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abstract

We prove that the corona graphs Cy, o K are k-equitable as per Cahit’s
definition of k-equitability, k = 2, 3,4, 5, 6.

1. Introduction

In 1990 Cahit [2] proposed the idea of distributing the vertex and edge
labels among {0, 1, - - - , k—1} as evenly as possible to obtain a generalization
of graceful labelings as follows. For any graph G(V, E) and any positive
integer k, assign vertex labels from {0,1,- -,k — 1} so that when the edge
labels are induced by the absolute value of the difference of the vertex
labels, the number of vertices labeled with i and the number of vertices
labeled with j differ by at most one and the number of edges labeled with i
and the number of edges labeled with j differ by at most one. Cahit called
a graph with such an assignment of labels k-equitable. Note that a graph
G(V, E) is graceful if and only if it is (| £ | +1)-equitable and G(V, E) is
cordial if and only if it is 2-equitable.

Bloom [1] uses the term k-equitable to describe another kind of labeling.
Hence we will use the term Cahit-k-equitable when the k-equitability is
as per Cahit’s definition.

*The author is an Emeritus Fellow of U.G.C., India.
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The corona G, oG of two graphs G; and G2 was defined by Frucht and
Harary[3) as the graph G obtained by taking one copy of G1 which has p;
vertices and p; copies of G2 and then joining the ith vertex of G; to every
vertex in the it? copy of G3. Here we prove that the coronas C,0K;,n > 3,
are Cahit-k-equitable, k = 2,3,4,5,6.

2. Cahit-i-equitability of coronas, : = 2,3.

All throughout we will use the following notations;
V(Cno K1) = {u1,u2,...,Un;¥1,...,%n}

where ujus . ..unu; is the cycle C, and v; is the pendant vertex adjacent
to u;,
1<i<n.

Theorem 1. All coronas are Cahit-2-equitable.

Proof: Give label 0 to all the cycle vertices u; and give label 1 to all the
pendant vertices v;, 1 < i < n. This simple distribtion of labels 0,1 is
obviously Cahit-2-equitable.

Theorem 2. All coronas are Cahit-3-equitable.

Proof: For Cahit-3-equitability, the label set as well as the edge weight
set is {0,1,2}. We have p(Cy 0 K1) = ¢(Cn 0 K1) = 2n. We consider three
different cases.

Case 1. 2n = ((mod 3)

Let p=q = 2n = 3t, t > 2. Note that as 3t = 2n, ¢ is an even
number.We give suitable labeling at the end of the proof for ¢ = 2. So let
t > 4. For Cabhit-3-equitability of Cy, o K each label 0, 1, 2 will have to be
used ‘t’ times, such that each edge weight 0,1,2 will occur ‘¢’ times.

Now we describe the labeling function f : V(Cn 0 K1) — {0,1,2,}.

fw) = 0, fw)=1, 1Si<z+l
Lt
f(u%_..g,') = 2) f(v%+2f) = 2’ 1 S 4 S 5’
N
flugeaip) = 0 floggap) =1 1<i<5-1



It can be directly verified that this labeling of C, o K, is Cahit-3-
equitable.
We give below a suitable labeling for ¢ = 2 which corresponds to n = 3.

Cahit-3-equitable labeling of C3 0 K,
Herep=¢=6,t=2,n=3.
f(u1) = f(u2) =0, f(v1) = f(v2) =1 and f(u3) = f(va) = 2.

Case 2. 2n = 1(mod 3)

Let p=¢=2n=3t+1, t> 3. Note that as 3t = 2n — 1,¢ is an odd
number. We give suitable labeling at the end of the proof for t = 3. So let
t > 5. For Cahit-3-equitability of Cy, o K; two labels will have to be used
‘t’ times and one label will have to be used ‘¢ + 1’ times, such that two edge
weights will occur ‘t’ times and one edge weight will occur ‘¢ + 1’ times.

Now we describe the labeling function f : V(C, 0 K1) — {0,1,2}.

flw) = 0, flwi)=1, 1<i< %,
, _t=1
f(u%—l--{—m') = 0, f(vﬁ;_'.;.z,') =1, 1<£i< T-;
L t=1
f(u“%’+2f+1) = 2 f(vﬁ,ri+2i+1) =2, 0<i< —5

It can be directly verified that the vertex labels 0, 1 occur ‘¢ times each
while the vertex label 2 occurs 4 + 1’ times. Also, the edge weights 0,1
occur ‘t’ times each while the edge weight 2 occurs ‘¢ + 1’ times.

We give below a suitable labeling for ¢ = 3 which corresponds to n = 5.

Cahit-3-equitable labeling of Cs o K;.

Here p=¢=10,t =3,n=05.

v Vo V3 Vq Vs
1 1 2 1 2
0o 0 2 0 2

uy Uy U3 U4 Us



Case 3. 2n = 2(mod 3)

Let p=¢g=2n=3t+2, t> 2. Note that as 3t = 2n — 2, is an even
number. We give suitable labeling at the end of the proof for ¢ = 2. So let
t > 4. For Cahit-3-equitability of C,, o K two labels will have to be used
‘¢ 4+ 1’ times each and one label will have to be used ‘¢’ times, such that two
edge weights will occur ‘¢ + 1’ times each and one edge weight will occur ‘¢’
times.

