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Abstract

The n x n Lah matrix L, is defined by (L.):; = I(¢, 5),where I(i, j) is
the unsigned Lah number. In this paper,we investigate the algebraic prop-
erties of L,, , and many important relations between L,, and Pascal matrix
and Stirling matrix respectively. In addition , we obtain its exponential
expansion and Pascal matrix factorization.Furthermore , we introduce a
simple method to find and prove combinatorial identities.
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1. Introduction
The Lah number i(n, k) = (~1)"(n, k) was originated by Lah in [9] ,
where n and k are nonegative integers , I(n, k)=(}) 2:{ : is the unsigned

Lah number , I(n,0)= 0 . Some well known results about I(n, k) have been
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obtained in [3]:

(2)n = (1) <z >,= Zn:(x)kl_(n, k)

k=0
= i I(n, k)by, is equivalent to b, = i I(n, k)ax (1.1)
k=0 k=0
I(n, k) = (-1)* Y _(-1)s(n,5)S(, k) (1.2)

j=k
where (z), = 2(z - 1)(z —2)---(z—n+1)forn > 1 and < z >,=
z(z+1)(z+2)---(z+n-1)forn>1, (z)o =<z >o=1, {@r}n>0 and
{bn}n>0 are two sequences .

For integers n and k with n > k > 0, the Stirling numbers of the
first ( unsigned ) s(n, k) and of the second kind S(n, k) are defined as the
coefficients in the following expansion of a variable z(see [3]) :

(2)n = z( 1)*~*s(n, k)z* and z" = 2 S(n, K)(z)s

Let n and k be positive integers , we deﬁne the n x n Lah matrices

Ln, Ly, L, as follows respectively :

(L,,)i,-={l(i’j) if i > j ,(En)ij={l_(i,j) ifizj

0 otherwise 0 otherwise
= I(i,5) ifi>j
@0ﬁ={
0 otherwise

where (4, 7) = (=1)*+31(3,5) , (A):; denotes the (i,j)-entry of matrix A.
The n x n Pascal matrix P, and Stirling matrices s, , S, can be defined
as follows respectively(see[3]).

(Pa)ij = { () ifizj (5u)ss = {s(i,j) ifi>j

0 otherwise 0 otherwise ’
S(i,j) ifi>j

(Sn)i = {
0 otherwise
The n X n generalized Pascal and Stirling matrix with one variable x

are defined by (see [1, 2]) N
(P,,[a.—]),.jz{of-,( ) i ,(Snm)‘j:{: is(i,g) ifi> g

otherwise otherwise
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z*I8(i,5) ifi>j
(Snlz])i; =
otherwise

For the k x k Pascal matrix Px , we define the n x n matrix P, and

B, [z] by :
w5 1)l 1)
0 P 0 Pz

Therefore , B, = P,, and P, is the identity matrix of order n(see [1]).
Lemma 1 [} . The Stirling matrix S,, of the second can be factorized by
the Pascal matrices Py ’s:

(1) sp=PoPyay--- By

(2) S7'[z] = sn[-q]

(3) Sy'[a] = Pi[-a] P[] - - - Pacr[~) Pr[~2]
(4) Snlz] = Pola)Pa_ilz] - - - Polz] P[]

Pascal’s matrix and its generalizations are studied in many papers
(2,4,5,6,7] . Stirling matrix is studied carefully in {1] . In this paper ,
we investigate Lah matrices Ln,I-J,,,fm and find an interesting fact that
they have many similar properties to that of Pascal matrix and Stirling
matrix.

We obtain the Pascal-type factorization and beautiful expansion of Lah
matrix and the generalized Lah matrix . Furthermore , we apply some

results to investigate some combinatorial identities .

2. Some elementary results on Lah matrix

By simple computation,we can obtain the following

E" = fnLnLn = Zn

3

(2.1)

L2=IyLaln=1, (2.2)
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L7t =1L, L' =1.L,I, (2.3)
where I, = diag{-1,1,---,(=1)"} , I, is the identity matrix of order n .

