Cahit - Equitability of Coronas

by
Vasanti N. Bhat-Nayak*
and
Shanta Telang
Department of Mathematics
University of Mumbai
Vidyanagari, Mumbai-400 098(INDIA).

abstract

We prove that the corona graphs $C_n \circ K_1$ are k-equitable as per Cahit's definition of k-equitability, k = 2, 3, 4, 5, 6.

1. Introduction

In 1990 Cahit [2] proposed the idea of distributing the vertex and edge labels among $\{0, 1, \dots, k-1\}$ as evenly as possible to obtain a generalization of graceful labelings as follows. For any graph G(V, E) and any positive integer k, assign vertex labels from $\{0, 1, \dots, k-1\}$ so that when the edge labels are induced by the absolute value of the difference of the vertex labels, the number of vertices labeled with i and the number of vertices labeled with j differ by at most one and the number of edges labeled with i and the number of edges labeled with j differ by at most one. Cahit called a graph with such an assignment of labels k-equitable. Note that a graph G(V, E) is graceful if and only if it is (|E| + 1)-equitable and G(V, E) is cordial if and only if it is 2-equitable.

Bloom [1] uses the term k-equitable to describe another kind of labeling. Hence we will use the term Cahit-k-equitable when the k-equitability is as per Cahit's definition.

^{*}The author is an Emeritus Fellow of U.G.C., India.

The **corona** $G_1 \circ G_2$ of two graphs G_1 and G_2 was defined by Frucht and Harary[3] as the graph G obtained by taking one copy of G_1 which has p_1 vertices and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 . Here we prove that the coronas $C_n \circ K_1$, $n \geq 3$, are Cahit-k-equitable, k = 2, 3, 4, 5, 6.

2. Cahit-i-equitability of coronas, i = 2, 3.

All throughout we will use the following notations;

$$V(C_n \circ K_1) = \{u_1, u_2, \dots, u_n; v_1, \dots, v_n\}$$

where $u_1u_2...u_nu_1$ is the cycle C_n and v_i is the pendant vertex adjacent to u_i , $1 \le i \le n$.

Theorem 1. All coronas are Cahit-2-equitable.

Proof: Give label 0 to all the cycle vertices u_i and give label 1 to all the pendant vertices v_i , $1 \le i \le n$. This simple distribution of labels 0, 1 is obviously Cahit-2-equitable.

Theorem 2. All coronas are Cahit-3-equitable.

Proof: For Cahit-3-equitability, the label set as well as the edge weight set is $\{0,1,2\}$. We have $p(C_n \circ K_1) = q(C_n \circ K_1) = 2n$. We consider three different cases.

Case 1. $2n \equiv 0 \pmod{3}$

Let p=q=2n=3t, $t\geq 2$. Note that as 3t=2n, t is an even number. We give suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit-3-equitability of $C_n\circ K_1$ each label 0,1,2 will have to be used 't' times, such that each edge weight 0,1,2 will occur 't' times.

Now we describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, \}$.

$$f(u_i) = 0, \quad f(v_i) = 1, \quad 1 \le i \le \frac{t}{2} + 1;$$

$$f(u_{\frac{t}{2} + 2i}) = 2, \quad f(v_{\frac{t}{2} + 2i}) = 2, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{\frac{t}{2} + 2i + 1}) = 0, \quad f(v_{\frac{t}{2} + 2i + 1}) = 1, \quad 1 \le i \le \frac{t}{2} - 1.$$

It can be directly verified that this labeling of $C_n \circ K_1$ is Cahit-3-equitable.

We give below a suitable labeling for t=2 which corresponds to n=3.

Cahit-3-equitable labeling of $C_3 \circ K_1$

Here
$$p = q = 6, t = 2, n = 3$$
.

$$f(u_1) = f(u_2) = 0, f(v_1) = f(v_2) = 1$$
 and $f(u_3) = f(v_3) = 2$.

Case 2. $2n \equiv 1 \pmod{3}$

Let p=q=2n=3t+1, $t\geq 3$. Note that as 3t=2n-1,t is an odd number. We give suitable labeling at the end of the proof for t=3. So let $t\geq 5$. For Cahit-3-equitability of $C_n\circ K_1$ two labels will have to be used 't' times and one label will have to be used 't+1' times, such that two edge weights will occur 't' times and one edge weight will occur 't+1' times.

Now we describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2\}$.

$$f(u_i) = 0, \quad f(v_i) = 1, \quad 1 \le i \le \frac{t+1}{2};$$

$$f(u_{\frac{t+1}{2}+2i}) = 0, \quad f(v_{\frac{t+1}{2}+2i}) = 1, \quad 1 \le i \le \frac{t-1}{2};$$

$$f(u_{\frac{t+1}{2}+2i+1}) = 2, \quad f(v_{\frac{t+1}{2}+2i+1}) = 2, \quad 0 \le i \le \frac{t-1}{2}.$$

It can be directly verified that the vertex labels 0, 1 occur 't' times each while the vertex label 2 occurs 't + 1' times. Also, the edge weights 0, 1 occur 't' times each while the edge weight 2 occurs 't + 1' times.

We give below a suitable labeling for t=3 which corresponds to n=5.

Cahit-3-equitable labeling of $C_5 \circ K_1$.

Here
$$p = q = 10, t = 3, n = 5.$$

Case 3. $2n \equiv 2 \pmod{3}$

Let p=q=2n=3t+2, $t\geq 2$. Note that as 3t=2n-2, t is an even number. We give suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit-3-equitability of $C_n\circ K_1$ two labels will have to be used t+1 times each and one label will have to be used t+1 times, such that two edge weights will occur t+1 times each and one edge weight will occur t+1 times.

