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Abstract

We extend results concerning orthogonal edge labeling of constant
weight Gray codes. For positive integers n and r with n > r, let
Ghn,r be the graph whose vertices are the r-sets of {1,...,n}, with
r-sets adjacent if they intersect in 7 — 1 elements. The graph Gy, , is
Hamiltonian; Hamiltonian cycles of Gy, are early examples of error-
correcting codes, where they came to be known as constant weight
Gray codes.

An r-set 4 and a partition 7 of weight r said to be orthogonal
if every block of 7 meets A in exactly one element. Given a class P
of weight r partitions of X,, one would like to know if there exists
a Gp,» Hamiltonian cycle 4; A, . ..A(:) whose edges admit a label-
ing Aim Az ...A(:)w(:) by distinct partitions from P, such that a
partition label of an edge is orthogonal to the vertices that comprise
the edge. The answer provides non-trivial information about Hamil-
tonian cycles in G- and has application to questions pertaining to
the efficient generation of finite semigroups.

Let 7 be a partition of n as a sum of r positive integers. We let =
also refer to the set of all partitions of X, whose block sizes comprise
the partition 7. J. Lehel and the first author have conjectured that
for n > 6 and partition type 7 of {1,...,n} of weight r partitions,
there exists a T-labeled Hamiltonian cycle in G, .

In the present paper for n = s + r, we prove that there exist
Hamiltonian cycles in G,» which admit orthogonal labelings by the
partition types which have s blocks of size two and  — s blocks of size
one, thereby extending a result of J. Lehel and the first author and
completing the work on the conjecture for all partition types with
blocks of size at most two.
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tonian cycle, partition, Middle Levels Conjecture, transversal, semigroup,
semigroup of transformations, rank of a semigroup, idempotent rank of a
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Orthogonal Labeling of Constant Weight Gray Codes
by Partitions With Blocks Of Size At Most Two

1 Introduction

We solve an algebra motivated combinatorics problem, raised in (5], involv-
ing notions related to constant weight Gray codes. We prove results which
present certain non-trivial properties of constant weight Gray codes; these
have application to the growing literature on finite idempotent-generated

semigroups.
Let n and r be positive integers with n > r, and let Ghp,r be the graph
whose vertices are the r-sets of X, = {1,...,n} such that two r-sets are

adjacent if their intersection consists of r — 1 elements. It is well-known
that Gy » is Hamiltonian ([1], (2], [10), [12)); that is, there exists a cycle in
G, passing once through each of its vertices. The Hamiltonian cycles of
Gh,r are early examples of error-correcting codes, where they are known as
constant weight Gray codes. ([11]).

A partition 7 of X, is said to be of weight r if = partitions Xn into r
classes; the set of all weight r partitions will be denoted by Part(n,r). Let
P be a subset of Part(n,7).

Definition 1.1. An orthogonally P-labeled list Al,al,.-.,A(n),a(n) is

an alternating sequence of the (7) distinct T-sets and distinct partitions in
P, such that for all i with 1 < i < (), the partition 7; is orthogonal to A;
and Ay, and (%) is orthogonal to A(n) and A;.

An orthogonally P-labeled list Ay, .. ., A(..), o) such that Ay, ..., A(n)

is a Hamiltonian cycle in Gp,r is said to be ‘an o;thogona,lly '}llabeledr
Hamiltonian cycle.

The sequence Aj,.. .,A(:) (which consists of all the r-sets of X;) is
called the set-sequence; the sequence oy,... ) O(n) is called the partition-
sequence. In the sequel we omit commas between the elements of labeled
lists, set-sequences and partition-sequences. We refer to o; as the label for
the edge A;Ai+1- An orthogonally P-labeled list is denoted by the ordered
pair (C,II), where C is the set-sequence and II is the partition-sequence.
We describe some earlier results concerning orthogonally labeled lists and
orthogonally labeled Hamiltonian cycles. The following result was proved
in [4].

Theorem 1.2. [4] For positive integers n and r with n > r, there evist
orthogonally Part(n,r)-labeled lists.
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The authors of [4], John M. Howie and Robert B. McFadden, use The-
orem 1.2 to prove a result concerning the size of minimal generating sets of
certain finite semigroups of transformations. The connection between or-
thogonal labeling and semigroups is described in Section 4. The next result
of the authors and McFadden, cited in Theorem 1.3 below, extends Theo-
rem 1.2. Let Part(n) be the lattice of partitions of X, and let Cov(Part(n))
be the graph with vertices Part(n); two such vertices are adjacent if one
covers the other in Part(n). Note that in Cov(Part(n)), distinct elements
of Part(n,r) have distance at least two (since Part(n,r) is an anti-chain in
Part(n)). Let Part(n,r) be the graph with vertices Part(n,r) such that
two vertices are adjacent if they are distance-two in Cov(Part(n)).

Theorem 1.3. [6] Let n and r be positive integers with n > r.

1. Every Hamiltonian cycle in G, admits an orthogonal Part(n,r) la-
beling.

2. There exists a Hamiltonian cycle in G, , which an orthogonal Part(n,r)
labeling Ay ay ...A(n)a(n) with the additional property that the list of

partitions « . - Oy is a cycle in Part(n,r).

A partition T of a positive integer n into r parts is a decomposition
of n as a sum of r positive integers, denoted by 7 = a*'...a**, where
T_jaim; = n and z%_im; = r. A partition 7 € Part(n, ) is said to be of
type 7, if the sizes of its partition classes form a partition 7 of the integer
n. We also use 7 to refer to the subset of Part(n, r) of all the partitions
of that type. For a partition type 7 let A'(7) be the number of distinct 7

partitions. In (5], the authors make the following conjecture.

Conjecture 1.4. For any partition type T of weight v on X, satisfying
inequality N(7) > (:f), there exist T-labeled lists of all r-sets of X,,.