We notice that (2.2) is equivalent to (1.1).

Let all elements of n xn matrix M be zero except (M); i—1 = i(i—1)(i =
2,3,---,n).We can obtain all elements of the matrix %M k are equal to zero
except (& M*);i1 = l(i+k-1,i+k-2)(i=2,3,---,n),k=1,2,---,n—1.

Therefore , we get the following pretty potential expansion of Ly,

Let n be a positive integer , n X n matrix M be defined as above , then

we have

Lo=I+M+3 M2+ +( )M"‘ (2.4)

For example, for L,

1 0 0 o0 1 0 00 000 O
2 1 0 o _Jo1o00] | 200 0
6 6 1 0 0 01 0 0 6 0 0
24 36 12 1 00 0 1 0 0 12 ©
2 3
0 0 0 0O 000 O
2 0 0 0 2 00 O
+% +3
06 0 0 0 6 0 0
00 12 0 00 12 0
By (1.2) ,we obtain
L,=3,5, (2.5)

Let n be a positive integer and k be a nonnegative integer , and s(<, j),
S(4,3) be the Stirling numbers . Because of (2.5) , we have s, = L,S;!
and S, = s;!L, , and this leads to

n—1 . .

itk ) k 2s(n,k) ifn+k is odd 06

i}=:k( g <’) (i-1) 68 = {0 otherwise (26)
and

n (i - 1)! G=1) {2S(n k) ifn+k is odd o7

i=zk-;-l( v ( )(k n! (n3) = 0 otherwise @)

100



3. The generalized Lah matrices

As we did for the Pascal triangular matrix , we introduce the generalized
Lah matrices as follows:
Definition 1. For any real number z , the n x n Lah generalized matrices

are defined by
3,5) fi>F . —-1)'z"(,5) ifi2j
T s = { EVFHED
... otherwise 0
(—1)"*ii=31(3,5) ifi>j

(Lnla))i; = {
0

otherwise

otherwise

Ln[0) = L,[0) = L,[0] = I,

By some simple computations , the following theorem holds:
Theorem 1. For any variables x and y , we have
(1) (Ln[2])® = I
(2) Lalz + 9] = La[e]Lal-y]In
(3) Lalz +y] = La[z]Lnly)
(4) La[z + y] = Lalz]Ln[y]
(5) La[z] = Ln[-2]
(6) (Ln(z])™" = La[~]
(7) For any positive integers m and j :
Lalma) = (Lulz])™, (Lali/m))™ = Luli], Lafma] = (Lale))™,
(Ln[s/m})™ = Lnls]
Theorem 2. L,|z] is related to the generalized Stirling matrices sn[z] and

Syn(z] for variable x :
Lafz] = salz]Salz] = 57 (-] Sa[z] (3-1)

Proof (s,[z]S.(z])i; = i T=ks(i, k)x*~IS(k, §) = zi~7 t s(i, k)S(k, 7)
k=j k=j
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= 2*79U(4, ) = (Lnla]);

This completes the proof. O

Theorem 3. Lah matrix and its generalized matrix can be factorized by
the Pascal matrices Py’s:

(1) Lule] = By[z)Byfe] -+ Pa-slal Pala) Pale)Prcs ] - PlalPafs]  (3.2)
(2) L,=P,P,--- By P,P,P,_,--- PP (3.3)
Proof (1) holds because of (3.1) and Lemma 1. (2) holds for (1) when

z=1 0.