Now we describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0,1,2\}$.

$$f(u_i) = 0, \quad f(v_i) = 1, \quad 1 \le i \le \frac{t}{2} + 2;$$

$$f(u_{\frac{t}{2}+2+2i}) = 0, \quad f(v_{\frac{t}{2}+2+2i}) = 1, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_{\frac{t}{2}+2i+3}) = 2, \quad f(v_{\frac{t}{2}+2i+3}) = 2, \quad 0 \le i \le \frac{t}{2} - 1.$$

It can be directly verified that two labels and two edge-weights occur t=1 times each and one label and one edge-weights occur t times each.

We give below a suitable labeling for t=2 which corresponds to n=4.

Cahit-3-equitable labeling of $C_4 \circ K_1$

Here p = q = 8, t = 2, n = 4. v_1 v_2 v_3 v_4 1 1 1 2 0 0 0 2 u_1 u_2 u_3 u_4

Illustration

We apply the labeling function f given above in Case 1, for t = 12 which correspond to n = 18. We describe the labels given to u_i, v_i in the following simple way, thus avoiding the actual drawing of the corona graph involved.

Cahit-3-equitable labeling of $C_{18} \circ K_1$

$$(v_1)$$
 1 1 ... 1 (v_7)
 (u_1) 0 0 ... 0 (u_7)

$$(v_8)$$
 2 1 2 1 \cdots 2 (v_{18}) (u_8) 2 0 2 0 \cdots 2 (u_{18})

Here we have mentioned the vertices $u_1, v_1; u_{\frac{t}{2}+1}, v_{\frac{t}{2}+1}; u_{\frac{t}{2}+2}, v_{\frac{t}{2}+2}$ and u_n, v_n in brackets to indicate the range of the label sequences $1, 1, \dots, \overline{1}$; $0,0,\ldots,0; \quad 2,1,2,1,\ldots,2 \text{ and } 2,0,2,0,\ldots,2 \text{ respectively where the upper}$ row gives labels of $v_i's$ and the lower row gives labels of $u_i's$.

Illustration

We apply the labeling function f given above in Case 2, for t = 13 which correspond to n=20.

Cahit-3-equitable labeling of $C_{20} \circ K_1$

```
(v_1)
        1 \quad 1 \quad 1 \quad \cdots \quad 1 \quad (v_7)
(u_1) 0 0 0 \cdots 0 (u_7)
```

 (v_8) 2 1 2 1 \cdots 2 (v_{20}) (u_8) 2 0 2 0 \cdots 2 (u_{20})

Illustration

We apply the labeling function f given above in Case 3 for t = 12 which correspond to n=19.

Cahit-3-equitable labeling of $C_{19} \circ K_1$

$$(v_1)$$
 1 1 1 ... 1 (v_8)
 (u_1) 0 0 0 ... 0 (u_8)

$$(v_9)$$
 2 1 2 1 ... 2 (v_{19})
 (u_9) 2 0 2 0 ... 2 (u_{19})

3. Cahit - 4 - equitability of Coronas

Theorem 3. All coronas are Cahit-4-equitable.

Proof: For Cahit-4-equitability, the label set as well as the edge weight set is $\{0,1,2,3\}$. We have $p(C_n \circ K_1) = q(C_n \circ K_1) = 2n$. We consider the following cases.

Case 1.
$$2n \equiv 0 \pmod{4}$$

Let $p = q = 2n = 4t$.

Sub-Case 1.1. Suppose t is even. We give suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit-4-equitability of $C_n \circ K_1$ each label will have to be used 't' times, such that each edge weight will occur 't' times.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le t;$$

$$f(u_{2i}) = 2, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 3, \quad f(v_{2i}) = 3, \quad \frac{t}{2} + 1 \le i \le t.$$

It can be directly verified that this labeling of $C_n \circ K_1$ is Cahit-4-equitable.

We give below a suitable labeling for t = 2 which corresponds to n = 4.

Cahit-4-equitable labeling of $C_4 \circ K_1$

Here
$$p = q = 8, t = 2, n = 4$$
.
 v_1 v_2 v_3 v_4
1 2 1 3
0 2 0 3
 u_1 u_2 u_3 u_4

Sub-Case 1.2. Suppose t is odd. We give suitable labeling at the end of the proof for t = 3. So let t > 5.

In this case each label will have to be used 't' times such that each edge weight will occur 't' times.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3\}$.

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 1, \quad 1 \le i \le t - 2;$$

$$f(u_{2t-2}) = 0, \quad f(v_{2t-2}) = 3;$$

$$f(u_{2t}) = 0, \quad f(v_{2t}) = 2;$$

$$f(u_{2i-1}) = 2, \quad f(v_{2i-1}) = 2, \quad 1 \le i \le \frac{t-1}{2};$$

$$f(u_{2i-1}) = 3, \quad f(v_{2i-1}) = 3, \quad \frac{t+1}{2} \le i \le t-1;$$

$$f(u_{2t-1}) = 1, \quad f(v_{2t-1}) = 1.$$

It can be directly verified that each label and each edge weight occur t times.

We give below a suitable labeling for t = 3 which corresponds to n = 6.

Cahit-4-equitable labeling of $C_6 \circ K_1$

Here
$$p = q = 12, t = 3, n = 6.$$
 v_1 v_2 v_3 v_4 v_5 v_6
 2 1 3 3 1 2
 2 0 3 0 1 0
 u_1 u_2 u_3 u_4 u_5 u_6

Case 2.
$$2n \equiv 2 \pmod{4}$$

Let $p = q = 2n = 4t + 2$.

Sub-Case 2.1 Suppose t is even. We give suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit-4-equitability of C_n o K_1 two labels will have to be used 't' times each, and two labels will have to be used 't+1' times each such that two edge weights will occur 't' times each and two edge weights will occur 't+1' times each.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le t+1;$$

$$f(u_{2i}) = 2, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 3, \quad f(v_{2i}) = 3, \quad \frac{t}{2} + 1 \le i \le t.$$

It can be directly verified that two labels and two edge-weights occur t times each and two labels and two edge-weights occur t+1 times each.

