Even (m;,mo,...,m,)-cycle systems
of the complete graph

Shung-Liang Wu
National Lien-Ho Institute of Technology
Miaoli, Taiwan, R. O. C.

ABSTRACT. Let K, be the complete graph on n vertices. In
this paper, we find the necessary and sufficient conditions for
the existence of (w1, ma, ..., m,)-cycle system of K,, where m;
(1 £ @ < r) are positive even integers, and ) ;_ m; = 2% for
k > 2. In particular, if 7 = 1 then there exists a cyclic 2*-cycle
system of K, if and only if 2% divides | E(K,)| and n is odd.

1 Introduction

The m-cycle (vo, v, .. .,Um-1) is the graph induced by the edges {(v:, vi+1),
(0, ¥m—1) | © € Zmm—1}. An m-cycle system of a graph G = (V, E) is an
ordered pair (V,C), where C is a set of m-cycles such that every edge of F
belongs to exactly one m-cycle of C. Similarly, a (my, ms,..., m,)-cycle is
the union of edge-disjoint m;-cycles for 1 < i <, and a (m;,ms,...,ms)-
cycle system of a graph G = (V, E) is also an ordered pair (V,C*), where
C* is a set of (m,, my, ..., m,)-cycles such that every edge of E belongs to
exactly one (my, mo,...,m,)-cycle of C*. A (my, my,..., m,)-cycle system
is said to be even if each m; (1 <1 < 7) is even.

Let K, denote the complete graph on n vertices and K,, — F denote the
complete graph on n vertices with a 1-factor F removed. The necessary
conditions for the existence of a decomposition of K, or K, — F into a
(my, me,...,ms)-cycle are:

(1) 3<m;<n,fori=1,2,...,r;
(2) n is odd (even); and
(3) The number of edges in K, (Kn — F) is a multiple of }_;_, m;.
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The question of whether these necessary conditions are also sufficient
was asked by Alspach [3]. Although the conditions have been shown to be
sufficient in many cases, the question is still widely an open problem.

A great deal of work has been done on the m-cycle systems of K,,. For a
survey of m-cycle systems refer to Linder and Rodger [8]. Notably, Alspach
and Gavlas {4] and Sajna [14] have proved that Alspach’s conjecture is true
when all cycles are the same length.

In the case of (m;, ma, ..., m,)-cycle systems of K, Alspach’s conjecture
is known to be true for all n < 10 [9] and for all n when

(1) mi € {3,5} for i =1,2,...,7 [1;
(2) mi € {4,5} fori=1,2,...,7 [5);

(3) m; € {3,4,6} (or {(n—2,n—1,n}, {25, 26*1} (k> 2)) fori=1,2,...,r
[6]; and when

(4) m; € {4,8} (or {4,10}, {6,8}, {6,10}, {8,10}) for i =1,2,...,7 [2}.

In this paper, it is shown that if m;,mq, ..., m, are positive even integers
with 3T_, m; = 2k for k > 2, then there exists an even (m,mo, ..., m,)-
cycle system of K, if and only if 3°_, m; divides |E(K,)| and n is odd.

2 The results

Let the vertex set of K,, be Z, and let (a,b) be any edge of K,,. By |la—b||
we mean the length of the edge (a,b) that is defined as

lla = bll = min{la — b],n — |a — b[}.

By observing the lengths of edges in K, we have that there are n edges
of length q for each 1 < ¢ < |(n—1)/2] and if n is even, then there are n/2
edges of length n/2.

Recall that V(K,) = Z,. Assume the 2m-cycle considered here to be
a subgraph of K,. A 2m-cycle (vo,u0,v1,%1,...,Vm—1,Um~1) is Tesoluble
if max{vo,v1,...,Vm-1} < min{ug,u,...,um—1}. A resoluble 2m-cycle is
ezact if the set of lengths of all edges is a sequence of distinct consecutive
integers. For convenience, let S be the set of lengths of edges in a 2m-cycle.
An exact resoluble (m, 7ng, . ..,y )-cycle is defined similarly. Lemmas 2.1
to 2.6 can be obtained by casy computation, and so their proofs are omitted.