In [5] J. Lehel and the first author prove the next theorem. Note that
the second statement of the theorem asserts existence of an orthogonally
T-labeled list, containing all the vertices of Ghn,r, it is not stipulated that
the list is a path in G, ...

Theorem 1.5. [5] Let n and r be positive integers such that 2r > n > r.

1. For positive integers r and s with r > s and 7 = 2°17¢ there ezists
an orthogonally T-labeled Hamiltonian cycle.

2. Forr > 4 and 7 = 2" there ezists an orthogonally 7-labeled list of all
r-sets of X,.

163



For r = 2 and r = 3, observe that A(2") is smaller than (*7), the number
of r-subsets; hence, there are no orthogonal 27-labeled Hamiltonian cycles
in Gz, for r = 2,3.

Theorem 1.5 leaves open the problem of determining the existence
of orthogonally 27-labeled Hamiltonian cycles, and leads to the following
conjecture generalizing Conjecture 1.4.

Conjecture 1.6. Partition Type Conjecture For any partition type T
of weight v on X, satisfying inequality N(1) > (%), there exist T-labeled
Hamiltonian cycle in G-

It is worth noting that for 7 = 7 171, the Partition Type Conjecture 1.6
is equivalent to the celebrated Middle Levels Conjecture. Indeed the map-
ping from the set of all (r — 1)-sets to the partitions of type is a one-to-one
correspondence between (r — 1)-sets on X, and partitions of type r 11,
See [11] for background on the Middle Levels Conjecture.

We confirm the Partition Type Conjecture 1.6 for 7 = 27, with r > 4
by proving the following theorem.

Theorem 1.7. Forr >4 andr > s > 1, there there exists an orthogonally
2% 17=%.[abeled Hamiltonian cycle in Gris,r.

The proof of Theorem 1.7 is intricate, purely combinatorial, and inde-
pendent of the constructions used in [5].

For r > 4, not every Hamiltonian cycle in G2, admits an orthogonal
27-labeling; a counter-example for the r = 4 case is provided in Lemma 3.3.
In a sequel to this paper ( [8]) we show that for s > 9, every Hamiltonian
cycle in Gr4s,» can be orthogonally 2°17~*-labeled.

The work here is a part of a now completed program aimed at showing
that the Partition Type Conjecture 1.6 is valid for all partition types, except
for the types of the form m 17~!, where the Middle Levels Conjecture is an
obstruction. The proof is completed in [8] and [9].

We prove Theorem 1.7 in the next section. In the last section we explain
the connection between the combinatorial results concerning orthogonal
labeling and semigroup theory, and we pose problems in combinatorics and
semigroup theory.

2 Proof of Theorem 1.7

For a cycle B = By...Bp, for i = 1,...,m, when we refer to an edge
B;B;;1, we assume that B, B, is one of the possibilities; in general, sub-
scripts associated with a cycle of length m are interpreted “mod m”.
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LetC = A, .. .A(:) be a Hamiltonian cycle in Gy, . The (r—1)-set A;N
Ay is termed the core of the edge A;A;+). The two-element symmetric
difference of A; and A;4, is denoted by A(A;, A;41). For a positive integer
s and a non-negative integer k, with s + k < n, subsets of the form {s,s +
1...,s+ k} are denoted by [s,s + k]. If k£ > 0, then [s + k, 5] stands for
the empty set. To prove Theorem 1.7, we will prove the following stronger
result.

Proposition 2.1. 1. Forr > 4 and r > s > 1, there ezists an or-
thogonal 2° 17~*-labeled Hamitonian cycle A;m Aymo ...A(r+.)7r(r+.)
satisfying the following conditions:

(e) Ay ={1,2,...,7} and A(r+,) ={1,...,r=1,7+s)};

(b) {1,...,7 — 1} is the core of ezactly one edge of C, the edge
A(r-l-a)Al;

(c) ifb€ Xrys, b < s+2, and {b} is a singleton class of a partition
m; labeling the edge A;Aipr (i = 1,...,("F%)), then the core
AiNA;q contains at least s—1 elements in the interval {1,b-1].

2. For all v > 4, there ezists an orthogonally 27-labeled Hamiltonian
cycle of Gar,r satisfying the conditions (1a) and (1b) above.

Suppose 7 is a partition of type 2° 1"~¢ orthogonal to an edge A4;A;;,
in Gyys,r. Observe that if {b} is a singleton class of =, then b is in the
core of A;A;y;. Thus, statement (1c) of Proposition 2.1 is equivalent to
the following: the core A; N A;4) contains s elements in the interval [1, b).

Suppose that A, ... A(r:,,) is a Hamiltonian cycle in G4, ,. A partition

m of type 2° 177% is said to be available for the edge A; Ay, if 7 is orthogonal
to both A; and A;), and 7 and A;Aiy, satisfy Proposition 2.1(1c). In the
subsections to follow, we provide the proof of Proposition 2.1, and thereby
the proof of Theorem 1.7.

2.1 Proof of Proposition 2.1

With each partition type 2°17~%, we associate an ordered pair (r,s). The
set of all such ordered pairs, restricted to »r > 4 and r > s > 1, and
ordered lexicographically, is a well-ordered set. We prove Proposition 2.1 by
induction. The base steps correspond to the pairs (4, 1), (4,2), (4,3), (4,4)
(which together comprise the r = 4 cases), along with (r, 1), for all r > 5.
The constructions for the base steps (4,2), (4, 3), (4,4) are ad-hoc and for
that reason are presented explicitly in Lemma, 2.8, at the end of this section.