Now we describe the labeling function f : V(Cy, 0 K;) — {0,1,2}.

flwi) = 0, f(ui)=1, 1§i5%+2;
R 4

flugyaga) = 0, flogyaqm) =1, 1<i< 3~ 1;
A/

flugynipa) = 2, fvggaips) =2, 0<i< 3~ 1.

It can be directly verified that two labels and two edge-weights occur
t = 1 times each and one label and one edge-weights occur ¢ times each.
We give below a suitable labeling for ¢ = 2 which corresponds to n = 4.

Cabhit-3-equitable labeling of C;0 K,

Here p=¢=8,t=2,n=4.
(41 V2 vy V4

1 1 1 2

0o 0 0 2

31 U2 U3z U4

INlustration

We apply the labeling function f given above in Case 1, for ¢ = 12 which
correspond to n = 18. We describe the labels given to u;, v; in the following
simple way, thus avoiding the actual drawing of the corona graph involved.

Cahit-3-equitable labeling of Cigo K

(vl) 1 1 e 1 (‘07)
(ul) 0 0 e 0 (u7)
(wg) 2 1 2 1 -+ 2(vig)
(ug) 2 0 2 0 -+ 2(wms)



Here we have mentioned the vertices u;, vy; ULy1, Vg4l g2, Viyo and
Un, Uy in brackets to indicate the range of the label sequences 1,1,..., i-;
0,0,...,0; 2,1,2,1,...,2and 2,0,2,0,...,2 respectively where the upper
row gives labels of v}s and the lower row gives labels of uls.

INustration

We apply the labeling function f given above in Case 2, for t = 13 which
correspond to n = 20.

Cahit-3-equitable labeling of Cy 0 K,

() 1 1 1 1 (v7)

() 0 0 O 0 (u7)

(vs) 2 1 2 1 --- 2 (va)

(us) 2 0 2 0 --- 2 (uz)
Illustration

We apply the labeling function f given above in Case 3 for ¢t = 12 which
correspond to n = 19.

Cahit-3-equitable labeling of Ci5 0 K,

(vi) 1 1 1 -+ 1 (vs)
(i) 0 0 0 --- 0 (us)
(vo) 2 1 2 1 2 (v1)
(ug) 2 0 2 0 2 (u19)



3. Cahit - 4 - equitability of Coronas

Theorem 3. All coronas are Cahit-4-equitable.

Proof: For Cahit-4-equitability, the label set as well as the edge weight set
is {0,1,2,3}. We have p(Cy, o K1) = ¢(Cn 0 K1) = 2n. We consider the
following cases.

Case 1. 2n = 0(mod 4)
Let p=¢ =2n=4i.

Sub-Case 1.1. Suppose t is even. We give suitable labeling at the end of
the proof for t = 2. So let ¢ > 4. For Cahit-4-equitability of C, o Ky each
label will have to be used ‘t' times, such that each edge weight will occur
‘t/ times.

We describe the labeling function f : V(Cy, 0 K1) — {0,1,2,3}.

fluzic1) = 0, flvaia)=1, 1<Li<y

fn) = 2 flw)=2 15i<
fluzg) = 3, flva) =3, %+1§i§t.

It can be directly verified that this labeling of Cy o K; is Cahit-4-
equitable.
We give below a suitable labeling for ¢ = 2 which corresponds to n = 4.



Cahit-4-equitable labeling of C4 o K;

Here p=¢=8,t=2,n=4.

(31 Vo v3 V4
1 2 1 3
0o 2 o0 3

u1 U2 us Uq

Sub-Case 1.2. Suppose ¢ is odd. We give suitable labeling at the end of
the proof for ¢ = 3. So let t > 5.
In this case each label will have to be used ‘¢’ times such that each edge

weight will occur ‘¢’ times.
We describe the labeling function f : V(C, o K;) — {0, 1,2, 3}.

flun) = 0, flvm)=1, 1<i<t-2
S(uze-2) 0, f(va—2)=3;
fluae) = 0, flva)=2;
f(u2t'—1) = 2, f(vz,'_l) =2, 1 5
fluzic)) = 3, f(vai-1) =3, t——2— <i<t—-1;
fluze—1) = 1, fvae-1) = 1.

It can be directly verified that each label and each edge weight occur ¢
times.
We give below a suitable labeling for ¢t = 3 which corresponds to n = 6.

Cahit-4-equitable labeling of Cs o K;

Here p=¢=12,1 =3,n=6.
vp V2 Uz Vg4 VU5 Vs
2 1 3 3 1 2
2 0 3 o 1 0
Uy U2 U3 Ug4 U Us

Case 2. 2n = 2(mod 4)
Let p=¢g=2n=4t +2.

Sub-Case 2.1 Suppose t is even. We give suitable labeling at the end of
the proof for ¢ = 2. So let t > 4. For Cahit-4-equitability of C, o K; two
labels will have to be used ‘¢’ times each, and two labels will have to be
used ‘¢ + 1’ times each such that two edge weights will occur ‘¢’ times each
and two edge weights will occur ‘¢ 4+ 1’ times each.