Clearly , all Ln[z], La[z] , Ln, Ln and their inverse matrices matri-

ces have similar factorizations. For example :

1 0o o0 o 1 0 O 1 0 0 0
L4=2100=0100(0100
6 6 1 0 0 0 1 0 0 1 1 0
24 36 12 1 0 0 1 1 0 1 2 1

1 0 0 O 1 0 0 O 1 0 0 O 1. 0 0 O

1 1 0 O 1 1 0 O o1 0 0O 0 1 0 O

1 2 1 0 1 2 1 0 0 1 1 0 0o 0 1 0

1 3 3 1 1 3 3 1 01 2 1 o1 1

Theorem 4. For arbitrary veriables z and y , let {an(x, Y)}n>1 and
{bn(z,9)}n>1 be two functional sequences , if ®,[z,y) is a lower trian-
gular functional matrix such that ®2[z,y] = I, , then the following two

formulas are equivalent :

an(zy y) = Z‘pn,k(xv y)bk(x’y) and bn(za y) = Z‘Pn,k(x,y)ak(l‘,y)

k=l k=1
(3.4)

where ; ;(2,y) = (®n[z,y])s5.
Proof We notice that this proof is equivalent to proving ®3(z,y] = I. O.
Clearly , (1.1) is a special case in (3.4). In fact , this is a inverse rela-

tion . We can find and prove some interesting combinatorial identities by

Theorem 4.
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Example 3.1 (Corollary 3 in [2]). For any given sequence {z,}n>0 and

integer with m > 0, considering the following system of equations:

i = (g)xo— (i)xl + (;):z:z— -+ (- 1)'():1:, (i=0,1,2,---,m)

then it follows that

zi=(g)uo=()m+ ()= + 0 ()w G=0.1,20m)

here ¢ j(z,9) = (=1)(}) {an(z,¥)} = {za} and {bn(z,¥)} = {ya}
Example 3.2 (Ljunggren,also see [8,(3.18)])n, k are integers and x,y, z are

real numbers , then

Qe =200

Let ¢i,5(z,y) = (=1) (})(z —y)*7 if i 2 j,bu(z,y) = ( ) ()=
then

2( Dk(}) (@ - y)m* z (D)=

= E Qy'(-»" 2 (5 (2D — o)~ Fak

=(- 1)" 3 (z)y v (D) = (DI = an(z,y)
Example 3. 3 Let z,y be two real numbers , and ¢; ;(z,y) = (1) (;)( if
i>7),be(z,y) = (-1)* éo B

we can get

Z o,k (Z,Y)bk(2,y) = (n - x) y"

k=0
Therefore , a combinatorial identity is derived :

S () (1) =cor () () v

k=0 k=0

In addition , we notice that there are other applications by Theorem

n n
4if as(z,y) = kZ @n i (T, Y)br(z,y) or ba(z,y) = kEI on i (T, ¥)ar(z,y) is
=1 =
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easy to be calculated .

Theorem 5. For any real number z , it follows that

(k)
Lujz) =1, +Z (3.5)
kG = el(i,3) ifi>3
where (L((,k)),-,-= (i = 9)el(i,5) I k=1,2,-.- . n—-1,
0 otherwise

This theorem holds because of (2.4).
L.[z] and L,[z] have similar results like this.

Theorem 6. For any real number = and an integer n > 2 , we have
(Ln[x] - In)"_l =M, (3.6)

where M, is a matrix with order n , in which all elements are equal to zero
except its (n,1)-entry is nl(n — 1)lz™~1,
Proof . We argue by induction on n .

It is clear that for n =2 . Suppose it holds for n — 1(n > 3) . Let

©
Ln[x]=(Ln~1[x1 o), Ln[x]—1n=(L 2l 0)
Qnlz] © Qnlz] 0

where L, [z] = Ln_ 1{z] — In—1 , and a row matrix

Qnlz] = (I(n, 1)z, l(n,2)z"~2,... I(n,n — 1)z) , then it follows

L(O) 0 " (L(o) )n 0
(Lnfz] = Lt = " = o
Qalz] 0 Qulz](LY, [z 0

. 0 0
3 = M,
( nl(n—-1)z""! 0 )

where = holds by considering the inductive assumption . O

Definition 2%, Let z and X be two real numbers and n be a positive
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n|A

integer , we define the notation ™+ as follows

2 {a:(a:+A)---(z+(n—1)A) ifn>0
1 ifn=0
Lemma 2[3. With any real numbers x,y, A and a positive integer n, then
(z+y)"P* = g (7) (= lAylx
Definition 3. The (n+1) X (n+1) matrix L, j[z], in which n is a natural
number and A, z are real numbers , is defined by
=D, 5) ifi>