Lemma 2.2. For r > 4, Proposition 2.1 is valid for 217!,
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Proof. Consider the following list of r-subsets of X,11: 4; = {1,2,...,7},
2,3,...,r+1},.. ., {1, i=Li+1,..,r+1}. 0, {12, r =1, r 41} =
Apy1. (Por i =1,...,7 +1, we have A; = X,4; — {i — 1}, where the
computation of i — 1 is “mod r +1”.) Fori =1,...,7+1, let m; be the
partition of type 217! with unique doubleton class A(A;, Aiy1). It is
not difficult to check that A;m Aams ... Arp17r4 satisfies the conditions
of Proposition 2.1. O

We assume that the lists In Lemma 2.8 are indeed orthogonally type
labeled Hamiltonian cycles satisfying Proposition 2.1; thus, the base step
of the proof of Proposition 1.7 is complete.

Assume there exist positive integers 7 and s, withr >4 andr > s> 1,
such that Proposition 2.1 holds for all (', s’) with (r,s) > (',s") > (4,1).
We show that Proposition 2.1 holds for (r,s) as well. By Lemma 2.2 and
Lemma 2.8, we can assume (r,s) > (5,2). The proof involves two quite
separate cases, the first involving types of the form (r,s), where r > s, and
the second (more difficult) case where r = s, the 2" case.

2.2 Proof of Proposition 2.1: > s

Let 7 = 2517~%, with r > s > 1 and r > 5. We assume inductively that
for i = 25-117-(=1) and 7, = 2° 1(r—1=2 there exist orthogonally 7
and 72-labeled Hamiltonian cycles (Cy,1I;), (C2, II2) respectively, satisfying
Proposition 2.1. Let

(C1, Hl) = AlalAgaz e A(r+:—|)a(r+:-1),

and
(C2,H2) = Blﬂleﬂz B(r+a—1)ﬂ(.-+...1

Forj=1,...,("**7")), let B; = B;U{r+s},andlet C; = B, B; .. (,+._ )
We construct a Hamiltonian cycle C in G4, by a concatenation lettmg c
be

A1A2 A(r+.' l)B(r+J- ) .o B].

Observe that C is indeed a Hamiltonian cycle. The first set of C is A, and
the last set of C is B;; these satisfy satisfy Proposition 2.1(1a). We show
that C satisfies Proposition 2.1(1b). Observe that the edge A(.-+. 1)A1 of C;

is not an edge of C. Moreover, because C, satisfies Proposition 2.1(1b), we
have A(r+a—l)A1 is the only edge of C; whose core is {1,...,7—1}. Cores of

edges of the form B; Bj_1 each contain r+s. Moreover, the core of the edge
(r+:—l)B(r+l—l) is {1,...,7—2,r+s—1}. Wehaver+s—1>r-1,sinces

is positive; hence, the core of the edge A(r+o—l)B(r+n- ) isnot {1,...,7r—1}.
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It follows that {1,...,r — 1} occurs as the core of exactly one edge of C,
namely BlAl. . . .
The edges By A; and A(r+=-l)B(r+:—l), which we use to link C; and C,

to form C, are called connecting edges. l

We construct a partition-sequence IT in such a way that (C,II) is an
orthogonally 7-labeled Hamiltonian cycle satsifying Proposition 2.1. The
partition-sequence II is constructed in stages, beginning with a modification
of the existing a; partitions, for i = 1,..., (""*7') - 1; then followed by a
modification of the existing S, partitions, for j = 1,..., ("t7') -1, and
completed with the construction of two partitions § and v that label the
two connecting edges.

For a partition # of X, with singleton classes {k;}, {k2},..., {ke}, by
the smallest singleton class {k;} of 6, we mean the smallest integer k; of
the set of integers {ki, kz,...,k}. Fori=1,...,("**"!) — 1, let & be a
partition of X, of type 7 obtained from a; by adjoining the element r + s
to the smallest singleton class of a;. Let 8; be the partition of X,,, of
type 7 obtained from §; by adjoining the new singleton class {r + s} to the

partition §;. When completed IT will have the following form:
&1&2 e &(r+:-l)_1§ﬂ~(rt:;1)_l .. .Bl’)‘.

Observe that &; is orthogonal to A;A;41 and f; is orthogonal to B;1B;.
Moreover, because the partitions of IT; are distinct, as are the partitions of
Il;, we have that &; partitions are distinct and B; partitions are distinct.
The doubleton set {t,r + s} is a class of each &; partition; on the other
hand, {r + s} is a singleton class of each f3; partition. Thus, the ("r) -2
partitions defined above are distinct.

We show that the labels ¢; and their corresponding edges satisfy Propo-
sition 2.1(1c). Assume that {a} is a singleton class of &; and that a < s+2.
By the definition of d;, there exists a singleton class {a'} of a; such that
a’ < a and {a’,7 + s} is a class of ¢;. Because a’ < s+ 1, we can apply
Proposition 2.1(1c) inductively to a; and a’: the core C; = 4; N Ay con-
tains at least (s — 1) — 1 = s — 2 elements of the set [1,a' — 1]. Since a’ is
in the core, it follows that the core C; = A; N A;;, contains at least s — 1
elements from the interval [1,a — 1], as required.

To see that the labels 8; and their corresponding edges satisfy Propo-
sition 2.1(1c), assume that {b} is a singleton class of 8; and that b < s+ 2.
Of course {b} must also be a singleton class of 8;; hence, by the inductive
assumption, the core B; N Bj,) has at least s — 1 elements in the interval
[1,b— 1), as does then the core B;j N Bj;1, as required.

We complete the construction of the partition-sequence II by labeling
the two connecting edges. Let v be a type 7 = 2°17~* partition which is
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available for the connecting edge By 4, = {1,...,r}{1,...,7 = 1,7 + s}.
Such v clearly exist. Because v is available for B, 4,, it follows readily
that an element a € X, is potentially a singleton class of « if and only if
a € [s,r — 1]. In particular, 7 is not equal to §;, for j = 1,..., ("F*7!) -1,
since B; contains the singleton class {r + s}. We claim v ;é aj, for any
i=1,...,("t*7")—1. Observe that v contains the doubleton class {r,r+s}.
By the deﬁmtlon of &;, if {r,r + s} is a doubleton class of &;, then r is the
smallest singleton class of a;, and by the definition of &; again, we have
that such &; contains no singleton class smaller than 7. On the other hand,
all singletons classes of -y are contained in [s,r — 1]. It follows that v # &;,
for any j = 1,...,("F*71) — 1, as claimed. We can label By A4; with any
such ~.