Lemma 2.1.
(1) (0,4,1,2) is an exact resoluble 4-cycle with S = {1,2, 3,4}.

(2) (0,4k, 1,4k—1,...,k—1,3k+1,k,3k—1,k+1,3k-2,...,2k - 1,2k)
is an exact resoluble 4k-cycle with S = {1,2,...,4k} for k > 2.
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Lemma 2.2.
(1) (0,4,1,3,2,7) is a resoluble 6-cycle with S = {1,2,3,4,5,7}.
(2) (2,11,1,12,0,8) is a resoluble 6-cycle with S = {6,8,9,10,11,12}.

(3) 0,4k +1,1,4k,... k~2,3k+3,k —1,3k+1,k,3k,..., 2k — 1,2 +
1,2k,4k + 3) is a resoluble (4k + 2)-cycle with S = {1,2,...,4k +
1,4k + 3} for k > 2.

(4) (2k,2k + 3,2k — 1,2k +4,...,k + 2,3k + 1,k + 1,3k + 3,k,3k +
4,...,1,4k + 3,0,2k + 1) is a resoluble (4k + 2)-cycle with § =
{1,3,4,...,4k + 3} for k > 2.

Suppose that C = (v, ug,¥1,u1,...,Vm—1,4m—1) iS an exact resoluble
2m-cycle with max{vo,v1,...,¥m-1} < min{ug,u1,...,um-1}. For the
sake of notational convenience, denote (vo, uo+7, 1, %1+, . .., Um—1, Um—1+
J) by (vo,u0,v1,21,...,Ym—1,Um—1) ® J, or simply C @ j. Let C* be an
exact resoluble (m,, ms, ..., m,)-cycle and the notation C* @ has a similar
meaning. Moreover, we will assume that C +3j = (vo + 7,u0 + 7, v1 + 3, w1 +
JreesVUm—1 + J,um—1 + 7) and C* + j is also defined similarly.

Lemma 2.3. If (vg, ug,v1,uy,. .., %2m—1,U2m~1) iS an exact resoluble 4m-
cycle with S = {k,k+1,...,k+4m —1} for k > 1, then (vo, uo,v1,u1,. ..,
Vam—1,%2m-1) @ j is also an exact resoluble 4m-cycle with S = {k + j, k +
J+1,...,k+4m + j — 1}. In particular, if C* is an exact resoluble
(m1,ma,...,m)-cycle with S = {k,k+1,...,k+4m — 1}, then C* @ j
is still an exact resoluble (my, my,...,m.)-cycle with S = {k +j,k+ 7 +
1,...,k+4m+ 7 -1}

There does not exist an exact resoluble (4m + 2)-cycle for m > 1. Thus,
we will amalgamate a (4m, + 2)-cycle and a (4mg + 2)-cycle such that
they become exact and resoluble. We use the symbol Cy U Cy to denote
the union of two edge-disjoint graphs C;, Cy. In Lemmas 2.4 and 2.5, as-

sume that (vo,uo, v1,%1, ..., %2m,u2m) and (Zo,yo,Z1,¥1, - - - , T2k, Y2k ) aTE
respectively (4m + 2) and (4k + 2)-cycles with max{vo,vi,...,vam} <
min{ug,u1, ..., uzm} and max{zo, z1, ..., T2} < min{yo,y1, .-, Y2k}

Lernma 2.4. Ir ('U(),’U.(),'U],'U.], e ,v2m:u2m) v (IO; Y0, T1, Y1, .- -, T2k, y'Zk)

is an exact resoluble (4 + 2,4k +2)-cycle with S = {p,p+1,...,p+4m +
4k+3}, then ('vo, Y, V1, ULy -« - U2, ugm)@jU(ZO,yo, T, YLy« oy T2k, ygk)@j
is also an exact resoluble (4m + 2,4k + 2)-cycle with S = {p+ j,p+ 7 +
1,...,p+4m+ 4k + j +3}.