(Ln,A[x])ij = {
0

otherwise
Clearly , Lno[z] = Ln+1lz] , Laa[0] = Inta.
Theorem 7. For any real numbers z,y,\ and a natural number n , it
follows that :
Loalz +y) = Lna[z)Laa[y] (3.7)

Proof By using Lemma 2 , we get

(Laplz)Lap W) = 3 UG, k)P (k, j)yk=DA
k=j

= U(5,) 35 (F22)a RNy E=I = G, ) (z + 4) I = (Loalo + 1)
k=j
This completes the proof . O

The theorem can lead to the following :
L\z] = Laa(~2]

and for any integers j and k(k > 0) , we obtain
L} \[1] = Lalg] and LE ,[i/k) = L, ,[1]
In addition , it follows the following as Theorem 5 .

Theorem 8. For any real numbers  and A # 0

IO
Loalz) =Ing1+ ) 4 (3:8)
k=1 ’
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where (L(k))-~ _ [ #s(i=3, R, HNTF ifi>j+k
A Ju T

0 otherwise
See Theorem 5 for case A = 0.
Clearly , fm',\[x] has similar results as Ln »[z].
Definition 4. The n x n matrix L,{z,y] , where n is a natural number

and z,y are real numbers , is defined by

Iyt ) ifi>
(Ln[x’ y])ij = {0

otherwise
L.|z,y] and Ly[z,y] have similar definitions .
It is easy to see that the following theorem holds by the similar argu-
ments for L, [z] by Definition 4.
Theorem 9. Let x and y be any real numbers , then
(a) L3'[z,9] = La[z,1/y]
(b) Lnfz,y]La[2,1/y] = La[(z + 2)y]
(c) L' [z, y] = Ln[-2,1/y]
Definition 5. The (n+1) x (n+1) matrix L, x[z] , in which 7 is a natural

number and z,y, A are real numbers , is defined by

2E=Dy=DINYG, 5) i >
(Loalz, y))i = {0

otherwise
Lemma 3. The matrix L, x[z,y] can be factorized :
Loa[z,y) = Lolz]diag(L, 3", ™, - ,y™Y)
Theorem 10. For any real numbers z,y, z, A and a natural number n .
L[z +y,2] = Laalz)Lnay, 2]

Considering the previous discussions , we want to generalize the ma-

trix Ly a[z,y] in two variables associated with an arbitrary sequence @ =

106



{an}nzo-
Definition 6 . Suppose \,z,y are three real numbers , n is a natural

number and @ = {an}n>0 is an arbitrary sequence , then we define

DD A ifi > 4
_ aj_1T y (3,5) ifi>j
(Lnalzy,8])i5 = { ! '

0

otherwise

Lemma 4. The matrix L, x|z, y, @] has the multiplicative factorization :
Loz, y,8] = Ln [z, yldiag(ae, a1, - - ,an)

Proof The proof is clear by mathematical induction and Theorem 10. O
Theorem 11. For any real numbers z,y,z,\ and any sequence a =
{an}n>0 , we have

(1) Loz + 9, 2,8] = Laa[z]Ln [y, 2,8

(2) Loz + y, 2,8) = Lo a\[7)Lp 2 [y)diag(ao, a1 2!, - - - | @y 2™?)

4 . Conclusion

In this paper , we find some basic interesting properties and applica-
tions of Lah matrix and think there is further study to be made in the
future . For example,various generalized Lah matrices and their properties
and applications , and how to find more combinatorial identities by using

(1.1) , Theorem 1(1) , and (3.4).
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