Let d be a 2° 17~ partition available for A(r+:—l)B(r+o— ={1,...,r—
r+s—1}{1,...,7—2,7+s—1,7+s}. Because § is available for A r4a-1 B(.+, %

r=1

it follows that an element a € X,,, is a potentially a singleton class of 6 if
and only if a € [s,r — 2)U {r + s — 1}. Moreover, é contains the doubleton
class {r — 1,7+ s}, and so & # f3;, for each j, since b; contains the singleton
class {r + s}

Assume § = &;. Because {r — 1,7 + s} is a doubleton class of &;, by the
definition of &;, the smallest singleton class of a; must be » — 1. Thus, all
singleton classes of &; are contained in [r,7 + s]. In view of the restriction
described above for singleton classes of 4, it follows that if § = &;, then
[s,r—2] is an empty set,soT—2< s therefore r—1<s,and hencer—s =
1. In particular, if r — s > 1, then we can label A(r+. l)B(m D) with any

25 17—% partition available for A(r-}-:—l)B(r-{': 1y, since it would be distinct
from any &;’s.

So we assume that 7 —s = 1 and thus that 7 = 2""!1and 7, = 27212,
Since the smallest singleton class of a; is 7 — 1, we can apply the induction
hypothesis (to a; and the edge A;A;;1) and conclude that the core A;NA;41
contains at least 7 — 3 elements in the interval [1,7 —2]. The core A;N A4+
must also contain 7 — 1, and because 7 + s — 1 = 2r — 2 is a singleton
class of § = a;, the core must also contain 2r — 2. Thus A; N A;4, =

(1,7 = 1] = {u}) U {27 — 2}, where u € [1,r — 2]. That ¢ is available for
A(r+‘—l)B(r+: 1 implies that u is contained in a doubleton class {u,v} of

5, where v € [r,2r — 3]. Because &; = J, we have {u,v} must also be
a doubleton class of ;. An examination of the core of A;A;4, leads to
the conclusion that {u,v} is A(A;, Ai41). Therefore, one of the two sets
A;, Aiyr must be equal to [1,r — 1)U {2r — 2} = {1,2...,7 = 1,2r — 2}
= A(r+, - In particular, at most one of the ("%°) — 1 part,itions of IT

defined thus far is an available label for A(r+. l)B(r+l-—l ) But there are

168



r — 2)! available partitions for A r+.-1yB r+s-1). Because r > 5, it follows
(TR

that there exists an unused avaxlable partltlon for A(r+. 1)B(r+,_1) with

which to label that edge. This completes the construction of (C,II), an
orthogonally 7-labeled Hamiltonian cycle.

We have shown that for all (r,s), with » > 4 and r — s > 1, if Propo-
sition 2.1 holds for all partition types corresponding to (r',s’) satisfying
(r,8) > (r',s') > (4,1), then the proposition holds for the partition type
corresponding to (r,s), namely 2% 17~%.

2.3 Completion of proof of Proposition 2.1: 7 = s case

Take r > 5 and assume that Proposition 2.1 holds for all (', s’) such that
(ry7) > (r',s") > (4,1). We assume inductively that for some r > 5, there
exists an orthogonally 27! 1-labeled Hamiltonian cycle

(CO, Ho) = A17T1 e A(2':l)7r(2r:l),

satisfying Proposition 2.1. To complete the proof of Proposition 2.1, we
show that it holds for the type associated with (r,r), namely 27, for r > 5.

We begin by modifying the orthogonally (27!1)-labeled the Hamilto-
nian cycle (Co,Tlp) to construct a cycle in Gay,, of length (*"7!). We then
construct a 2"-labeled cycle of length (*"~!) in Gy, disjoint from the pre-
viously constructed one, and use these two cycles to construct a 2"-labeled
Hamiltonian cycle in Gz, .

Fori:=1,. (2’ l) let 7; be the 27 partition obtained by adjoining 2r
to the unique singleton class of w;. Note that partitions 7; are distinct and
each is orthogonal to its associated edge. Later we use an observation that
Proposition 2.1(1c) applied to (Co,Ilo), implies that for j = 1,...,r — 2,
the doubleton set {2r,j} is not a class of ;. Let Co = Co,_and let Iy
be obtained from Ilp by replacing each m; with ;. Then (Co,IIo) is an
orthogonally 27-labeled cycle in Ga,,. We refer to (Co,Ilo) as the initial
list and to Cy as the initial cycle.

Next, we build a cycle in G2, denoted by £, out of collections of
so-called “exclusion sets” which are defined below. This cycle contains as
vertices all the r-sets of X, containing the element 2r. As a means to keep
subsequent notation uniform, for i =r -2, let {{ +1,...,r — 2} denote the
empty set.

Definition 2.3. The collections E; and M of sets defined below are referred
to as collections of exclusion sets.

Let E; consist of all T-sets of Xo, containing {i+1,...,7 —2,2r} but not
containing i, fori=1,...,r — 3.
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Let E;_2 consist of all r-sets of X, containing 2r but not containing r—2.

Let M be the set of all r-sets of X2, which contain {1,...,7 — 2,2r}.

Observe that for i = 1,...,7 — 2, E; consists of (H:) sets, and M
consists of 7+ 1 sets. The union of the collection of exclusion sets is the set
of all r-sets of X3, containing 2r. (A well-known formula states that the
sum of (]9), as j ranges from 0 to r — 2 is (') - 1; the formula and our
statement in the previous sentence are in agreement.)