We describe the labeling function f : V(Cy, ¢ K1) — {0,1,2,3}.
fluzici) = 0, f(vai-) =1, 1Zi<t+1;

flum) = 2, fm)=2 1<i<s

fluz) = 3, flva) =3, %+1_<_i§t.

It can be directly verified that two labels and two edge-weights occur ¢
times each and two labels and two edge-weights occur ¢ + 1 times each.
We give below a suitable labeling for ¢ = 2 which corresponds to n = 5.

Cahit-4-equitable labeling of Cs o K;

Here p=¢=10,t =2,n=5.
(51 V2 V3 (7 Vs
1 2 1 3 1
0o 2 0 3 O
u U U3 U4 U

Sub-Case 2.2 Suppose t is odd. We give suitable labeling at the end of
the proof for ¢ = 1. So let ¢ > 3. For Cahit-4-equitability of C» o K; two
labels will have to be used ‘¢ times each, and two labels will have to be
used ‘t + 1’ times each such that two edge weights will occur ‘¢’ times each
and two edge weights will occur ‘¢ + 1’ times each.

We describe the labeling function f : V(Cy o K1) — {0,1,2,3}.

. _t+1
flue) = 2, flomo) =2 1<i<
t+1 .
flugiz1) = 3, flvaic) =3, —-;—+1515t+1;
flux) = 0, flvzu)=1, 1<i<t.

It can be directly verified that two labels and two edge-weights occur
‘¢’ times each and two labels and two edge-weights occur ‘t + 1’ times each.
We give below a suitable labeling for t = 1 which corresponds to n = 3.

Cahit-4-equitable labeling of Cs30 K,

Herep=¢=6,t=1,n=3.

v V2 V3
2 1 3
2 0 3

U1 U2 Us

10



INlustration

We apply the labeling function f given above in Sub-Case 1.1, for ¢t = 8
which corresponds to n = 16.

Cahit-4-equitable labeling of Cj¢ o K,

v1 vz vs ... v eachlabeled 1

Uy u3 Us ... ujs each labeled 0

V2 v4 Vs Ug each labeled 2

Us Uy Us Ug each labeled 2

Vio V12 V14 Ve each labeled 3

U0 Uiz U4 Upe each labeled 3
INlustration

We apply the labeling function f given above in Sub-Case 1.2, for ¢ = 9
which corresponds to n = 18.

Cahit-4-equitable labeling of C;s0 K,

v2 ¥4 vs ... vi4 eachlabeled - 1
Uz U4 Ug ... U4 each labeled 0

vi6 labeled ‘3, wv;8 labeled 2
uj¢ labeled 0, wu;g labeled 0

vy v3 wvs v7 each labeled
u; uz us ur each labeled

2
2
V9 11 V13 V15 each labeled 3
Ug Uil Uu13 Uis each labeled 3

viz labeled 1, wu;7 labeled 1

11



Illustration

We apply the labeling function f given above in Sub-Case 2.1, for ¢ = 8
which corresponds to n = 17.

Cahit-4-equitable labeling of Ci70 K,

v1 v3 vs ... vi7 eachlabeled 1

u; ug us ... ujy eachlabeled 0

v9 U3 Ug Us each labeled 2

Uy Ug Ug Us each labeled 2

Vio V12 V14 V16 each labeled 3

Up U2 U4 Ui each labeled 3
INlustration

We apply the labeling function f given above in Sub-Case 2.2,fort =9
which corresponds to n = 19.

Cahit-4-equitable labeling of Cy90 K}
v1 wv3 wvs vr wve eachlabeled 2
u; us Uz Uy ug eachlabeled 2
vi1 via V15 Y17 vig each labeled 3

U3 U3 U5 U7 U9 each labeled 3

v9 v4 g ... vig each labeled 1
us Ug Ug ... ug eachlabeled 0

4. Cahit - 5 - equitability of Coronas

Theorem 4. All coronas are Cahit - 5 - equitable.

Proof: For Cahit - 5 - equitability, the label set as well as the edge weight
set is {0,1,2,3,4}. We have p(Cy, © K1) = ¢(Cp 0 K1) = 2n. We consider
five different cases.

12



Case 1. 2n = 0(mod 5)

Let p=¢ =2n = 5t, t > 2. Note that 5t = 2n, therefore ‘t’ is even.
We give suitable labeling at the end of the proof for ¢ = 2. So let ¢ > 4.
For Cahit - 5 - equitability of Cy, o K; each label will have to be used ‘¢’
times such that each edge weight will occur ‘¢’ times.

We describe below the labeling function f : V(ChoK;) — {0,1,2, 3,4}.

Flugioi) = 0, f(vaic1) =1, 1SiS%;
flum) = 4, flow)=2 1<i<i-1,

flue) = 4= f(w);

F(uep2ic1) = 0, f(vegaic1) =1, 1<i< %— 1;
fluepai) = 3= f(vegas), 1<i< % —1;
fluze-1) = 0, f(va-y) =3;

fluze) = 3, flvar) =1,

f(“2t+1) = 2= f(vaeq1);
N /
fluzerr14i) = 2, flvaeqr4i) =4, 1<i< 3~ L

It can be directly verified that each label and each edge-weight occurs
exactly ‘t' times.
We give below a suitable labeling for ¢ = 2 which corresponds to n = 5.