Lemma 2.5. If (v, u0,v1,u1,...,%2m,u2m) is a (4m + 2)-cycle with S =
{1,2,...,4m + 1,4m + 3}, and (z0,%0,Z1,¥1, - .-, T2k, Y2x) is & (4k + 2)-
cycle with S = {1,3,4,...,4k + 3}, then (vo,u0,v1,u1,...,V2m, Ugm) U
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(0, Y0, T1, Y1, - - - » T2k, Y2k) ® (4m+ 1) is an exact resoluble (4m+2, 4k +2)-
cycle with S = {1,2,...,4m + 4k + 4}.

Lemma 2.6. If (a;,b;) is an edge of K, satisfying that ||la; — b;|| = 1,
1 <1< |n/2], then (ai + ¢, bi + ¢) # (a; + d,b;j + d), where all addition is
taken modn and 1 <i < j < |n/2].

Theorem 2.7. Suppose that m,,ms,...,m, are positive even integers
with 3_T_, m; = 2 for k > 2. Then there exists an even (m,ma, ..., m,)-
cycle system of Ky, if and only if Y ;_, m; divides |E(Ky,)| and n is odd.

Proof: The necessity follows since each (m1,ma,...,m,)-cycle contains
2;1 m; edges, and each vertex in m;-cycle (1 < 7 < r) has even degree.

We begin with proving the following sufficiency: Let n be odd and let
my,my,...,m, be positive even integers with Y ;_,m; = 2* for k > 2.
Obviously, |E(Ky)| = n(n—1)/2. Since n is odd and 2* divides n(n—1)/2,
we then have that n = s . 26+! 41 with s > 1 and k > 2. Unless specified
otherwise, let m; < myy;, 1 < i <7~ 1. We will split the proof into
three cases, depending on whether m; = 4k; for 1 < i < r, m; = 4k; + 2
for 1 < ¢ < r, or there exists an integer t (1 < ¢t < 7) with m; = 4k; for
1<i<tand m; = 4k; +2 for t +1 < i < r. For convenience, let C(7)
denote the m;-cycle for 1 <1< r.

Case 1: Suppose that m; =4k; for 1 <i<r.

We proceed depending on whether m; = 4 or m; > 4.

Subcase 1.1: Suppose that m; = my = --- = m; = 4 for some j with
1<5<.

For 1 <1i <3, let Ci) = (0,4,1,2) ®@4(: —1). If 7 < 7, then let
C(l) = (0,416,', 1,4k;—1, ..., ki—1,3ki+1, ki, 3ki—1,k;+1,3k; =2, ...,2k; —
L,2k)@ i imaforj+1<i<r

Subcase 1.2: Suppose that m; > 8for 1 <z < r.

For 1 <i<r lct C(5) = (0,4k;,1,4k; —1,... ki — 1,8k; + 1, ky, 3k; —
Lki+ 1,3k —2,...,2k — 1,2k) ® 47} ma.

Case 2: Suppose that mn; =4k; +2for 1 <i<r.

Note that r is even since 3 ;_, m; = 2¥. We proceed depending on
whether m; = 6 or m; > 6.

Subcase 2.1: Suppose that m; = mg = --- = m; = 6 for some j with
1<53<r.

Suppose first that j is even, say 7 = 2p. Let r — j = 2q. For each 1
with 1 < i < p, let C(2i -1) = (0,4,1,3,2,7)® 12( — 1) and C(2i) =
(2,11,1,12,0,8) ® 12(¢ — 1). If 3 < 7, then for each i with 1 < 7 < ¢, let
C(G+2i—1) = (0,4kjpoi-1 + 1,1, 4kj40i-1, .-, Kjp2i-1 — 2,3kj40i1 +
3, kj.fginl -1, :;kj.q.'),g_] + 1, kji:Zi'»: 1, 3kj+2i_1, ey 216_—,'.;2,‘_] -1, 2k’j1.2i_v| +
1, ij_,.g,' 1 ,4kj +2i-1 +F 3) D Z'H'h‘2 ™me and C(] +2i) = (ij+2i, 2kj+2,' +

a=1
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3,2kji2i = 1,2kj0:+4, ... kjy2i+2,3kj 00+ 1, kjpai +1, 3kjp0: + 3, kjroi,
Bkjpoi +4,...,1,4k; 2 +3 0,2k;42 + 1)@ (X131 m,) — 1).