Fori=1,...,r — 2, we show that there exists a listing of E; as a cycle
in Gy, as follows. Let X = Xo, — {¢,i+1,...,7 — 2,2r}. Note that |X|
= r +1. Let Gx,it+1 be the graph whose vertices are the (i + 1)-sets of
X, two such sets adjacent if their intersection contains i elements. Using
the Hamiltonicity of Gx,i+1, we select a Hamiltonian cycle H; of G x,is1;
we may specify any pair of sets in X whose intersection has i elements
as the first and last sets of H;. Later we will make use of that freedom.
Add {i+1,...,7 — 2,2r} to each set of H;; the result is a cycle in Gz,,r
whose vertices consist of all members of E;. Henceforth, £; will denote an
unspecified cycle in Ga, ., constructed in the manner above. In Listing 2.4
below, we specify the first and last sets of &;; these are chosen so that we
can link the exclusion sets to form a cycle (which we denote by &) in Ga, .
For the purposes of the proof, we will not need to know further explicit
information about &;.

Listing 2.4. 1. The first set of &y is {2,...,7—2,2r,2r —2,2r — 3}, the
last set of £ is {2,...,7 — 2,2r,2r — 1,2r — 2}.

2 Fori=2,...1r-2,
the first set of & is {i+1,...,7 —2,2r,2r-1,...,2r —i -1},
the last set of £; is {i ~ 1,4+ 1,...,r—2,2r,2r-1,...,2r —i}.

3. M is listed as a cycle M in G as follows:
{1,...,r=2,2r,2r - 1},{1,...,7 = 2,2r,r = 1},{1,...,7 = 2,21,7},
{1,...,r=2,2r,r+1},..., {1,...,7 — 2,2, 2r - 2}.

Given a list £ = ly,..., 1y, its reverse li,...,l; is denoted by L"V.

Listing 2.5. 1. If r is odd, then £ is the cycle in G, determined by
the following listing of exclusion sets:

Tev rev rev
8,_3,.. . ,57‘—2171—1,' ..,g?,M,gl P ,£1+2j,.. 3 Cp_2y

wﬁerem:l,...,(r—3)/2 andj=1,...,(r —3)/2.
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2. Ifr is even, then £ is the cycle in Ga,,, determined by the the following
listing of exclusion sets:

Er—3y- rlrmametsee ey EL, MLESSY, L ESY, L ELES,
wherem=1,...,(r—2)/2and j=2,...,(r —2)/2.

For example, if r = 6, then £ is £3,&,, M, E5¢Y,E7¢Y. If r = 7, then &
is &4, &2, M, E]Y, ELCY, EFCY.

It is not difficult to check that £ defined above is indeed a cycle; List-
ing 2.6 below may help in checking. The vertices of G2, have been par-
tioned into two disjoint cycles, the initial cycle €y and the exclusion cycle
€. Adjoining these two cycles, we will form a Hamiltonian cycle in Ga.,.

Edges which connect a pair of distinct exclusion sets will be referred to as
bridges. The ordered pair in parentheses indicates the exclusion sets which
are connected by the given bridge, where the number i refers to £3. The
bridges for odd r are: B(r—2,r-3), B(r-3,r-5),...,B(4,2), B(2, M). B(M, 1
B(r —4,r—2). The symmetric difference of the vertices of each edge is also
provided.

Listing 2.6. Let r be an odd integer. Then

1. B(r—2,r=383) ={2r,...,r+1}{r-2,2r,...,r + 2}, with symmetric
difference {r + 1,7 — 2}.

2. Fori even and 4 < i <r — 3, we have that B(i,i — 2) =
(i=1,4+1,...,r=2,2r,...,2r—i}{i=1,i,...,r=2,2r,..., 2r—i—1},
with symmetric difference {i — 2,2r — ¢}.

3. B2,M) ={1,3,...,7=2,2r,2r - 1,2r - 2}{1,...,7 = 2,2r,2r - 1},
with symmetric difference {2r — 2,2}.

4 BIM,1) = {1,...,r —2,2r,2r — 2}{2,...,7 — 2,2r,2r — 1,2r — 2},
with symmetric difference {1,2r — 1}.

5. B(1,3) ={2,...,r - 2,2r,2r — 2,2r - 3}{2,4,...,7r — 2,2r,2r - 1,
2r — 2,2r — 3}, with symmetric difference {3,2r — 1}.

6. For an odd i with 3 < i < r — 4, we have that B(i,i +2) = {1 +
1,...,7=2,2r,

2r—1,...,2r —i—-1}{i+1,i+3,...,r—-2,2r,2r-1,...,2r-i -2},
with symmetric difference {i +2,2r — i — 2}.
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For even r, the bridges are similar to those for the odd r: the bridges
are B(r-2,r-3),B(r-3,7-5),...,B(3,1), B(1, M), B(M, 2),...,B(r-
4,7 —2). The symmetric difference of the two sets comprising each bridge is
a two element set, as can be easily checked. It will turn out that for r > 6,
a quick counting argument allows us to label the bridges without a detailed
analysis. But for r = 5, the labeling requires a careful examination of the
bridges.

We link the initial and exclusion cycles to produce a Hamiltonian cycle
D in Gar,r. To do so, we define a pair of connecting edges. Let

B(ini, 1) ={1,...,7}{L,...,7r = 2,2r,7 = 1}, (1)
with symmetric difference {r,2r}. Let
B(ini,2) = {1,...,r = 1,2r = 1}{1,...,7 = 2,2r,2r — 1}, 2)

with symmetric difference {r — 1,2r}. Note that we have formed a Hamil-
tonian cycle by linking two (adjacent) vertices of the initial cycle to two
(adjacent) vertices of M of the exclusion cycle. It is straight-forward to
verify that D is a Hamiltonian cycle in G2, r, one that satisfies Proposi-
tion 2.1(1a), (1b). Notice that {1,...,7}{1,...,7—1,2r=1}and {1,...,7—
2,2r,2r — 1}{1,...,7r — 2,2r,

r — 1} are edges of Co and & respectively, but they are not edges of D.