Cahit - 5 - equitable labeling of Cs o K,
Here p=¢=10,t =2,n=5.

() 1 4 3 1 2 (vs)
(w) 0 4 0 3 2 (us)

Case 2. 2n = 1(mod 5)

Let p=¢g=2n=>5¢t+1, t>1. Notethatas2n=>5t+1,1isan odd
number. We give suitable labelings at the end of the proof for ¢ = 1,3,5.
So let t > 7. For Cahit - 5 - equitability of C, o K, four labels will have
to be used ‘¢’ times each and one label will have to be used ‘¢ + 1 times,
such that four edge weights will occur ‘¢’ times each and one edge weight
will occur ‘¢ + 1/ times.

We describe below the labeling function f : V(CnoK;) — {0,1,2,3,4}.

13



flugici) = 0, f(vai-)=1, 1<i<——;

flun) = 4, flv)=2, 1<i<——;
fluem1) = 4= f(ue-1);
fluey) = 4= fluws);

fa) = 0, fl)=1, EE<igt-
f(uziz1) = f(v2i-1) =3, t%3$i5t;

3
fluz) = 0, flvz) =2, i=tt+1;
fluze1) = 3, flvae) =1
fluzeqs) = 2= f(vaess);
9 5t+1

flug) = flv) =4, 2t+4<z<——2-—

It can be directly verified that four labels and four edge weights occur
‘' times each and one label and one edge weight occurs ‘t + 1’ times each.

We give below suitable labelings for ¢ = 1,3,5 which corresponds to
n = 3, 8, 13 respectively.

Cahit - 5 - equitable labeling of C30 K,
Herep=¢=6,t=1,n=3.

Ui Uz U3
Cahit - 5 - equitable labeling of Cg o K,
Here p=¢=16,t =3,n=8.

m) 1 2 1 4
() 0 4 0 4

[

Cahit - 5 - equitable labeling of Cj30 K
Here p=¢=26,t=5,n=13.

() 1 2 1 4 1 (vs)
(1) 0 4 0 4 0 (us)

14



(vs) 4
(us) 4
(07) 3 1 3 (vg)
(uz7) 3 0 3 (ug)

(vlo) 2 1 2 2 (913)
(um) 0 3 0 2 (u13)

Case 3. 2n = 2(mod 5).

Let p=¢=2n=>5t+2, t> 2. Note that as 2n =5t + 2, is an even
number.We give a suitable labeling at the end of the proof for = 2. So let
t > 4. For Cahit-5-equitability of Cy, o K; three labels will have to be used
‘t’ times each and two labels will have to be used ‘¢ + 1’ times each such
that three edge weights will occur ‘¢’ times each and two edge weights will
occur ‘¢ + 1’ times each.

We describe below the labeling function f : V(Cn0K1) — {0,1,2,3,4}.

fluzic) = 0, f(vai-1) =1, 15:’5%;

Flun) = 4, f(vu)=2, 15;‘5%_1;
fluw) = 4= f(u);
fluzic)) = 0, flvaim1) =1, %+1§i5t+1;

fluz) = 3= f(vai), %+1$i§t;
f(uze42) = 2= f(vaqa);
flws) = 2, flw)=4, 2t+3 <iL it_;—_2

It can be directly verified that three labels and three edge weights occur
‘' times each and two labels and two edge weights occur ‘¢ + 1’ times each.
We give below a suitable labeling for t = 2 which corresponds to n = 6.

Cabhit - 5 - equitable labeling of Cs o K,
Herep=¢=12,t=2,n=6.

V1 VY2 vz V3 UVUs vg
1 4 1 3 1 2

0 4 0 3 0 2
Uy U2 U3 U4 Up U

Case 4. 2n = 3(mod 5).

15



Letp—q_2n-5t+3 t > 1. Note that as 2n = 5t +3,% is an
odd number. We give suitable labellngs at the end of the proof for t = 1,3.
So let ¢ > 5. For Cahit-5-equitability of Cy o K two labels will have to be
used ‘¢’ times each and three labels will have to be used ‘¢ + 1’ times each
such that two edge weights will occur ‘¢’ times each and three edge weights

will occur “t + 1’ times each.
We describe below the labeling function f : V(CnoK;) — {0,1,2,3,4}.

fluzic1) = 0, flvzic)=1, 1<i<——;

f) = 4 few)=2 15ig 5

fluspr) = 4= f(oen);

fluzicn) = 3=flvzies), ——<i<t+]
t+3

fluz) = 0, flva)=1, - <i<t
fluzer2) = 0, fl(vag2) =2;
fluzess) = 2= flvaesa);
flwi) = 2, flu)=4 2t+4<z<—;'§
It can be directly verified that two labels and two edge weights occur ‘¢/
times each and three labels and three edge weights occur ‘¢ + 1’ times each.

We give below suitable labelings for ¢ = 1,3 which correspond to n =
4,9.

Cahit - 5 - equitable labeling of C4 0 K
Here p=¢=8,t=1,n=4.

v V2 (3 Vg
1 2 3 2
0. 4. .3 0

up  uz Uz U4

Cahit - 5 - equitable labeling of Cy o K;
Here p=¢=18,t =3,n=9.
vy VY2 U3 V4 Vs Us VU7 Us Vg
1 2 1 4 3 1 3 2 2
o 4 0 4 3 0 3 0 2
U; U U3 U4 Uy U U7 U U9

Case 5. 2n = 4(mod 5).

