m_2, \ldots, m_r) -cycle system of a graph G = (V, E) is also an ordered pair (V, C^*) , where C^* is a set of (m_1, m_2, \ldots, m_r) -cycles such that every edge of E belongs to exactly one (m_1, m_2, \ldots, m_r) -cycle of C^* . A (m_1, m_2, \ldots, m_r) -cycle system is said to be even if each m_i $(1 \leq i \leq r)$ is even.

Let K_n denote the complete graph on n vertices and $K_n - F$ denote the complete graph on n vertices with a 1-factor F removed. The necessary conditions for the existence of a decomposition of K_n or $K_n - F$ into a (m_1, m_2, \ldots, m_r) -cycle are:

- (1) $3 \leq m_i \leq n$, for i = 1, 2, ..., r;
- (2) n is odd (even); and
- (3) The number of edges in K_n $(K_n F)$ is a multiple of $\sum_{i=1}^r m_i$.

The question of whether these necessary conditions are also sufficient was asked by Alspach [3]. Although the conditions have been shown to be sufficient in many cases, the question is still widely an open problem.

A great deal of work has been done on the m-cycle systems of K_n . For a survey of m-cycle systems refer to Linder and Rodger [8]. Notably, Alspach and Gavlas [4] and Sajna [14] have proved that Alspach's conjecture is true when all cycles are the same length.

In the case of (m_1, m_2, \ldots, m_r) -cycle systems of K_n , Alspach's conjecture is known to be true for all $n \le 10$ [9] and for all n when

- (1) $m_i \in \{3,5\}$ for i = 1, 2, ..., r [1];
- (2) $m_i \in \{4,5\}$ for i = 1, 2, ..., r [5];
- (3) $m_i \in \{3,4,6\}$ (or $\{n-2,n-1,n\}$, $\{2^k,2^{k+1}\}$ $(k \ge 2)$) for $i=1,2,\ldots,r$ [6]; and when
- (4) $m_i \in \{4,8\}$ (or $\{4,10\}$, $\{6,8\}$, $\{6,10\}$, $\{8,10\}$) for $i=1,2,\ldots,r$ [2].

In this paper, it is shown that if m_1, m_2, \ldots, m_r are positive even integers with $\sum_{i=1}^r m_i = 2^k$ for $k \geq 2$, then there exists an even (m_1, m_2, \ldots, m_r) -cycle system of K_n if and only if $\sum_{i=1}^r m_i$ divides $|E(K_n)|$ and n is odd.

2 The results

Let the vertex set of K_n be Z_n and let (a, b) be any edge of K_n . By ||a - b|| we mean the *length* of the edge (a, b) that is defined as

$$||a-b|| = \min\{|a-b|, n-|a-b|\}.$$

By observing the lengths of edges in K_n , we have that there are n edges of length q for each $1 \le q \le \lfloor (n-1)/2 \rfloor$ and if n is even, then there are n/2 edges of length n/2.

Recall that $V(K_n) = Z_n$. Assume the 2m-cycle considered here to be a subgraph of K_n . A 2m-cycle $(v_0, u_0, v_1, u_1, \ldots, v_{m-1}, u_{m-1})$ is resoluble if $\max\{v_0, v_1, \ldots, v_{m-1}\} < \min\{u_0, u_1, \ldots, u_{m-1}\}$. A resoluble 2m-cycle is exact if the set of lengths of all edges is a sequence of distinct consecutive integers. For convenience, let S be the set of lengths of edges in a 2m-cycle. An exact resoluble (m_1, m_2, \ldots, m_r) -cycle is defined similarly. Lemmas 2.1 to 2.6 can be obtained by easy computation, and so their proofs are omitted.

Lemma 2.1.

- (1) (0,4,1,2) is an exact resoluble 4-cycle with $S = \{1,2,3,4\}$.
- (2) $(0,4k,1,4k-1,\ldots,k-1,3k+1,k,3k-1,k+1,3k-2,\ldots,2k-1,2k)$ is an exact resoluble 4k-cycle with $S = \{1,2,\ldots,4k\}$ for $k \geq 2$.

Lemma 2.2.