2.4 Labeling ¢;

We continue the construction of the partition-sequence II by providing par-
tition labels for &, i = 1,...,r — 2. We make further use of the induction
hypothesis at this stage of the proof. Recall that fori =1,...,7 — 2, the
vertices of the cycle &; consist of (37}) (= ([F})) r-sets. As before, we let
X = Xop - {i,i+1,...,7—2,2r}. Let Gx -1 be the graph whose vertices
are the (r — 1)-subsets of X; two (r — 1)-sets are adjacent in G x,,-1 if they
intersect in r — 2 elements.

We have r —1 > i + 1 because r — 2 > i. Because r > 5, we can
apply the induction hypothesis to the partition type represented by the
pair (r — 1,i + 1): in Gx -1, there exists an orthogonally 2¢+! 17=#=2 .
labeled Hamiltonian cycle

(Di,ei) = Di‘la,"l .. .Di'(r-u)ai,(ﬁ--' .

r—~1 r=1

By applying a permutation to the set X, we can assume that for ¢, 2 <7 <
r—2,D;1 =[1,i-1ju[r-1,2r—i-2] and Di’(riv;‘) =[1,i-2)U[r-1,2r—i-1j,
and for i = 1, Dl,l = [’I‘ - 1,21" - 4]U {27‘— 2} and D('t;) = [’I‘ - 1,27‘ - 3]
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Motivation on the choices above for the first and the last sets will come
soon.

For a subset T of X, the complement of T in X will be denoted by 7°C.
Ignoring for the moment the partition-sequence ©;, consider the following
list of ¢+ 1 sets formed from D; by taking complements within X as follows:
(D)) ... (Di‘(r+§))c. The list is a Hamiltonian cycle in Gx,i+1. We now

form an exclusion cycle &; in Ga,» as follows:
E=((DN°Ufi+1,...,r- 2,2r})...((D(rt;~))CU{i+ 1,...,m—2,2r}).

It is not difficult to verify that the first and last sets of each exclusion cycle
are as stated in Listing 2.4.

Consider the 2¢+! 17=*=2_partitions a;;, for 1 < j < (:'_";) = (:L’)
Observe that every doubleton class of a; intersects (D; ;)€ in one element
and intersects (D,-,j_H)C in one element. We modify a;; in two steps,
in order to produce a 2" partition in X,,. First we choose a one-to-one
assignment of the the singleton classes of a; ; to the set {i +1,...,r — 2}
thereby creating r — 7 — 2 new doubleton classes. Next add the doubleton
class {7, 2r}, forming a 2" partition of X,,, denoted by &; ;. The reader can
now verify that the following list is an orthogonal 2"-labeled path whose
set-sequence is &;:

r=1

((Di,l)CU{TH-l, vy, T—2, 27'})0-:1',1 R ((Di’(:r;'))CU{i'i-l, e, T2, 27.})&:',('"“ .

Notice that each partition label on the exclusion cycle £; contains the dou-
bleton class {2r,4}; thus, the set of partition labels used for distinct exclu-
sion cycles are disjoint. Moreover, by Proposition 2.1(1c), it follows that
no partition label of an edge of an exclusion cycle is also used to label an
edge of the initial cycle Co.

2.5 Labeling bridges and labeling edges of M

To complete an orthogonal 2" labeling of the constructed Hamiltonian cycle,
we need to label the bridges, the edges of M, and the two connecting edges.
We specialize the previously defined “available label for an edge”. Let UV
be an edge of G, and let i € [1,2r — 1]. An i-available label for UV is a
partition « of type 2" which is orthogonal to both U and V and for which
{1,2r} is a doubleton class. Observe that if {i,2r} is not the difference set
of UV, then (r — 2)! is the number of i-available labels for UV; if {i,2r} is
the difference set, then (r — 1)! is the number of i-available labels for UV'.

We have described the bridges and their symmetric differences; here is
a list of the edges of M, along with their symmetric differences.
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Listing 2.7. 1. Mo,y ={1,...,7=2,2r,2r-1}{1,...,7=2,2r,7r =1},
with symmetric difference {2r — 1,r — 1}.

2. M, ={1,...,7r=2,2r,7r - 1}{1,...,r - 2,2r,7}, with symmetric dif-
ference {r —1,7}.

3. More generally, for r < u < 2r — 3, we have that

My ={1,...,7 = 2,2r,u}{1,...,r — 2,2r,u + 1}, with symmetric
difference {u,u + 1}.

Notice that the linking of the initial cycle Cp and &, the connecting edges
B(ini,1) and B(ini, 2) replace the edges M, in the Hamiltonian cycle
D and C; C'(..:Ix) in Cp; in particular, it is unnecessary to label Ms,_;.

2.5.1 Labeling MB edges

With the exception of M, the element r—1 is not an element of a vertex of
any bridge, or of a vertex of any still to be labeled edges of M. We restrict
our attention to labeling the bridges and the edges of M that remain to be
labeled, with the exception of M,. Call this collection of edges MB. As
can be easily checked, there are 2r — 3 edges to be labeled in MB and that
each such edge has an (r — 1)-available partition for that edge.

No partition label up to now contains {r — 1,27} as a doubleton class:
in the initial cycle, if {r —1,2r} is a doubleton set of a partition label, then
by Proposition 2.1(1c), the core of the edge must be {1,...,7 = 1}. By
Proposition 2.1(1b), the only edge with core {1,...,r — 1} has its vertices
the first and last set of the initial cycle; however, that edge is not an edge
of D. In the appended cycle £, the edges of each exclusion cycle &; are
labeled with i-available partitions, i =1,...,7r — 2.