16



Let p=¢=2n=5¢t+4, t>2. Notethat as 2n =5t + 4, is an even
number.We give suitable labeling at the end of the proof for t = 2. So let
¢t > 4. For Cahit-5-equitability of Cy, o K one label will have to be used
‘t’ times and four labels will have to be used ‘¢ + 1’ times each such that
one edge weight will occur ‘¢’ times each and four edge weights will occur
‘t 4+ 1’ times each.

We describe below the labeling function f : V(CpoK;) — {0,1,2,3,4}.

fluzic1) = 0, flvai-1)=1, 1<i<

fluz) = 4, flvm)=2, 1<ig
flu) = 4= f(u);
fluzica) = 0, flvzica) =1, %+15i$t;
<

f(u2x') = 3=f(v2,-), %-I‘l ist;
fluzee1) = 0, flvaeg1) =2
fluzes2) = 3, f(vaq2) =1,
fluzeys) = 2= f(vaeys);

flw) = 2, flw)=4, 2t+45i55t2—+4.

It can be easily verified that one label and one edge weight occur ‘¢’
times each and four labels and four edge weights occur ‘¢ + 1’ times each.
We give below a suitable labeling for ¢ = 2 which corresponds to n = 7.

Cahit - 5 - equitable labeling of C; o K,
Herep=¢=14,t=2,n=1.

(5] (] V3 U4 Vs Ve v7
1 4 1 3 2 1 2
0 4 0 3 0 3 2

31 U2 U3 Ug4 Us Ug U7.

Illustration

We apply the labeling function f given above in Case 1, for t = 10 which
corresponds to n = 25.

17



Cabhit - 5 - equitable labeling of Css 0o K

() 1 2 1 21 2 1 2 1 (w)
(w) 0 4 0 4 0 4 0 4 0 (uo)

(‘010) 4

(um) 4

(vu) 1 3 1 3 1 3 (‘018)

(uu) 0 3 0 3 0 3 (uls)

Y19 V20 V21

3 1 2

0 3 2

U9 U20 U21

(‘022) 4 4 4 (’025)

(uzz) 2 2 2 (uzs)
Ilustration

We apply the labeling function f given above in Case 2, for ¢ = 11 which
corresponds to n = 28.

Cabhit - 5 - equitable labeling of C2s 0 K

(01) 1 21 2 --. 1 2 1 (1)9)
(W) 0 4 0 4 - 0 4 0 (ug)
(vm) 4 1 4 (vn)

(um) 4 0 4 (u;z) .
(vis) 3 1 3 1 -1 3 (va1)
(u13) 3 0 3 0 0 3 (uzl)
(vzg) 2 1 2 2 (vzs)

(uzz) 0 3 0 2 (025)

(ves) 4 4 4 (v2s)

(uzs) 2 2 2 (UQs)

18



INlustration

We apply the labeling function f given in Case 3, above in for ¢t = 8
which corresponds to n = 21.

Cahit - 5 - equitable labeling of Cs; o K;

() 1 2 1 21 2 1 ()
(w) 0 4 0 4 0 4 0 (u)
(vs) 4
(ug) 4
(v9)131313131(v17)
(u9)030303030(u17)
(vis) 2
(‘uls) 2
(vie) 4 4 4 (vn)
('ulg) 2 2 2 (u21)

INlustration

We apply the labeling function f given above in Case 4, for ¢ = 9 which
corresponds to n = 24.

Cahit - 5 - equitable labeling of Cy40 K,

() 1 2 1 2 1 2 1 2 1 (vg)
(w) 0 4 0 4 0 4 0 4 0 (uo)
(vlo) 4
(Um) 4
(011)313131313(‘019)
(u1) 3 0 3 0 3 0 3 0 3 (up)
(‘vzo) 2
(‘uzo) 0

19



(va1) 2

(1121) 2

(‘022) 4 4 4 (‘024)

(uz2) 2 2 2 (u24)
INlustration

We apply the labeling function f given in Case 5, above for ¢ = 8 which
corresponds to n = 22.

Cahit - 5 - equitable labeling of Cj; 0 K

(vl) 1 2 1 2 1 2 1 (‘07)
(u) 0 4 0 4 0 4 0 (ud)
(vs) 4

(ug) 4

(’vg) 1 3 1 3 1 3 1 3 (’016)
(ug) 0 3 0 3 0 3 0 3 (we)
(ni7) 2 (vs) 1 (vie) 2
(wi7) O (uig) 3 (u19) 2
(vao) 4 4 4 (v22)

(u20) 2 2 2 (u32)

5. Cahit - 6 - equitability of Coronas

Theorem 5. All coronas are Cahit - 6 - equitable.

Proof: Fo'r Cahit - 6 - equitability, the label set as well as the edge weight
set is {0,1,2,3,4,5}. We have p(Cy 0 K}) = ¢(Cyn 0 K1) = 2n. We consider
three different cases.