We give below a suitable labeling for t=2 which corresponds to n=5.

Cahit-4-equitable labeling of $C_5 \circ K_1$

Here
$$p = q = 10, t = 2, n = 5.$$
 v_1 v_2 v_3 v_4 v_5
 1 2 1 3 1
 0 2 0 3 0
 u_1 u_2 u_3 u_4 u_5

Sub-Case 2.2 Suppose t is odd. We give suitable labeling at the end of the proof for t=1. So let $t\geq 3$. For Cahit-4-equitability of $C_n\circ K_1$ two labels will have to be used 't' times each, and two labels will have to be used 't+1' times each such that two edge weights will occur 't' times each and two edge weights will occur 't+1' times each.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3\}$.

$$f(u_{2i-1}) = 2, \quad f(v_{2i-1}) = 2, \quad 1 \le i \le \frac{t+1}{2};$$

$$f(u_{2i-1}) = 3, \quad f(v_{2i-1}) = 3, \quad \frac{t+1}{2} + 1 \le i \le t+1;$$

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 1, \quad 1 \le i \le t.$$

It can be directly verified that two labels and two edge-weights occur 't' times each and two labels and two edge-weights occur 't+1' times each. We give below a suitable labeling for t=1 which corresponds to n=3.

Cahit-4-equitable labeling of $C_3 \circ K_1$

Here p = q = 6, t = 1, n = 3. v_1 v_2 v_3 2 1 3 2 0 3 u_1 u_2 u_3

We apply the labeling function f given above in Sub-Case 1.1, for t=8 which corresponds to n=16.

Cahit-4-equitable labeling of $C_{16} \circ K_1$

```
v_1
                                    each labeled
       v_3
              v_5
                            v_{15}
                                                         1
                                    each labeled
u_1
       u_3
              u_5
                            u_{15}
                                                         0
                               each labeled
v_2
       v_4
              v_6
                     v_8
                               each labeled
u_2
       u_4
             u_6
                     u_8
                                    each labeled
v_{10}
                v_{14}
                                                         3
        v_{12}
                        v_{16}
                                    each labeled
u_{10}
        u_{12}
                u_{14}
                        u_{16}
```

Illustration

We apply the labeling function f given above in Sub-Case 1.2, for t=9 which corresponds to n=18.

Cahit-4-equitable labeling of $C_{18} \circ K_1$

```
each labeled 1
v_2
       v_4
             v_6
                           v_{14}
                                   each labeled
u_2
       u_4
             u_6
                           u_{14}
                    . . .
       labeled
                   ٠3,
v_{16}
                                  labeled
                          v_{18}
                                               2
u_{16}
       labeled
                    0,
                          u_{18}
                                  labeled
                                               0
                          each labeled
v_1
       v_3
             v_5
                    v_7
                                                  2
                            each labeled
u_1
       u_3
              u_5
                     u_7
                                                  2
v_9
      v_{11}
              v_{13}
                      v_{15} each labeled
                                                  3
                       u<sub>15</sub> each labeled
u_9
       u_{11}
               u_{13}
                                                  3
       labeled 1,
v_{17}
                       u_{17} labeled
```

We apply the labeling function f given above in Sub-Case 2.1, for t = 8 which corresponds to n = 17.

Cahit-4-equitable labeling of $C_{17} \circ K_1$

```
each labeled
                                                         1
                            v_{17}
v_1
       v_3
             v_5
                                    each labeled
                                                        0
       u_3
                            u_{17}
u_1
             u_5
                               each labeled
                                                    2
v_2
             v_6
                    v_8
       v_4
                               each labeled
                                                    2
u_2
       u_4
              u_6
                    u_8
                                    each labeled
v_{10}
        v_{12}
                v_{14}
                        v_{16}
                                    each labeled
                                                         3
        u_{12}
                u_{14}
                        u_{16}
u_{10}
```

Illustration

We apply the labeling function f given above in Sub-Case 2.2, for t = 9 which corresponds to n = 19.

Cahit-4-equitable labeling of $C_{19} \circ K_1$

```
2
                                     each labeled
                             v_9
v_1
       v_3
              v_5
                      v_7
                                                           2
                                     each labeled
                      u_7
                             u_{9}
u_1
       u_3
              u_5
                                            each labeled
                                   v_{19}
                 v_{15}
                          v_{17}
v_{11}
        v_{13}
                                            each labeled
                                                                  3
                 u_{15}
                                   u<sub>19</sub>
u_{11}
        u_{13}
                          u_{17}
                                       each labeled
                                                             1
                              v_{18}
              v_6
v_2
       v_4
                                       each labeled
                                                             0
                              u_{18}
u_2
       u_4
              u_6
                      . . .
```

4. Cahit - 5 - equitability of Coronas

Theorem 4. All coronas are Cahit - 5 - equitable.

Proof: For Cahit - 5 - equitability, the label set as well as the edge weight set is $\{0,1,2,3,4\}$. We have $p(C_n \circ K_1) = q(C_n \circ K_1) = 2n$. We consider five different cases.

Case 1. $2n \equiv 0 \pmod{5}$

Let p=q=2n=5t, $t\geq 2$. Note that 5t=2n, therefore 't' is even. We give suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit - 5 - equitability of $C_n\circ K_1$ each label will have to be used 't' times such that each edge weight will occur 't' times.

We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_t) = 4 = f(v_t);$$

$$f(u_{t+2i-1}) = 0, \quad f(v_{t+2i-1}) = 1, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_{t+2i}) = 3 = f(v_{t+2i}), \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_{2t-1}) = 0, \quad f(v_{2t-1}) = 3;$$

$$f(u_{2t}) = 3, \quad f(v_{2t}) = 1;$$

$$f(u_{2t+1}) = 2 = f(v_{2t+1});$$

$$f(u_{2t+1+i}) = 2, \quad f(v_{2t+1+i}) = 4, \quad 1 \le i \le \frac{t}{2} - 1.$$

It can be directly verified that each label and each edge-weight occurs exactly t' times.