- (1) (0,4,1,3,2,7) is a resoluble 6-cycle with $S = \{1,2,3,4,5,7\}$.
- (2) (2, 11, 1, 12, 0, 8) is a resoluble 6-cycle with $S = \{6, 8, 9, 10, 11, 12\}$.
- (3) $(0,4k+1,1,4k,\ldots,k-2,3k+3,k-1,3k+1,k,3k,\ldots,2k-1,2k+1,2k,4k+3)$ is a resoluble (4k+2)-cycle with $S=\{1,2,\ldots,4k+1,4k+3\}$ for $k\geq 2$.
- (4) (2k, 2k + 3, 2k 1, 2k + 4, ..., k + 2, 3k + 1, k + 1, 3k + 3, k, 3k + 4, ..., 1, 4k + 3, 0, 2k + 1) is a resoluble (4k + 2)-cycle with $S = \{1, 3, 4, ..., 4k + 3\}$ for $k \ge 2$.

Suppose that $C=(v_0,u_0,v_1,u_1,\ldots,v_{m-1},u_{m-1})$ is an exact resoluble 2m-cycle with $\max\{v_0,v_1,\ldots,v_{m-1}\}$ $<\min\{u_0,u_1,\ldots,u_{m-1}\}$. For the sake of notational convenience, denote $(v_0,u_0+j,v_1,u_1+j,\ldots,v_{m-1},u_{m-1}+j)$ by $(v_0,u_0,v_1,u_1,\ldots,v_{m-1},u_{m-1})\oplus j$, or simply $C\oplus j$. Let C^* be an exact resoluble (m_1,m_2,\ldots,m_r) -cycle and the notation $C^*\oplus j$ has a similar meaning. Moreover, we will assume that $C+j=(v_0+j,u_0+j,v_1+j,u_1+j,\ldots,v_{m-1}+j,u_{m-1}+j)$ and C^*+j is also defined similarly.

Lemma 2.3. If $(v_0, u_0, v_1, u_1, \ldots, v_{2m-1}, u_{2m-1})$ is an exact resoluble 4m-cycle with $S = \{k, k+1, \ldots, k+4m-1\}$ for $k \ge 1$, then $(v_0, u_0, v_1, u_1, \ldots, v_{2m-1}, u_{2m-1}) \oplus j$ is also an exact resoluble 4m-cycle with $S = \{k+j, k+j+1, \ldots, k+4m+j-1\}$. In particular, if C^* is an exact resoluble (m_1, m_2, \ldots, m_r) -cycle with $S = \{k, k+1, \ldots, k+4m-1\}$, then $C^* \oplus j$ is still an exact resoluble (m_1, m_2, \ldots, m_r) -cycle with $S = \{k+j, k+j+1, \ldots, k+4m+j-1\}$.

There does not exist an exact resoluble (4m+2)-cycle for $m \ge 1$. Thus, we will amalgamate a $(4m_1+2)$ -cycle and a $(4m_2+2)$ -cycle such that they become exact and resoluble. We use the symbol $C_1 \cup C_2$ to denote the union of two edge-disjoint graphs C_1 , C_2 . In Lemmas 2.4 and 2.5, assume that $(v_0, u_0, v_1, u_1, \ldots, v_{2m}, u_{2m})$ and $(x_0, y_0, x_1, y_1, \ldots, x_{2k}, y_{2k})$ are respectively (4m+2) and (4k+2)-cycles with $\max\{v_0, v_1, \ldots, v_{2m}\}$ $< \min\{u_0, u_1, \ldots, u_{2m}\}$ and $\max\{x_0, x_1, \ldots, x_{2k}\}$ $< \min\{y_0, y_1, \ldots, y_{2k}\}$.

Lemma 2.4. If $(v_0, u_0, v_1, u_1, \ldots, v_{2m}, u_{2m}) \cup (x_0, y_0, x_1, y_1, \ldots, x_{2k}, y_{2k})$ is an exact resoluble (4m+2, 4k+2)-cycle with $S = \{p, p+1, \ldots, p+4m+4k+3\}$, then $(v_0, u_0, v_1, u_1, \ldots, v_{2m}, u_{2m}) \oplus j \cup (x_0, y_0, x_1, y_1, \ldots, x_{2k}, y_{2k}) \oplus j$ is also an exact resoluble (4m+2, 4k+2)-cycle with $S = \{p+j, p+j+1, \ldots, p+4m+4k+j+3\}$.

Lemma 2.5. If $(v_0, u_0, v_1, u_1, \ldots, v_{2m}, u_{2m})$ is a (4m+2)-cycle with $S = \{1, 2, \ldots, 4m+1, 4m+3\}$, and $(x_0, y_0, x_1, y_1, \ldots, x_{2k}, y_{2k})$ is a (4k+2)-cycle with $S = \{1, 3, 4, \ldots, 4k+3\}$, then $(v_0, u_0, v_1, u_1, \ldots, v_{2m}, u_{2m}) \cup \{1, 3, 4, \ldots, 4k+3\}$

 $(x_0, y_0, x_1, y_1, \dots, x_{2k}, y_{2k}) \oplus (4m+1)$ is an exact resoluble (4m+2, 4k+2)-cycle with $S = \{1, 2, \dots, 4m+4k+4\}$.