Case 1. 2n = (0(mod 6)

Let p=gq = 2n = 6t, t > 2. So for Cahit - 6 - equitability of C,, o K
each label will have to be used ‘¢’ times such that each edge weight will
occur ‘t’ times.

20



Sub-Case 1.1. Supose n is odd. Hence ¢ is odd, t > 3.
We give suitable labeling at the end of the proof fort = 3. So let ¢ > 5.
We describe below the labeling function f : V(CroK,) — {0,1,2,3,4,5}.

fluzic1)) = 5, flvai-1) =2, 1<i<

Fluz) = 0, f(vy)=1, 15i$T§
flue) = 5= f(w);

fluz) = 0, f(vai) =2, % <i<t-1;
fluzit1) = 4, flvaiq) =1, % <i<t-1;
fluze) = 0, f(vae) =3;
fluzet1) = 4= f(vaer);
fluzep2) = 3, f(vaee2) =1;
fluaess) = 3, flvae43) =2;
flw) = 3, flu)=4, 2A+4<i< %;
fw) = 3, f)=5 F2<ica

It can be directly verified that each label and each edge weight occurs
exactly ‘t’/ times.
We give below a suitable labeling for t = 3 which corresponds to n = 9.

Cahit - 6 - equitable labeling of Cy o K;
Here p=¢=18,t=3,n=9.

(n) 2

1 (’09)
(ul) 5 0

5 4 1 2
5 4 3 3 (uy)

2 1 3
0 4 0
Sub-Case 1.2. Supose n is even. Hence t is even, t > 2.

We give suitable labelings at the end of the proof for ¢t = 2,4. So let
t>6.
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We describe below the labeling function f : V(CroK;) — {0,1,2,3,4,5}.

fluzicy)) = 0, flvzic1) =1, 1Z:i< 5—2-_2;
flum) = 5 flm)=2, 1<i< S5
flue—)) = 0, flue—1)=2;
flue) = 5=f(u);
flusgr) = 0, f(ve41) =2
fluw) = 4 f)=1, S2cici-n
fluzigr) = 0, f(vaiqr) =2, 122- <i<t-12
fluze-1) = 0, flva—1) =4
fluze) = 4, flva)=1
fluze1) = 3, flvaeqr) =15
fluasy2) = 3, f(vaes2) =2;
flw) = 3, f(u)=4, 2t+3<Li< w;
5t+4

flw) = 38, flw)=5 ——<i<3t

It can be directly verified that each label and each edge weight occurs
exactly ‘¢’ times.

We give below suitable labelings for ¢ = 2,4 which correspond to n =
6, 12 respectively.

Cabhit - 6 - equitable labeling of Cs o K
Here p=12=¢,t =2,n=6.
(’01) 2 5 2 1 3 1 (’06)
(wi) 0 5 0 4 3 4 (ue)

Cahit - 6 - equitable labeling of Cj20 K}
Here p=24=gq,t =4,n=12.

() 1 2 (v2)
(ul) 0 5 (‘uz)
(‘03) 2 5 2 (‘05)
(u3) 0 5 0 (Us)
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('06) 1
(us) 4

(011) 4 5 (vlz)
(u11) 3 3 (u12)

4 1 1 2
0433('“10)

Case 2. 2n = 2(mod 6)

Let p = ¢ = 2n = 6t + 2. So for Cahit - 6 - equitability of C, o K;
four labels will have to be used ‘4’ times each and two labels will have to be
used ‘¢ + 1’ times each so that four edge weights will occur ‘¢’ times each
and two edge weights will occur ‘¢ + 1’ times each.

Sub-Case 2.1. Suppose n is odd. Hence ¢ is even, > 2.

We give suitable labelings at the end of the proof for t = 2,4,6. So let
t>8.

We describe below the labeling function. f : V(CnoK;) — {0,1,2,3,4, 5}.

fluzica) = 0, f(vai)=1, 1<i< %;
flus) = 5, flow)=2, 1<i< g- 1;
flue) = 6= f(u);
fluer1) = 0, fluven)=1;
flueez) = 4= f(urga), f(ve42) = 2 = f(vr4a);
fluees) = 0, f(veys) =2;
fluzigr) = 0, flvaig1) =2, %+25i5t—2;

t .
fluzig2) = 4, f(vaigz) =1, F+2<igt-3

fluze-1) = 0= f(uzq), f(vae—1) =3 = f(vaesr);
fluze) = 4, f(va) =1,
fluzes2) = 4= f(varga);
fluzees) = 3, f(varys) =2;
f(u23+4) = 3, f(v2t+4) =1;
Fluseesyi) = 3, 0<i<t—4;
flvargsei) = 4, 0<i< % -3

4 .
f(vzH_.-) = 5, 5+3S2$t+1

It can be directly verified that four lables and four edge-weights occur
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‘4’ times each and two labels and two edge weights occur ‘t + 1’ times each.
We give below suitable labelings for t = 2,4,6 which correspond to
n = 7,13, 19 respectively.

Cabhit - 6 - equitable labeling of C70 K,
Here p=¢=14,t=2,n=1.
() 1 5 1 2 3 2 3 (v)
(1) 0 5 0 4 0 4 3 (ur)

Cahit - 6 - equitable labeling of C130 K
Here p=¢=26,t =4,n=13.