We give below a suitable labeling for t=2 which corresponds to n=5.

Cahit - 5 - equitable labeling of $C_5 \circ K_1$

Here p = q = 10, t = 2, n = 5.

$$(v_1)$$
 1 4 3 1 2 (v_5)
 (u_1) 0 4 0 3 2 (u_5)

Case 2. $2n \equiv 1 \pmod{5}$

Let p=q=2n=5t+1, $t\geq 1$. Note that as 2n=5t+1, t is an odd number. We give suitable labelings at the end of the proof for t=1,3,5. So let $t\geq 7$. For Cahit - 5 - equitability of C_n o K_1 four labels will have to be used 't' times each and one label will have to be used 't+1' times, such that four edge weights will occur 't' times each and one edge weight will occur 't+1' times.

We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t+1}{2};$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t-3}{2};$$

$$f(u_{t-1}) = 4 = f(v_{t-1});$$

$$f(u_{t+1}) = 4 = f(v_{t+1});$$

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 1, \quad \frac{t+3}{2} \le i \le t-1;$$

$$f(u_{2i-1}) = 3, \quad f(v_{2i-1}) = 3, \quad \frac{t+3}{2} \le i \le t;$$

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 2, \quad i = t, t+1;$$

$$f(u_{2t+1}) = 3, \quad f(v_{2t+1}) = 1;$$

$$f(u_{2t+3}) = 2 = f(v_{2t+3});$$

$$f(u_{i}) = 2, \quad f(v_{i}) = 4, \quad 2t+4 \le i \le \frac{5t+1}{2}.$$

It can be directly verified that four labels and four edge weights occur t' times each and one label and one edge weight occurs t' + 1' times each.

We give below suitable labelings for t = 1, 3, 5 which corresponds to n = 3, 8, 13 respectively.

Cahit - 5 - equitable labeling of $C_3 \circ K_1$ Here p = q = 6, t = 1, n = 3.

$$egin{array}{ccccc} v_1 & v_2 & v_3 \\ 2 & 4 & 1 \\ 0 & 4 & 3 \\ u_1 & u_2 & u_3 \\ \end{array}$$

Cahit - 5 - equitable labeling of $C_8 \circ K_1$ Here p = q = 16, t = 3, n = 8.

Cahit - 5 - equitable labeling of $C_{13} \circ K_1$ Here p = q = 26, t = 5, n = 13.

Case 3. $2n \equiv 2 \pmod{5}$.

Let p=q=2n=5t+2, $t\geq 2$. Note that as 2n=5t+2, t is an even number. We give a suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit-5-equitability of $C_n\circ K_1$ three labels will have to be used 't' times each and two labels will have to be used 't+1' times each such that three edge weights will occur 't' times each and two edge weights will occur 't+1' times each.

We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_t) = 4 = f(v_t);$$

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad \frac{t}{2} + 1 \le i \le t + 1;$$

$$f(u_{2i}) = 3 = f(v_{2i}), \quad \frac{t}{2} + 1 \le i \le t;$$

$$f(u_{2t+2}) = 2 = f(v_{2t+2});$$

$$f(u_i) = 2, \quad f(v_i) = 4, \quad 2t + 3 \le i \le \frac{5t + 2}{2}.$$

It can be directly verified that three labels and three edge weights occur 't' times each and two labels and two edge weights occur 't+1' times each. We give below a suitable labeling for t=2 which corresponds to n=6.

Cahit - 5 - equitable labeling of $C_6 \circ K_1$ Here p = q = 12, t = 2, n = 6.

Case 4. $2n \equiv 3 \pmod{5}$.

Let p=q=2n=5t+3, $t\geq 1$. Note that as 2n=5t+3, t is an odd number. We give suitable labelings at the end of the proof for t=1,3. So let $t\geq 5$. For Cahit-5-equitability of $C_n\circ K_1$ two labels will have to be used 't' times each and three labels will have to be used 't+1' times each such that two edge weights will occur 't' times each and three edge weights will occur 't+1' times each.

We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t+1}{2};$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t-1}{2};$$

$$f(u_{t+1}) = 4 = f(v_{t+1});$$

$$f(u_{2i-1}) = 3 = f(v_{2i-1}), \quad \frac{t+3}{2} \le i \le t+1;$$

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 1, \quad \frac{t+3}{2} \le i \le t;$$

$$f(u_{2t+2}) = 0, \quad f(v_{2t+2}) = 2;$$

$$f(u_{2t+3}) = 2 = f(v_{2t+3});$$

$$f(u_i) = 2, \quad f(v_i) = 4, \quad 2t+4 \le i \le \frac{5t+3}{2}.$$

It can be directly verified that two labels and two edge weights occur 't' times each and three labels and three edge weights occur 't+1' times each.

We give below suitable labelings for t = 1, 3 which correspond to n = 4, 9.

Cahit - 5 - equitable labeling of $C_4 \circ K_1$ Here p = q = 8, t = 1, n = 4.

Cahit - 5 - equitable labeling of $C_9 \circ K_1$

Here p = q = 18, t = 3, n = 9.

Case 5. $2n \equiv 4 \pmod{5}$.

Let p=q=2n=5t+4, $t\geq 2$. Note that as 2n=5t+4, t is an even number. We give suitable labeling at the end of the proof for t=2. So let $t\geq 4$. For Cahit-5-equitability of $C_n\circ K_1$ one label will have to be used 't' times and four labels will have to be used 't+1' times each such that one edge weight will occur 't' times each and four edge weights will occur 't+1' times each.