Lemma 2.6. If (a_i, b_i) is an edge of K_n satisfying that $||a_i - b_i|| = i$, $1 \le i \le \lfloor n/2 \rfloor$, then $(a_i + c, b_i + c) \ne (a_j + d, b_j + d)$, where all addition is taken mod n and $1 \le i < j \le \lfloor n/2 \rfloor$.

Theorem 2.7. Suppose that m_1, m_2, \ldots, m_r are positive even integers with $\sum_{i=1}^r m_i = 2^k$ for $k \geq 2$. Then there exists an even (m_1, m_2, \ldots, m_r) -cycle system of K_n if and only if $\sum_{i=1}^r m_i$ divides $|E(K_n)|$ and n is odd.

Proof: The necessity follows since each $(m_1, m_2, ..., m_r)$ -cycle contains $\sum_{i=1}^r m_i$ edges, and each vertex in m_i -cycle $(1 \le i \le r)$ has even degree.

We begin with proving the following sufficiency: Let n be odd and let m_1, m_2, \ldots, m_r be positive even integers with $\sum_{i=1}^r m_i = 2^k$ for $k \geq 2$. Obviously, $|E(K_n)| = n(n-1)/2$. Since n is odd and 2^k divides n(n-1)/2, we then have that $n = s \cdot 2^{k+1} + 1$ with $s \geq 1$ and $k \geq 2$. Unless specified otherwise, let $m_i \leq m_{i+1}$, $1 \leq i \leq r - 1$. We will split the proof into three cases, depending on whether $m_i = 4k_i$ for $1 \leq i \leq r$, $m_i = 4k_i + 2$ for $1 \leq i \leq r$, or there exists an integer $1 \leq i \leq r$ with $1 \leq i \leq r$ and $1 \leq i \leq r$ and $1 \leq i \leq r$ for convenience, let $1 \leq i \leq r$ denote the $1 \leq i \leq r$ for $1 \leq i \leq r$.

Case 1: Suppose that $m_i = 4k_i$ for $1 \le i \le r$.

We proceed depending on whether $m_i = 4$ or $m_i > 4$.

Subcase 1.1: Suppose that $m_1 = m_2 = \cdots = m_j = 4$ for some j with $1 \le j \le r$.

For $1 \leq i \leq j$, let $C(i) = (0,4,1,2) \oplus 4(i-1)$. If j < r, then let $C(i) = (0,4k_i,1,4k_i-1,\ldots,k_i-1,3k_i+1,k_i,3k_i-1,k_i+1,3k_i-2,\ldots,2k_i-1,2k_i) \oplus \sum_{a=1}^{i-1} m_a$ for $j+1 \leq i \leq r$.

Subcase 1.2: Suppose that $m_i \geq 8$ for $1 \leq i \leq r$.

For $1 \le i \le r$, let $C(i) = (0, 4k_i, 1, 4k_i - 1, \dots, k_i - 1, 3k_i + 1, k_i, 3k_i - 1, k_i + 1, 3k_i - 2, \dots, 2k_i - 1, 2k_i) \oplus \sum_{a=1}^{i-1} m_a$.

Case 2: Suppose that $m_i = 4k_i + 2$ for $1 \le i \le r$.

Note that r is even since $\sum_{i=1}^{r} m_i = 2^k$. We proceed depending on whether $m_i = 6$ or $m_i > 6$.

Subcase 2.1: Suppose that $m_1=m_2=\cdots=m_j=6$ for some j with $1\leq j\leq r$.