The case when j is odd is similar and is omitted.

Subcase 2.2: Suppose that m; > 6 for1 <j <r.

Let r = 2p. For each i with 1 < i < p, let C(2i — 1) = (0,4k2i_1 +
1,1,4k2i-1,. .., koioy — 2,3kai—1 + 3,k2i—y — 1, 3’92‘_ T 1, k2i—1, 3k2i-1,

1 2koi_y — 1 2koi—y + 1,2k9i—1,4k2i—1 + 3) ® Z 1 2m, and C(29) =
(2k2,,2k2,+3 2ko;—1, 2k2‘+4 ,koi +2, 3k2;+1 koi+1,3ko;+3, koy, 3ko; +
4,...,1,4ko; + 3,0, 2k + 1)@((22‘ “lma) = 1).

Note that in each subcase C(i) U C(z + 1) constitutes an exact resoluble
(4k; + 2,4kit1 +2)-cycle for i = 1,3,...,7r — 1.
Case 3: Suppose that for some ¢t with 1 < ¢t < r, we have that m; = 4k;
forl<i<tand m;=4k;+2fort+1<i<r.

Assume that m; < my; for 1 < i <t -1 and that m; < mjy, for
t+1<3<r-1. Of course, 7 — ¢t is even since Z:=1 m; = 2*. We proceed
depending on whether m; =4, m; > 4, my4; = 6 or myy; > 6.

Subcase 3.1: Suppose that m; = mg = --- = m, = 4 [or some p with
1 < p <tandthat my, = myp = -+ = mg = 6 for some q with
t+1<q<r.

Suppose first that ¢ — ¢ is even, say ¢ — ¢t = 2w. Since r — £ and
g — t are both even, we have that r — ¢ is even as well, say r — ¢ =
2z. We now define the cycles C(i) for 1 < i < r. Forl <i < p
let C(?) = (0,4,1,2) @4(i—1). Next for p+1 < < ¢, let C(E) =
(0 4k,,1 4k; e ki — 1,3k + 1,k;,3k; — 1,k; +1,3k; — 2,...,2k; —
1,2k)® i) m,, To define the cycles C(3) for t +1 < i < g, let C(t +
25 —1)=(0,4,1,3,2,7)® L:*7 % m, and C(t + 25) = (2,11,1,12,0,8) ®
Z;ﬂ’ ", for 1 < j < w. Finally, to define the cycles C(i) for g+ 1 <
t<r,let Clg+27-1) = (0,4kq 251 + 1,1,4kq+2j_1,...,kq+2j_1 -
2, 3kq+2_, q+3, k,,,z_, 1—1, 3kq+21 a+1, kq.| 25 ],3kq+2j..1,...,2kq.,2j_1—'
1,2kq40j-1 + 1,2k 1051, 4kgp0j1 + 3) ® %2, and Clg + 24) =
(qum,?kquj + 3, 2kq_,2J—l 2kq+2_7+4 ,“2]+2 3kq71]+1 k'J‘ZJ
1,3kq4 2543, kgt 2;, 3kqr;+4, ..., 1 4kq+2,+3 0, 2kq+2;+1)O((TI1Y  my)
—Dfor1<j<z

Analogously, C(7)UC(i+1) constitutes an exact resoluble (4k;+2, 4k; 1+
2)-cyclefori=t+1,t64+3,...,7—1.

When g — ¢ is odd, the proof is similar and is omitted.

Subcase 3.2: Suppose that m; > 4 for 1 < ¢ < ¢ and that m; > 6 for
t+1<i<r(1<t<r).