We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_t) = 4 = f(v_t);$$

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad \frac{t}{2} + 1 \le i \le t;$$

$$f(u_{2i}) = 3 = f(v_{2i}), \quad \frac{t}{2} + 1 \le i \le t;$$

$$f(u_{2t+1}) = 0, \quad f(v_{2t+1}) = 2;$$

$$f(u_{2t+2}) = 3, \quad f(v_{2t+2}) = 1;$$

$$f(u_{2t+3}) = 2 = f(v_{2t+3});$$

$$f(u_i) = 2, \quad f(v_i) = 4, \quad 2t + 4 \le i \le \frac{5t + 4}{2}.$$

It can be easily verified that one label and one edge weight occur 't' times each and four labels and four edge weights occur 't+1' times each.

We give below a suitable labeling for t=2 which corresponds to n=7.

Cahit - 5 - equitable labeling of $C_7 \circ K_1$ Here p = q = 14, t = 2, n = 7.

Illustration

We apply the labeling function f given above in Case 1, for t = 10 which corresponds to n = 25.

Cahit - 5 - equitable labeling of $C_{25} \circ K_1$

$$(v_{22})$$
 4 4 \cdots 4 (v_{25})
 (u_{22}) 2 2 \cdots 2 (u_{25})

 u_{21}

u19

u20

Illustration

We apply the labeling function f given above in Case 2, for t = 11 which corresponds to n = 28.

Cahit - 5 - equitable labeling of $C_{28} \circ K_1$

We apply the labeling function f given in Case 3, above in for t=8 which corresponds to n=21.

Cahit - 5 - equitable labeling of $C_{21} \circ K_1$

- $\begin{pmatrix} v_1 \end{pmatrix}$ 1 2 1 2 1 2 1 $\langle v_7 \rangle$ $\langle u_1 \rangle$ 0 4 0 4 0 4 0 $\langle u_7 \rangle$
- (v_8) 4
- (u_8) 4
- (v_9) 1 3 1 3 1 3 1 3 1 (v_{17}) (u_9) 0 3 0 3 0 3 0 3 0 (u_{17})
- (v_{18}) 2
- (u_{18}) 2
- (v_{19}) 4 4 4 (v_{21})
- (u_{19}) 2 2 2 (u_{21})

Illustration

We apply the labeling function f given above in Case 4, for t=9 which corresponds to n=24.

Cahit - 5 - equitable labeling of $C_{24} \circ K_1$

- (v_1) 1 2 1 2 1 2 1 2 1 (v_9) (u_1) 0 4 0 4 0 4 0 4 0 (u_9)
- (v_{10}) 4
- (u_{10}) 4
- $egin{pmatrix} (v_{11}) & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & (v_{19}) \\ (u_{11}) & 3 & 0 & 3 & 0 & 3 & 0 & 3 & (u_{19}) \\ \end{pmatrix}$
- (v_{20}) 2
- (u_{20}) 0

We apply the labeling function f given in Case 5, above for t = 8 which corresponds to n = 22.

Cahit - 5 - equitable labeling of $C_{22} \circ K_1$

5. Cahit - 6 - equitability of Coronas

Theorem 5. All coronas are Cahit - 6 - equitable.

Proof: For Cahit - 6 - equitability, the label set as well as the edge weight set is $\{0, 1, 2, 3, 4, 5\}$. We have $p(C_n \circ K_1) = q(C_n \circ K_1) = 2n$. We consider three different cases.

Case 1. $2n \equiv 0 \pmod{6}$

Let p = q = 2n = 6t, $t \ge 2$. So for Cahit - 6 - equitability of $C_n \circ K_1$ each label will have to be used 't' times such that each edge weight will occur 't' times.

Sub-Case 1.1. Supose n is odd. Hence t is odd, $t \geq 3$.

We give suitable labeling at the end of the proof for t = 3. So let $t \ge 5$. We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4, 5\}$.

$$f(u_{2i-1}) = 5, \quad f(v_{2i-1}) = 2, \quad 1 \le i \le \frac{t-1}{2};$$

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 1, \quad 1 \le i \le \frac{t-1}{2};$$

$$f(u_t) = 5 = f(v_t);$$

$$f(u_{2i}) = 0, \quad f(v_{2i}) = 2, \quad \frac{t+1}{2} \le i \le t-1;$$

$$f(u_{2i+1}) = 4, \quad f(v_{2i+1}) = 1, \quad \frac{t+1}{2} \le i \le t-1;$$

$$f(u_{2t+1}) = 0, \quad f(v_{2t}) = 3;$$

$$f(u_{2t+1}) = 4 = f(v_{2t+1});$$

$$f(u_{2t+2}) = 3, \quad f(v_{2t+2}) = 1;$$

$$f(u_{2t+3}) = 3, \quad f(v_{2t+3}) = 2;$$

$$f(u_i) = 3, \quad f(v_i) = 4, \quad 2t+4 \le i \le \frac{5t+3}{2};$$

$$f(u_i) = 3, \quad f(v_i) = 5, \quad \frac{5t+5}{2} \le i \le 3t.$$

It can be directly verified that each label and each edge weight occurs exactly 't' times.

We give below a suitable labeling for t = 3 which corresponds to n = 9.

Cahit - 6 - equitable labeling of $C_9 \circ K_1$

Here p = q = 18, t = 3, n = 9.

$$(v_1)$$
 2 1 5 2 1 3 4 1 2 (v_9)
 (u_1) 5 0 5 0 4 0 4 3 3 (u_9)

Sub-Case 1.2. Supose n is even. Hence t is even, $t \ge 2$.

We give suitable labelings at the end of the proof for t = 2, 4. So let $t \ge 6$.