Suppose first that j is even, say j=2p. Let r-j=2q. For each i with $1 \le i \le p$, let $C(2i-1)=(0,4,1,3,2,7) \oplus 12(i-1)$ and $C(2i)=(2,11,1,12,0,8) \oplus 12(i-1)$. If j < r, then for each i with $1 \le i \le q$, let $C(j+2i-1)=(0,4k_{j+2i-1}+1,1,4k_{j+2i-1},\ldots,k_{j+2i-1}-2,3k_{j+2i-1}+3,k_{j+2i-1}-1,3k_{j+2i-1}+1,k_{j+2i-1},3k_{j+2i-1}-1,2k_{j+2i-1}+1,2k_{j+2i-1}+3) \oplus \sum_{a=1}^{j+2i-2} m_a$ and $C(j+2i)=(2k_{j+2i},2k_{j+2i}+2i+1,2k_{j+2i-1}+2i+1,2k_{j+2i-1}+3) \oplus \sum_{a=1}^{j+2i-2} m_a$ and $C(j+2i)=(2k_{j+2i},2k_{j+2i}+2i+1,2k_{j+2i-1}+2i+1,2k_{j+2i-1}+2i+1,2k_{j+2i-1}+2i+1,2k_{j+2i-1}+2i+1,2k_{j+2i-1}+3) \oplus \sum_{a=1}^{j+2i-2} m_a$ and $C(j+2i)=(2k_{j+2i},2k_{j+2i}+2i+1,2k_{j+2i-1}$

 $3, 2k_{j+2i}-1, 2k_{j+2i}+4, \ldots, k_{j+2i}+2, 3k_{j+2i}+1, k_{j+2i}+1, 3k_{j+2i}+3, k_{j+2i}, 3k_{j+2i}+4, \ldots, 1, 4k_{j+2i}+3, 0, 2k_{j+2i}+1) \oplus \left(\left(\sum_{a=1}^{j+2i-1} m_a\right)-1\right).$

The case when j is odd is similar and is omitted.

Subcase 2.2: Suppose that $m_j > 6$ for $1 \le j \le r$.

Let r=2p. For each i with $1 \leq i \leq p$, let $C(2i-1)=(0,4k_{2i-1}+1,1,4k_{2i-1},\ldots,k_{2i-1}-2,3k_{2i-1}+3,k_{2i-1}-1,3k_{2i-1}+1,k_{2i-1},3k_{2i-1},\ldots,2k_{2i-1}-1,2k_{2i-1}+1,2k_{2i-1},4k_{2i-1}+3) <math>\oplus \sum_{a=1}^{2i-2} m_a$ and $C(2i)=(2k_{2i},2k_{2i}+3,2k_{2i}-1,2k_{2i}+4,\ldots,k_{2i}+2,3k_{2i}+1,k_{2i}+1,3k_{2i}+3,k_{2i},3k_{2i}+4,\ldots,1,4k_{2i}+3,0,2k_{2i}+1) \oplus ((\sum_{a=1}^{2i-1} m_a)-1).$

Note that in each subcase $C(i) \cup C(i+1)$ constitutes an exact resoluble $(4k_i+2,4k_{i+1}+2)$ -cycle for $i=1,3,\ldots,r-1$.

Case 3: Suppose that for some t with $1 \le t < r$, we have that $m_i = 4k_i$ for $1 \le i \le t$ and $m_i = 4k_i + 2$ for $t + 1 \le i \le r$.

Assume that $m_i \leq m_{i+1}$ for $1 \leq i \leq t-1$ and that $m_j \leq m_{j+1}$ for $t+1 \leq j \leq r-1$. Of course, r-t is even since $\sum_{i=1}^r m_i = 2^k$. We proceed depending on whether $m_1 = 4$, $m_1 > 4$, $m_{t+1} = 6$ or $m_{t+1} > 6$.

Subcase 3.1: Suppose that $m_1=m_2=\cdots=m_p=4$ for some p with $1 \le p \le t$ and that $m_{t+1}=m_{t+2}=\cdots=m_q=6$ for some q with $t+1 \le q \le r$.

Suppose first that q-t is even, say q-t=2w. Since r-t and q-t are both even, we have that r-q is even as well, say r-q=2z. We now define the cycles C(i) for $1 \le i \le r$. For $1 \le i \le p$, let $C(i)=(0,4,1,2)\oplus 4(i-1)$. Next for $p+1 \le i \le t$, let $C(i)=(0,4k_1,1,4k_i-1,\ldots,k_i-1,3k_i+1,k_i,3k_i-1,k_i+1,3k_i-2,\ldots,2k_i-1,2k_i)\oplus \sum_{a=1}^{i-1}m_a$. To define the cycles C(i) for $t+1 \le i \le q$, let $C(t+2j-1)=(0,4,1,3,2,7)\oplus \sum_{a=1}^{t+2j-2}m_a$ and $C(t+2j)=(2,11,1,12,0,8)\oplus \sum_{a=1}^{t+2j-1}m_a$ for $1 \le j \le w$. Finally, to define the cycles C(i) for $q+1 \le i \le r$, let $C(q+2j-1)=(0,4k_{q+2j-1}+1,1,4k_{q+2j-1},\ldots,k_{q+2j-1}-2,3k_{q+2j-1}+3,k_{q+2j-1}-1,3k_{q+2j-1}+1,k_{q+2j-1}+1,k_{q+2j-1},3k_{q+2j-1},\ldots,2k_{q+2j-1}-1,2k_{q+2j-1}+1,2k_{q+2j-1}+1,2k_{q+2j-1}+1,2k_{q+2j-1}+1,k_{q+2j-1$