Of course, 2r is in the core of each edge in MB. In particular, the
number of (r — 1)-available labels for a given edge of MB is (r — 2)!

Fix one of these 2r — 3 edges of MB. If r > 5, then as is easily verified,
(r —2)! > 2r — 3. Hence, for r > 5 we can label the MB edges “greedily”,
labeling with an (r — 1)-available partition for the given edge, proceeding
to the next MB edge, guaranteed that there exist unused (r — 1)-available
partitions to label that edge.

The case r =5

For r = 5, we claim that the union of the set of 4-available partitions
for the edges B(2, M) and B(3,2) is disjoint from the union of the set of
4-available partitions for the rest of MB edges.

Indeed, no 4-available partition with doubleton class {u,u + 1} (u =
5,6,7) is a 4-available partition for B(2, M) and B(3,2) (see Listing 2.7).

174



However, the MB edges with vertices in M have distinct symmetric dif-
ferences of the form {u,u + 1}, where u = 5,6,7. Moreover, B(M, 1) has
4-available partitions with a class {7,8} but not {6,7}, and B(1,3) has
4-available partitions with a class {6, 7} but not {7,8}.

Now, orthogonally 25-label the edges B(2, M) and B(3,2) with distinct
4-available partitions; this is possible, since (5 — 2)! = 6 > 2. Neither
of these two partitions have a class of the form {u,u + 1} (v = 5,6,7).
There are at least two 4-available partitions with a class {u,u + 1} for a
fixed u = 5,6,7. Thus we can label the remaining edges “greedily” with
4-available partitions with classes {u,u + 1} for appropriate i in the range
{5,6,7}. This completes the r = 5 case.

We have shown that for any r > 5, we can orthogonally 27-label the
2r — 3 edges of MB sequentially, with distinct partitions, each containing
{2r,r — 1} as a doubleton class.

2.6 Labeling M,

We continue, labeling the edge M, (which has a difference set of {r —1,7})
with one of the (r — 2)! labels which is (r + 1)-available for M,.. Since for
eachi=1,...,7 — 2, each partition label of £; contains the doubleton class
{2r,}, the labeling of £ has not involved a 27 partition with {r + 1,2r} as
a doubleton class.

We investigate edges of the initial cycle o to determine how many such
edges admit an (r+ 1)-available label for M,.; the idea is to show that there
are fewer than (r — 2)! such edges. Call a Cy edge a competing edge if it
can be orthogonally labeled with a (r + 1)-available partition for M,. So
a competing edge admits a partition which has {r + 1,2r} as a doubleton
class; by Proposition 2.1(1c), the core of the competing edge contains at
least 7 — 2 elements from the interval [1,r]. If the competing edge has
symmetric difference {r — 1,7}, then the core of the competing edge must
be {1,...,7—2,7+1} and the edge is completely determined. So there is at
most one competing edge with symmetric difference {r — 1,7}. If {r — 1,7}
is not the symmetric difference, then it must be possible to find a partition
orthogonal to the vertices of the competing edge which has {r — 1,7} as a
doubleton class (or else the edge would not be a competing edge). Upon
inspection, it follows that if {r —1,r} is not the symmetric difference of the
competing edge, then exactly one of the elements of the set {r — 1,7} is in
the core of the competing edge. Thus the core of the competing edge is as
follows: ([1,7—2] - {u})U{r+1,2}, whereu € [l,r—2]and z € {r—1,r}.

We claim that u is in the symmetric difference set of the competing edge.
If not, then using the information above about the core of the competing
edge, it is not difficult to see that any partition orthogonal to the competing
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edge must contain a doubleton set {u,w}, where w € [1,7 — 2]. However,
each of the (r + 1)-available partitions for M, have {u,v} as a doubleton
class, for some v € [r + 2,2r — 1]. Thus, u is in the symmetric difference,
as claimed.

Since u is in the symmetric difference, one of the two vertices of the
competing edge is of the form [1,7 — 2] U {r + 1, 2z}, where z is either r — 1
or 7. Thus there are at most four competing edges for which {r — 1,7} is
not the symmetric difference.

It follows that there exist at most five competing edges in the initial
cycle labeled with one of the (r + 1)-available partitions of M., of which
there are (r — 2)!. For r > 4, (r — 1)! > 5; hence, there exists an unused
(r + 1)-available partition for M,. Note that whichever label for M, is
used, it has not been used in a prior stage of the labeling (since {2r,r + 1}
is not a doubleton class of any label used in a prior stage.)

2.7 Labeling the two connecting edges

To complete the proof of the theorem, we label the connecting edges (see
Equations (1) and (2)). Recall that B(ini,2) = {1,...,r—1,2r—-1}{1,...,r—
2,2r,

2r — 1}, with symmetric difference D(ini,2) = {r — 1,2r}. The double-
ton class containing 2r has been determined - it must be the symmetric
difference {r — 1,2r}. Thus, the number of (r — 1)-available partitions for
B(ini,2) is (r — 1)! To this point, we have used 2r — 3 labels containing
{r — 1,2r} as a doubleton class. For r > 5, (r — 1)! > 2r — 3; hence, there
exists an unused (r — 1)-available partition for B(int,2).

We label B(ini, 1) = {1,...,7}{1,...,7 — 2,2r,r — 1}, with symmetric
difference {r,2r}. No edge in the appended cycle £ has been labeled with
a partition containing {r,2r} as a doubleton set. We use the notation
“competing edge” again to denote an edge in Cy which can be orthogonally
27-labeled with one of the (r — 1)! partitions that are r-available for the
edge B(ini,1). By Proposition 2.1(1c), any competing edge in the initial
cycle has r in its core along with r — 2 elements from the set (1,7 — 1]. In
particular, there exists a unique v € (1,7 — 1] which is not in the core of the
competing edge. If v is not in the symmetric difference of the competing
edge, then any orthogonal label for the competing edge must identify v
with an element from [1,r — 1]; by inspection, such a partition is not an
r-available partition for B(ini,1). If v is in the symmetric difference, then
one of the vertices for the competing edge is {1,...,7}. Thus there is at
most one edge which is labeled with one of the (r — 1)! > 1 partitions r-
available for B(ini,1). This completes the proof of Proposition 2.1, and
the proof of Theorem 1.7. O
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2.8 The base steps 2212,231, 2¢

The next lemma describes the requirements of Propostion 2.1 for each of
the base steps 2212,23 1, and 2. The corresponding labeled Hamiltonian
cycles are presented below.