We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4, 5\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t-2}{2};$$

$$f(u_{2i}) = 5, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t-2}{2};$$

$$f(u_{t-1}) = 0, \quad f(v_{t-1}) = 2;$$

$$f(u_{t}) = 5 = f(v_{t});$$

$$f(u_{t+1}) = 0, \quad f(v_{t+1}) = 2;$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 1, \quad \frac{t+2}{2} \le i \le t-1;$$

$$f(u_{2i+1}) = 0, \quad f(v_{2i+1}) = 2, \quad \frac{t+2}{2} \le i \le t-2;$$

$$f(u_{2t-1}) = 0, \quad f(v_{2t-1}) = 4;$$

$$f(u_{2t}) = 4, \quad f(v_{2t}) = 1;$$

$$f(u_{2t+1}) = 3, \quad f(v_{2t+1}) = 1;$$

$$f(u_{2t+2}) = 3, \quad f(v_{2t+2}) = 2;$$

$$f(u_{i}) = 3, \quad f(v_{i}) = 4, \quad 2t+3 \le i \le \frac{5t+2}{2};$$

$$f(u_{i}) = 3, \quad f(v_{i}) = 5, \quad \frac{5t+4}{2} \le i \le 3t.$$

It can be directly verified that each label and each edge weight occurs exactly 't' times.

We give below suitable labelings for t = 2, 4 which correspond to n = 6, 12 respectively.

Cahit - 6 - equitable labeling of
$$C_6 \circ K_1$$

Here $p = 12 = q, t = 2, n = 6$.

$$(v_1)$$
 2 5 2 1 3 1 (v_6)
 (u_1) 0 5 0 4 3 4 (u_6)

Cahit - 6 - equitable labeling of $C_{12} \circ K_1$ Here p = 24 = q, t = 4, n = 12.

$$(v_1)$$
 1 2 (v_2) (u_1) 0 5 (u_2)

$$(v_3)$$
 2 5 2 (v_5)
 (u_3) 0 5 0 (u_5)

Case 2. $2n \equiv 2 \pmod{6}$

Let p=q=2n=6t+2. So for Cahit - 6 - equitability of $C_n \circ K_1$ four labels will have to be used 't' times each and two labels will have to be used 't+1' times each so that four edge weights will occur 't' times each and two edge weights will occur 't+1' times each.

Sub-Case 2.1. Suppose n is odd. Hence t is even, t > 2.

We give suitable labelings at the end of the proof for t = 2, 4, 6. So let $t \ge 8$.

We describe below the labeling function. $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4, 5\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 5, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_t) = 5 = f(v_t);$$

$$f(u_{t+1}) = 0, \quad f(v_{t+1}) = 1;$$

$$f(u_{t+2}) = 4 = f(u_{t+4}), f(v_{t+2}) = 2 = f(v_{t+4});$$

$$f(u_{t+3}) = 0, \quad f(v_{t+3}) = 2;$$

$$f(u_{2i+1}) = 0, \quad f(v_{2i+1}) = 2, \quad \frac{t}{2} + 2 \le i \le t - 2;$$

$$f(u_{2i+2}) = 4, \quad f(v_{2i+2}) = 1, \quad \frac{t}{2} + 2 \le i \le t - 2;$$

$$f(u_{2t-1}) = 0 = f(u_{2t+1}), \quad f(v_{2t-1}) = 3 = f(v_{2t+1});$$

$$f(u_{2t}) = 4, \quad f(v_{2t}) = 1;$$

$$f(u_{2t+2}) = 4 = f(v_{2t+2});$$

$$f(u_{2t+3}) = 3, \quad f(v_{2t+3}) = 2;$$

$$f(u_{2t+4}) = 3, \quad f(v_{2t+3}) = 2;$$

$$f(u_{2t+5+i}) = 3, \quad 0 \le i \le t - 4;$$

$$f(v_{2t+5+i}) = 4, \quad 0 \le i \le \frac{t}{2} - 3;$$

$$f(v_{2t+i}) = 5, \quad \frac{t}{2} + 3 \le i \le t + 1.$$

It can be directly verified that four lables and four edge-weights occur

't' times each and two labels and two edge weights occur 't+1' times each.

We give below suitable labelings for t = 2, 4, 6 which correspond to n = 7, 13, 19 respectively.

Cahit - 6 - equitable labeling of $C_7 \circ K_1$

Here p = q = 14, t = 2, n = 7.

$$(v_1)$$
 1 5 1 2 3 2 3 (v_7)
 (u_1) 0 5 0 4 0 4 3 (u_7)

Cahit - 6 - equitable labeling of $C_{13} \circ K_1$

Here p = q = 26, t = 4, n = 13.

$$(v_1)$$
 1 2 1 5 1 (v_5)

$$(u_1)$$
 0 5 0 5 0 (u_5)

$$(v_6)$$
 2 3 2 3 4 (v_{10})

$$(u_6)$$
 4 0 4 0 4 (u_{10})

$$(v_{11})$$
 2 1 5 (v_{13})

$$(u_{11})$$
 3 3 3 (u_{13})

Cahit - 6 - equitable labeling of $C_{19} \circ K_1$

Here p = q = 38, t = 6, n = 19.

$$(v_1)$$
 1 2 1 2 1 5 1 (v_7)

$$(u_1)$$
 0 5 0 5 0 5 0 (u_7)

$$(v_8)$$
 2 2 2 3 1 3 4 (v_{14})

$$(u_8)$$
 4 0 4 0 4 0 4 (u_{14})

$$(v_{15})$$
 2 1 4 5 5 (v_{19})

$$(u_{15})$$
 3 3 3 3 (u_{19})

Sub-Case 2.2. Suppose n is even. Hence t is odd, $t \ge 1$.

We give suitable labelings at the end of the proof for t = 1, 3, 5, 7. So let t > 9.