Analogously, $C(i) \cup C(i+1)$ constitutes an exact resoluble $(4k_i+2, 4k_{i+1}+2)$ -cycle for $i=t+1, t+3, \ldots, r-1$.

When q - t is odd, the proof is similar and is omitted.

Subcase 3.2: Suppose that $m_i > 4$ for $1 \le i \le t$ and that $m_j > 6$ for $t+1 \le j \le r$ $(1 \le t < r)$.

Note that r-t is even, say r-t=2z. For $1 \le i \le t$, let $C(i)=(0,4k_i,1,4k_i-1,\ldots,k_i-1,3k_i+1,k_i,3k_i-1,k_i+1,3k_i-2,\ldots,2k_i-1)$

 $\begin{array}{l} 1,2k_{i})\oplus\sum_{a=1}^{i-1}m_{a}. \ \ \text{For} \ t+1\leq i\leq r, \ \text{let} \ C(t+2j-1)=(0,4k_{t+2j-1}+1,1,4k_{t+2j-1},\ldots,k_{t+2j-1}-2,3k_{t+2j-1}+3,k_{t+2j-1}-1,3k_{t+2j-1}+1,k_{t+2j-1},3k_{t+2j-1}+1,2k_{t+2j-1}+1,2k_{t+2j-1}+1,2k_{t+2j-1}+3)\oplus\sum_{a=1}^{t+2j-2}m_{a} \ \ \text{and} \ \ C(t+2j)=(2k_{t+2j},2k_{t+2j}+3,2k_{t+2j}-1,2k_{t+2j}+4,\ldots,k_{t+2j}+2,3k_{t+2j}+1,k_{t+2j}+1,3k_{t+2j}+3,k_{t+2j},3k_{t+2j}+4,\ldots,1,4k_{t+2j}+3,0,2k_{t+2j}+1)\oplus((\sum_{a=1}^{t+2j-1}m_{a})-1) \ \ \text{for} \ 1\leq i\leq z. \end{array}$

As before, $C(i) \cup C(i+1)$ constitutes an exact resoluble $(4k_i+2, 4k_{i+1}+2)$ -cycle for $i = t+1, t+3, \ldots, r-1$.

Subcase 3.3: Suppose that $m_1 = m_2 = \cdots = m_p = 4$ for some p with $1 \le p \le t$ and that $m_j > 6$ for $t+1 \le j \le r$.

The proof is similar to Subcases 3.1 and 3.2 and is omitted.

Subcase 3.4: Suppose that $m_i > 4$ for $1 \le i \le t$ and that $m_{t+1} = m_{t+2} = \cdots = m_q = 6$ for some q with $t+1 \le q \le r$.

The proof is similar to Subcases 3.1 and 3.2 and is omitted.

Let $C^*(0)$ be the edge-disjoint union of the m_i -cycles C(i) for $i=1,2,\ldots,r$. By routine calculation and Lemmas 2.1 to 2.5, it follows that $C^*(0)$ is an exact resoluble (m_1,m_2,\ldots,m_r) -cycle with edge lengths $S^*(0)=\{1,2,\ldots,2^k\}$. Let $C^*(i)=C^*(0)\oplus i\cdot 2^k$ for $i=1,2,\ldots,s-1$. By Lemma 2.3, each $C^*(i)$ for $1\leq i\leq r$ is an exact resoluble (m_1,m_2,\ldots,m_r) -cycles with edge lengths $S^*(i)=\{1+i\cdot 2^k,2+i\cdot 2^k,\ldots,(i+1)\cdot 2^k\}$. Let C_0 be the union of the edge-disjoint (m_1,m_2,\ldots,m_r) -cycles $C^*(0),C^*(1),\ldots,C^*(s-1)$ and observe that the set $S_0=\cup_{i=0}^{s-1}S^*(i)$ is the set of edge lengths for C_0 . Let $C_j=C_0+j$ for $j=1,2,\ldots,n-1$. By Lemma 2.6, the set $\{C_j\mid 0\leq j\leq n-1\}$ of subgraphs of K_n are pairwise mutually edge-disjoint, and since each C_i contain s (m_1,m_2,\ldots,m_r) -cycles and has $s\cdot 2^k$ edges, it follows that $\{C_j\mid 0\leq j\leq n-1\}$ is an even (m_1,m_2,\ldots,m_r) -cycle system of K_n . \square