(‘vl) 1 2 1 5 1 (’05)
(ul) 0 5 0 5 0 (‘ll5)
(1)5) 2 3 2 3 4 (vlo)
(ue) 4 0 4 0 4 (um)
(’Uu) -2 1 5 (’013)

(‘uu) 3 3 3 (‘uls)

Cahit - 6 - equitable labeling of Cijg0 K;
Here p=¢=38,t =6,n=19.

(m) 1 2 1 2 1 5 1 ()
() 0 5 0 5 0 5 0 (ur)
(vs) 2 2 2 3 1 3 4 (v14)
(ug) 4 0 4 0 4 0 4 (wma)
(‘015) 2 1 4 5 5 ('019)

(’uls) 3 3 3 3 3 (’ulg)

Sub-Case 2.2. Suppose n is even. Hence ¢ is odd, ¢ > 1.

We give suitable labelings at the end of the proof for ¢t = 1,3,5,7. So
let t > 9.

We describe below the labeling function. f: V(CpoK;) — {0,1,2,3,4,5}.

24



Fluzic1) = 0, flvaic1) =1, 1<i< ——;

fluzk) = 5, flva) =2, 15i5—2—§
fluess) = 4, f(v4s) =2;

t+5 _ .
fluzi-1) = 0, f(vai-1) =2, % <i<t
i .
fluz) = 4, fla)=1, F2<igt-y
fluz) = 4= f(vy),i=t1+1;
fluzeq1) 0, f(vae41) =3;
fluzega) = 3, flvaqs) =2;
Fluzega) = 3, f(vaeqa) =15
Fluzeqaqs) = 3, 1<i<t-3;
._t—=5H
flvaegasi) = 4, 1<i< 5
t+5 .
flvaesi) = 5, % <igt+1.

It can be directly verified that four labels and four edge weights occur
‘t’ times each and two labels and two edge weights occur ‘¢ + 1’ times each.

We give below suitable labelings for ¢ = 1,3,5,7 which correspond to
n = 4,10, 16, 22 respectively.

Cahit - 6 - equitable labeling of C4 0 K,
Here p=¢=8,t=1,n=4.

(51 () V3 Vq
1 2 3 4
0 5 3 4

u; U2 uz Ug
Cahit - 6 - equitable labeling of Cig 0 K
Here p=¢=20,t=3,n=10.
(i) 1 2 1 2 1 2 2
(¢1) 0 5 0 5 0 4 0
Cahit - 6 - equitable labeling of Cys 0 K,
Here p=¢=32,t=5,n=16.
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(1)1) 1 21 2 1 2 1 (?)7)
() 0 5 0 5 0 5 0 (ur)
(Us) 2 2 4 3 4 2 1 (‘U14)
(ug) 4 0 4 0 4 3 3 (w4)

(’01 5) 5 5 (”16)
(u15) 3 3 (’U16)

Cahit - 6 - equitable labeling of C3; 0 K,
Here p=¢=44,t=7,n=22.

() 1 2 1 2 -+ 1 (vo)
(w) 0 5 0 5 - 0 (uo)
('v]o) 2

(w10) 4

(1)11) 2 1 2 (v13)

(2111) 0 4 0 (‘u13)

(via) 4 3 4 2 1 (vig)
(U14) 4 0 4 3 3 (uls).
(‘019) 4

(‘ulg) 3

(‘020) 5 5 5 (022)

(uz0) 3 3 3 (u22).

Case 3. 2n = 4(mod 6)

Let p = ¢ = 2n = 6t + 4. So for Cahit - 6 - equitability of C,OK; two
labels will have to be used ‘¢’ times each and four labels will have to be
used 4 + 1’ times each so that two edge weights will occur ‘¢’ times each
and four edge weights will occur ‘t + 1’ times each.

Sub-Case 3.1. Suppose n is odd. Hence ¢ is odd, ¢ > 1.

We give suitable labeling at the end of the proof for ¢ = 1. Solett > 3.
We describe below the labeling function f : V(CnoK;) — {0,1,2,3,4, 5}.
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fluzicy) = 0, f(vaicg) =1, 1<i<-T=,

flun) = 5, flvu)=2, 1<i< 5
fluet1) = 5= f(vey1);
fluzigr) = 0, flomp) =2, —=<i<t;

flun) = 4, flva)=1, —5— <i<y
fluzes2) = 4= f(vaga);
fluaess) = 3, fl(vags) =1;

fw) = 3, f)=4, n+acic¥ES,

flw) = 3, f(w)=35, @ggmn.

It can be directly verified that two labels and two edge weights occur ‘¢’
times each and four labels and four edge weights occur ‘¢ 4 1’ times each.
We give below a suitable labeling for ¢ = 1 which corresponds to n = 5.

Cahit - 6 - equitable labeling of C; o K,
Here p=¢=10,t =1,n=5.

(1) 1 5 2 4 1 (vs)
(1) 0 5 0 4 3 (us)

Sub-Case 3.2. Suppose n is even. Hence ¢t is even, t > 2.
We give suitable labeling at the end of the proof for ¢ = 2. So let ¢ >4.
We describe below the labeling function f : V(CnoK,y) — {0,1,2,3,4,5}.