We describe below the labeling function. $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4, 5\}.$

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t+3}{2};$$

$$f(u_{2i}) = 5, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t+1}{2};$$

$$f(u_{t+3}) = 4, \quad f(v_{t+3}) = 2;$$

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 2, \quad \frac{t+5}{2} \le i \le t;$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 1, \quad \frac{t+5}{2} \le i \le t-1;$$

$$f(u_{2i}) = 4 = f(v_{2i}), i = t, t+1;$$

$$f(u_{2t+1}) = 0, \quad f(v_{2t+1}) = 3;$$

$$f(u_{2t+3}) = 3, \quad f(v_{2t+3}) = 2;$$

$$f(u_{2t+4}) = 3, \quad f(v_{2t+4}) = 1;$$

$$f(u_{2t+4+i}) = 3, \quad 1 \le i \le t-3;$$

$$f(v_{2t+4+i}) = 4, \quad 1 \le i \le \frac{t-5}{2};$$

$$f(v_{2t+4}) = 5, \quad \frac{t+5}{2} \le i \le t+1.$$

It can be directly verified that four labels and four edge weights occur 't' times each and two labels and two edge weights occur 't+1' times each.

We give below suitable labelings for t = 1, 3, 5, 7 which correspond to n = 4, 10, 16, 22 respectively.

Cahit - 6 - equitable labeling of $C_4 \circ K_1$ Here p = q = 8, t = 1, n = 4.

Cahit - 6 - equitable labeling of $C_{10} \circ K_1$ Here p = q = 20, t = 3, n = 10.

Cahit - 6 - equitable labeling of $C_{16} \circ K_1$ Here p = q = 32, t = 5, n = 16.

```
1
                               2 1
                                         (v_7)
(v_1)
                      5
                           0
                               5
                                    0
                                         (u_7)
                 0
(u_1)
                               2
                                  1
                                         (v_{14})
                      3
                          4
                 4
(v_8)
                               3
                           4
                                         (u_{14})
                 4
                      0
(u_8)
              5
                   (v_{16})
         5
(v_{15})
              3
         3
(u_{15})
                   (u_{16})
```

Cahit - 6 - equitable labeling of $C_{22} \circ K_1$

Here
$$p = q = 44, t = 7, n = 22$$
.

$$(v_1)$$
 1 2 1 2 ... 1 (v_9)
 (u_1) 0 5 0 5 ... 0 (u_9)

$$\begin{pmatrix} v_{10} \end{pmatrix} \quad 2 \\ (u_{10}) \quad 4 \quad$$

$$\begin{pmatrix} v_{11} \end{pmatrix}$$
 2 1 2 $\begin{pmatrix} v_{13} \end{pmatrix}$ $\begin{pmatrix} u_{11} \end{pmatrix}$ 0 4 0 $\begin{pmatrix} u_{13} \end{pmatrix}$

$$\begin{pmatrix} v_{14} \end{pmatrix}$$
 4 3 4 2 1 $\begin{pmatrix} v_{18} \end{pmatrix}$ $\begin{pmatrix} v_{14} \end{pmatrix}$ 4 0 4 3 3 $\begin{pmatrix} v_{18} \end{pmatrix}$.

$$(v_{19})$$
 4 (u_{19}) 3

$$(v_{20})$$
 5 5 5 (v_{22})
 (u_{20}) 3 3 (u_{22}) .

Case 3. $2n \equiv 4 \pmod{6}$

Let p=q=2n=6t+4. So for Cahit - 6 - equitability of C_nOK_1 two labels will have to be used 't' times each and four labels will have to be used 't + 1' times each so that two edge weights will occur 't' times each and four edge weights will occur 't + 1' times each.

Sub-Case 3.1. Suppose n is odd. Hence t is odd, $t \ge 1$. We give suitable labeling at the end of the proof for t = 1. So let $t \ge 3$. We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4, 5\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t+1}{2};$$

$$f(u_{2i}) = 5, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t-1}{2};$$

$$f(u_{t+1}) = 5 = f(v_{t+1});$$

$$f(u_{2i+1}) = 0, \quad f(v_{2i+1}) = 2, \quad \frac{t+1}{2} \le i \le t;$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 1, \quad \frac{t+3}{2} \le i \le t;$$

$$f(u_{2t+2}) = 4 = f(v_{2t+2});$$

$$f(u_{2t+3}) = 3, \quad f(v_{2t+3}) = 1;$$

$$f(u_{i}) = 3, \quad f(v_{i}) = 4, \quad 2t+4 \le i \le \frac{5t+5}{2};$$

$$f(u_{i}) = 3, \quad f(v_{i}) = 5, \quad \frac{5t+7}{2} \le i \le 3t+2.$$

It can be directly verified that two labels and two edge weights occur 't' times each and four labels and four edge weights occur 't+1' times each. We give below a suitable labeling for t=1 which corresponds to n=5.

Cahit - 6 - equitable labeling of $C_5 \circ K_1$ Here p = q = 10, t = 1, n = 5.

$$(v_1)$$
 1 5 2 4 1 (v_5) (u_1) 0 5 0 4 3 (u_5)

Sub-Case 3.2. Suppose n is even. Hence t is even, $t \ge 2$. We give suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. We describe below the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, 2, 3, 4, 5\}$.

$$f(u_{2i-1}) = 0, \quad f(v_{2i-1}) = 1, \quad 1 \le i \le \frac{t}{2};$$

$$f(u_{2i}) = 5, \quad f(v_{2i}) = 2, \quad 1 \le i \le \frac{t}{2} - 1;$$

$$f(u_t) = 5 = f(v_t);$$

$$f(u_{2i+1}) = 0, \quad f(v_{2i+1}) = 2, \quad \frac{t}{2} \le i \le t;$$

$$f(u_{2i}) = 4, \quad f(v_{2i}) = 1, \qquad \frac{t+2}{2} \le i \le t;$$

$$f(u_i) = 3, \quad f(v_i) = 4, \qquad 2t+2 \le i \le \frac{5t+4}{2};$$

$$f(u_i) = 3, \quad f(v_i) = 5, \qquad \frac{5t+6}{2} \le i \le 3t+2.$$

It can be directly verified that two labels and two edge weights occur 't' times each and four labels and four edge weights occur 't+1' times each.