Let $V(K_n)=Z_n$. An m-cycle system of K_n (K_n-F) is a set C of m-cycles such that every edge of K_n (K_n-F) belongs to exactly one m-cycle of C. An m-cycle system of K_n (K_n-F) is cyclic if the m-cycle $C=(v_0,v_1,\ldots,v_{m-1})\in C$ implies that $C+1=(v_0+1,v_1+1,\ldots,v_{m-1}+1)$ is also in C. For results on cyclic m-cycle systems of the complete graph, the interested reader can refer to [7], [10], [11], [12] and [13]. If r=1, as an immediate consequence of Theorem 2.7, we have the following.

Corollary 2.8. Let k be a positive integer (≥ 2) . Then there exists a cyclic 2^k -cycle system of K_n if and only if 2^k divides $|E(K_n)|$ and n is odd.

Corollary 2.9. Let m_1, m_2, \ldots, m_r and n be positive even integers with $1 \le m_i \le n$ for $1 \le i \le r$, $\sum_{i=1}^r m_i = 2^k$, and $2^{k+1} \mid (n-2)$. Then there exists an even (m_1, m_2, \ldots, m_r) -cycle system of $K_n - F$, where F is a 1-factor of K_n .

Proof: Since $2^{k+1} \mid (n-2)$, it follows that $n = s \cdot 2^{k+1} + 2$ for some positive integer s. Letting $F = \{(0, s \cdot 2^k + 1), (1, s \cdot 2^k + 2), \dots, (s \cdot 2^k, s \cdot 2^{k+1} + 1)\}$ and using the construction given in Theorem 2.7, we obtain the desired conclusion.

By Corollary 2.9, we also have the following:

Corollary 2.10. Let k be a positive integer (≥ 2) and $2^{k+1} \mid (n-2)$. Then there exists a cyclic 2^k -cycle system of $K_n - F$, where F is a 1-factor of K_n .

Acknowledgements. The author is grateful to the referee for his considerable effort to help him rewrite this paper into a more readable form.

References

- [1] P. Adams, D.E. Bryant, A. Khodkar, 3,5-cycle decompositions, J. Combin. Des. 6 (1998), 91-110.
- [2] P. Adams, D.E. Bryant, A. Khodkar, On Alspach's conjecture with two even cycle lengths, *Discrete Math.* 223 (2000), 1-12.
- [3] B. Alspach, Research problems, Problem 3, Discrete Math. 36 (1981), 333.
- [4] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77-99.
- [5] D.E. Bryant, H.L. Fu, A. Khodkar, (m, n)-cycle systems, J. Statist. Plann. Inference, to appear.
- [6] K. Heinrich, P. Horák and A. Rosa, On Alspach's conjecture, Discrete Math. 77 (1989), 97-121.
- [7] A. Kotzig, Decompositions of a complete graph into 4k-gons. (Russian) Mat.-Fyz. Casopis Sloven. Akad. Vied 15 (1965), 229-233.
- [8] C.C. Lindner and C.A. Rodger, Decompositions into cycles II, Cycles systems, in: J.H. Dinitz, D.R. Stinson (Eds.) Contemporary Design Theory: a Collection of Surveys, Wiley, New York, pp. 325-369.
- [9] A. Rosa, Alspach's conjecture is true for $n \leq 10$, Math. Reports, Mc-Master University, to appear.
- [10] A. Rosa, A note on Steiner triple systems (Slovak), Mat. Fyz. Casopis 16 (1966), 285-290.
- [11] A. Rosa, On cyclic decompositions of the complete graph into (4m+2)-gons, Mat. Fyz. Casopis Sloven. Akad. Vied 16 (1966), 349-352.

- [12] A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Sloven), Casopis Pest Mat. 91 (1966), 53-56.
- [13] A. Rosa, On decompositions of the complete graph into 4k-gons. (Russian) Mat. Casopis Sloven. Akad. Vied 17 (1967), 242-246.
- [14] M. Sajna, Cycle decompositions of K_n and $K_n I$, Ph.D. Thesis, Simon Fraser University, July 1999.