Note that r — ¢t is even, say r —{ = 2z. For 1 < i <
(0,4k{,1,4k,‘ —1,...,ki — 1,3k; + 1,k;,3k; — 1,k; +1,3k;

-

t, let C(3) =
-2,...,2k -
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1, 2k; ezj lma Fort+1<i<rlet Ct+2j—1)=(0,4kes2j—1 +
1,1 4kt+2; - Rey2j1—2,3Key 25143, kepoj—1—1, Bkep 1 +], kt+21 b
3kiyoi—1,-- 2kt+2j 1—1, 2k 95-1+1, 2k, 1251, 4k 25— 1"'3)332%2J mg
and C(t + 2]) = (2kt+2312kt+21 + 3 2kl+2j - 1 2k¢+21 + 4 kg+21 +
2 3k:+2,+1 kz+2g+1 3kt 2;+3, kt+2j,3kt+2j+4s-~-:1:4kt+2j+3a 0, 2key2+

No((THY 'my)-1)for1<i< 2.

As before, C(z)UC (i+1) constitutes an exact resoluble (4k;+2, 4k; 1, +2)-
cyclefori=¢t+1,t+3,...,7r—1.

Subcase 3.3: Suppose that m; = mg = --- = m, = 4 for some p with
l1<p<tandthatm; >6fort+1<j<r.

The proof is similar to Subcases 3.1 and 3.2 and is omitted.

Subcase 3.4: Suppose that m; > 4 for 1 <i <t and that m.) =myo =
-+« =mg =6 for some g witht+1 < g<r.

The proof is similar to Subcases 3.1 and 3.2 and is omitted.

Let C*(0) be the edge-disjoint union of the m;-cycles C(i) fori =1,2,...,r
By routine calculation and Lemmas 2.1 to 2.5, it follows that C*(0) is an ex-
act resoluble (m;, ma, .. ., m,)-cycle with edge lengths $*(0) = {1, 2,...,2%}.
Let C*(¢) = C*(0)®i-2* fori=1,2,...,5— 1. By Lemma 2.3, each C*(4)
for 1 <4 < ris an exact resoluble {mn, mg, ..., m,)-cycles with edge lengths
S*(i) = {141i-2%,24+i-2%,...,(i+1)-2%}. Let Cy be the union of the edge-
disjoint (m;,ms,...,m,)-cycles C*(0),C*(1),...,C*(s — 1) and observe
that the set Sp = U2, S*(4) is the set of edge lengths for Co. Let C; = Co+j
for j = 1,2,...,n— 1. By Lemma 2.6, theset {C; | 0 < 7 < n-1}
of subgraphs of K, are pairwise mutually edge-disjoint, and since each
C; contain s (my,ma, ..., m,)-cycles and has s - 2% edges, it follows that
{C;10<j <n—1}isaneven (m,my,...,m,)-cycle system of K,. 0O

Let V(K,) = Z,. An m-cycle system of K, (K, — F) is a set C of
m-cycles such that every edge of K, (K. — F) belongs to exactly one
m-cycle of C. An m-cycle system of K, (K, — F) is cyclic if the m-cycle
C = (vg,v1,-- -, Um-1) € Cimplies that C+1 = (vp+1,v1+1,...,0m-1+1)
is also in C. For results on cyclic m-cycle systems of the complete graph,
the interested reader can refer to [7], [10], [11], [12] and [13]. If r = 1, as
an immediate consequence of Theorem 2.7, we have the following.

Corollary 2.8. Let k be a positive integer (> 2). Then ‘there exists a
cyclic 2%-cycle system of K, if and only if 2% divides |E(K,)| and n is
odd.

Corollary 2.9. Let m,,my,...,m, and n be positive even integers with
4<mi<nforl <i<r Yi.,m =25 and 25t! | (n - 2). Then
there exists an even (my,my, ..., m.)-cycle system of K, — F, where I’ is
a 1-facter of K.
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Proof: Since 28! | (n—2), it follows that n = s-25+14+2 for some positive

integer s. Letting F = {(0,s-2%+1),(1,5-2%+2),...,(s- 25, 5. 2k+1 1 1)}

and using the construction given in Theorem 2.7, we obtain the desired

conclusion. O
By Corollary 2.9, we also have the following:

Corollary 2.10. Let k be a positive integer (> 2) and 2%*! | (n — 2).
Then there exists a cyclic 2%-cycle system of K, — F, where F is a 1-factor
of K.
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