We give below a suitable labeling for t = 2 which corresponds to n = 8.

Cahit - 6 - equitable labeling of $C_8 \circ K_1$

Here p = q = 16, t = 2, n = 8.

Illustration

We apply the labeling function f given above in Sub-Case 1.1, for t=9 which corresponds to n=27.

Cahit - 6 - equitable labeling of $C_{27} \circ K_1$

$$(v_1)$$
 2 1 2 1 ... 1 (v_8) (u_1) 5 0 5 0 ... 0 (u_8)

$$\begin{pmatrix} v_9 \end{pmatrix} \quad 5 \\ \langle u_9 \rangle \quad 5$$

$$(v_{10})$$
 2 1 2 1 \cdots 1 (v_{17}) (u_{10}) 0 4 0 4 \cdots 4 (u_{17})

$$(v_{25})$$
 5 5 5 (v_{27})
 (u_{25}) 3 3 3 (u_{27})

We apply the labeling function f given above in Sub-Case 1.2, for t = 8which corresponds to n = 24.

Cahit - 6 - equitable labeling of $C_{24} \circ K_1$

$$\begin{pmatrix} v_{10} \end{pmatrix}$$
 1 2 1 2 ... 1 $\begin{pmatrix} v_{14} \end{pmatrix}$ $\begin{pmatrix} u_{10} \end{pmatrix}$ 4 0 4 0 ... 4 $\begin{pmatrix} u_{14} \end{pmatrix}$

$$(v_{19})$$
 4 4 4 (v_{21}) (u_{19}) 3 3 3 (u_{21})

$$\begin{pmatrix} (v_{22}) & 5 & 5 & 5 & (v_{24}) \\ (u_{22}) & 3 & 3 & 3 & (u_{24}) \end{pmatrix}$$

Illustration

We apply the labeling function f given above in Sub-Case 2.1, for t = 12which corresponds to n = 37.

Cahit - 6 - equitable labeling of $C_{37} \circ K_1$ Here p = q = 74, t = 12, n = 37.

$$(v_1)$$
 1 2 1 2 ... 1 (v_{11}) (u_1) 0 5 0 5 ... 0 (u_{11})

. . .

0

0

 (u_1)

 (u_{11})

```
2
                                2
                                      (v_{16})
                     2
(v_{12})
           5
                1
(u_{12})
           5
                0
                     4
                           0
                                4
                                      (u_{16})
                                           (v_{22})
(v_{17})
           2
                1
                     2
                           1
                                2
                                      1
                           4
                                0
                4
                     0
                                      4
                                           (u_{22})
(u_{17})
                                2
                                      1
                                           (v_{28})
                           4
(v_{23})
           3
                                3
                     0
                           4
                                      3
           0
                4
                                           (u_{28})
(u_{23})
(v_{29})
           4
                4
                     4
                           4
                                (v_{32})
                      3
                           3
                                (u_{32})
(u_{29})
                                      (v_{37})
                      5
                           5
                                5
(v_{33})
           5
                5
                3
                      3
                           3
                                 3
           3
(u_{33})
                                      (u_{37})
```

We apply the labeling function f given above in Sub-Case 2.2, for t=11 which corresponds to n=34.

Cahit - 6 - equitable labeling of $C_{34} \circ K_1$

We apply the labeling function f given above in Sub-Case 3.1, for t=9 which corresponds to n=29.

Cahit - 6 - equitable labeling of $C_{29} \circ K_1$

$$(v_1)$$
 1 2 1 2 ... 1 (v_9) (u_1) 0 5 0 5 ... 0 (u_9)

$$\begin{pmatrix} v_{10} \end{pmatrix} \quad 5 \\ \begin{pmatrix} u_{10} \end{pmatrix} \quad 5$$

$$\begin{pmatrix} v_{11} \end{pmatrix}$$
 2 1 2 1 ... 2 $\begin{pmatrix} v_{19} \end{pmatrix}$ $\begin{pmatrix} u_{11} \end{pmatrix}$ 0 4 0 4 ... 0 $\begin{pmatrix} u_{19} \end{pmatrix}$

$$(v_{20})$$
 4 1 (v_{21})
 (u_{20}) 4 3 (u_{21})

$$\begin{pmatrix} (v_{22}) & 4 & 4 & 4 & 4 & (v_{25}) \\ (u_{22}) & 3 & 3 & 3 & 3 & (u_{25}) \end{pmatrix}$$

$$(v_{26})$$
 5 5 5 5 (v_{29})
 (u_{26}) 3 3 3 (u_{29})

Illustration

We apply the labeling function f given above in Sub-Case 3.2, for t = 10 which corresponds to n = 32.

Cahit - 6 - equitable labeling of $C_{32} \circ K_1$

$$(v_1)$$
 1 2 1 2 ... 1 (v_9) (u_1) 0 5 0 5 ... 0 (u_9)

$$\begin{pmatrix} v_{10} \end{pmatrix} \quad 5 \\ (u_{10}) \quad 5 \\ \end{pmatrix}$$

$$(v_{11})$$
 2 1 2 1 \cdots 2 (v_{21}) (u_{11}) 0 4 0 4 \cdots 0 (u_{21})

References

- G.S. Bloom, Problem posed at the Graph Theory meeting of the New York Academy of Sciences, November, 1989.
- 2. I. Cahit, Status of graceful tree conjecture in 1989, in Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn(eds), Physica-Verlag, Heidelberg 1990.
- 3. Harary, Graph Theory, Addison Wesley 1968