. 4
fluzicl)) = 0, f(vaic1)=1, 1<i< 5

flun) = 5, flva)=2, lsis%—h
fue) = 5= f(w);

fluzi) = 0, f(vain) =2, i<t

D o
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fluw) = 4, flv)=1, ——<i<y
flw) = 3, flw)=4, 22u+2<i< Si;‘—ll,
flw) = 3, flw)=5, St—;—G <i<3t+2

It can be directly verified that two labels and two edge weights occur ‘¢’
times each and four labels and four edge weights occur ‘¢ 4+ 1’ times each.
We give below a suitable labeling for t = 2 which corresponds to n = 8.

Cahit - 6 - equitable labeling of Cs o K,
Here p=¢=16,t =2,n=8.

(‘01) 1 5 2 1 2 4 45 (‘Ug)
(w) 0 5 0 4 0 3 3 3 (us)
INlustration

We apply the labeling function f given above in Sub-Case 1.1, fort = 9
which corresponds to n = 27.

Cabhit - 6 - equitable labeling of Ca70 K3

() 2 1 2 1 -« 1 (vs)
(ul) 5 0 5 o -- 0 (’us)
(’Ug) 5

(‘ug) 5

(‘Ulo) 2 1 2 1 1 (‘017)
(um) 0 4 0 4 4 (u17)
(vls) 3 4 1 2 ('021)

(‘ulg) 0 4 3 3 (U21)

(‘022) 4 4 4 (024)

(U.22) 3 3 3 (U24)
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(‘vzs) 5 5 5 (’027)
(u25) 3 3 3 (u27)

INlustration

We apply the labeling function f given above in Sub—Case 1.2,fort =8
which corresponds to n = 24.

Cahit - 6 - equitable labeling of Cy4 0 K,

(m) 1 2 1 2 -+ 2 (vg)

(w1) 0 5 0 5 --- 5 (ug)

(ve) 2 5 2 (vo)

(ur) 0 5 0 (uo)

(’010) 1 2 1 2 s 1 (‘014)

(ur) 4 0 4 0 -+ 4 (wy)

(‘015) 4 1 1 2 (Ulg)

(us) 0 4 3 3 (us)

('019) 4 4 4 (’021)

(‘ulg) 3 3 3 ('uzl)

(022) 5 b 5 (024)

(U22) 3 3 3 (UQ4)
Illustration

We apply the labeling function f given above in Sub-Case 2.1, for t = 12
which corresponds to n = 37.

Cabhit - 6 - equitable labeling of C37 0 K,
Here p=¢=174,t = 12,n = 37.

1 (1)11)
0 (un)

ot o
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(1)12) 53 1 2 2 2 ('016)
(w2) 5 0 4 0 4 (ui)
(m7) 2 1 2 1 2 1 (v2)
(017) 0 4 0 4 0 4 (uzz)
('023) 31 3 4 21 (‘023)
(‘uzs) 0 4 0 4 3 3 (‘UQs)
(vas) 4 4 4 4 (v32)

(U29) 3 3 3 3 (usz)

(033) 5 5 5 b 5 (037)
(uss) 3 3 3 3 3 (ua7)

Illustration

We apply the labeling function f given above in Sub-Case 2.2, for ¢ = 11
which corresponds to n = 34.

Cahit - 6 - equitable labeling of C340 K

(vl) 1 2 1 2 1 (v13)
() 0 5 0 5 --- 0 (wsg)
(0;4) 2

(u14) 4

(015) 2 1 2 1 2 (v21)
(u]_s) 0 4 0 4 0 (‘ug]).
(022) 4 3 4 2 1 (‘vzs)
(U22) 4 0 4 3 3 (uzs).
(027) 4 4 4 ('029)

(UQ7) 3 3 3 (‘uzg).

(vao) 5 5 5 5 5 (va4)
(uso)) 3 3 3 3 3 (usa).
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INlustration

We apply the labeling function f given above in Sub-Case 3.1, fort = 9
which corresponds to n = 29.

Cahit - 6 - equitable labeling of Ca5 0 K

(vl) 1 21 2 ... 1 (09)

(1) 0 5 0 5 .- 0 (ug)

(‘Ulo) 5

(u10) 5

(011) 21 21 ... 2 (7119)

(un) 0 4 0 4 ... 0 (uls)

(vao) 4 1 (va1)

(uzo) 4 3 (uzl)

(vgz) 4 4 4 4 (vzs)

(‘uzz) 3 3 3 3 (uzs)

(vzs) 5 b 5 5 (029)

(ugs) 3 3 3 3 (uzg)
INlustration

We apply the labeling function f given above in Sub-Case 8.2, for t = 10
which corresponds to n = 32.

Cahit - 6 - equitable labeling of C3; 0 K,

() 1 2 1 2 .. 1 (v9)
(w1) 0 5 0 5 --- 0 (ug)
(vm) 5

(um) 5

(b)) 2 1 2 1 ... 2 (vy)
(uu) 0 4 0 4 --. 0 (uzl)

3



(1122) 4 4 4 (v27)‘

(‘uzz) 3 3 3 (U27)

(028) 5 5 5 (‘032)

(uzs) 3 3 3 (u32)
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