Lemma 2.8. 1. There ezists an orthogonally 22 1%-labeled Hamiltonian
cycle in Gg 4 such that

(a) {1,2,3} is the core of ezactly one edge, namely the edge formed
from the first and last sets, {1,2,3, 4}{1,2,3,6};

(b) {1} is not a singleton class of a partition label of any edge;

(c) for b = 2,3,4, if {b} is a singleton class of a partition label of
an edge, then the core of that edge contains b and at least one
element of [1,b — 1);

2. There exists an orthogonally 23 1-labeled Hamiltonian cycle in Gq 4
satisifying the following:

(a) {1,2,3} is the core of ezactly one edge, namely the edge formed
from the first and last sets, {1,2,3, 4}{1,2,3,7};

(b) neither {1} nor {2} is a singleton class of a partition label of
any edge;

(c) for b = 3,4,5, if {b} is a singleton class of a partition label of
an edge, then the core of that edge contains b and at least two
elements of [1,b - 1);

3. There ezxists an orthogonally 24-labeled Hamiltonian cycle in Gg 4 such
that {1,2,3} is the core of ezactly one edge, namely the edge formed
from the first and last sets, {1,2,3,4}{1,2,3,7}.

2.8.1 Orthogonally 2 1%-]labeled Hamiltonian cycle

In Figure 1 below, we provide the orthogonally 22 12-labeling of a Hamil-
tonian cycle in Gg 4 satisfying all the conditions of Lemma 2.8(1a).

For i,...,15, the left hand column provides the set A;; the second col-
umn provides the core of the edge A4;A;;; the last column provides the
orthogonal 22 12-label for A;A;,;. The symmetric difference of AiAi is
the left-most doubleton class of the partition «;. It is not difficult to verify
that the list satisfies the conditions of Lemma 2.8 for + = 22 12.
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Vertex Core Partition
A; AiNAin e
1234 124 3,5|1, 6|24
1245 245 1,3|2,6/4|5
2345 245 3,6|1, 2/4]5
2456 456 2,311, 4|5|6
3456 456 1, 3|2, 4/5|6
1456 156 3,4|1,2|5|6
1356 135 4,6/1,2|3|5
1345 134 5,6|1,2|3|4
1346 146 2,3|1, 5|4]6
1246 246 1, 3|2, 5/|4/6
2346 236 4,51, 2|3|6
2356 235 1, 6|2, 4]3|5
1235 125 3,6|1,4|2|5
1256 126 3,5|1,4|2]6
1236 123 4,6|1,5|2|3

Figure 1: Orthogonally 22 12-labeled Hamiltonian cycle

2.8.2 An orthogonally 22 1-labeled list

Figure 2 presents an orthogonal 23 1-labeled a Hamiltonian cycle in G7 4
satisfying the conditions of Lemma 2.8(2). To help the reader verify that
the partitions are distinct, we have counted 13 partitions with 7 as the
singleton class; of these, three partitions have {1,2} as a doubleton class,
three partitions have {1,3} as a doubleton class, three have {1,4} as a
doubleton class, two have {1,5} as a doubleton class, and two have {1, 6}
as a doubleton class. There are 13 partitions which have 6 as the singleton
class. Of these, there are three that have {1,2} as a doubleton class, three
that have {1,3} as a doubleton class, two that have {1,4} as a doubleton
class, two that have {1,5} as a doubleton class, and three that have {1,7}
as a doubleton class.
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Vertex A; | Core A; N A;4) | Partition w;
1234 234 1,5|2,6|3,7|4
2345 245 3,6|1,2[4,7|5
2456 256 3,4|1,2|5,7|6
2356 235 6,7|1,2|3,4|5
2357 257 3,4|1,2|5,6|7
2457 247 3,512,6]1,4]7
2347 237 4,6|2,5]1,3|7
2367 236 4,7|1,2]3,5)6
2346 246 3,7|1,2/4,5(6
2467 267 4, 5|1, 2|3,6|7
2567 567 1,213,5/4,6|7
1567 167 2,5|1, 314,76
1267 126 5,7|1,4]2,3]6
1256 156 2,41, 3|5,7]6
1456 456 1,7|2,4|3,5/6
4567 457 1,62, 4]3,5|7
1457 157 2, 4|1, 3]5,6|7
1257 127 4,5|1, 3|2,6|7
1247 147 2,6|1,5(3,4|7
1467 467 1,3/4,5(2,7/6
3467 367 1,42, 35,6(7
1367 136 2,7|1, 4|3,5|6
1236 126 3,4|1,7|2,5|6
1246 146 2,3|1,5(4,7|6
1346 346 1,5]3,7|2,4|6
3456 345 6, 7|1, 3|2,4|5
3457 347 1,5]2,3/4,6|7
1347 134 5,7|1,2|3,6/4
1345 145 2,3|1,6{4,7|5
1245 125 3,4]1,7|2,6(5
1235 135 2,6|1,4|3,7|5
1356 356 1, 7|2, 3|4, 5|6
3567 357 1,6]2, 3|4, 5|7
1357 137 2,5|1,4(3,6|7
1237 123 4,7(1,5]2,6|3

Figure 2: Orthogonally 23 1-labeled Hamiltonian cycle

2.8.3 An orthogonally 2-labeled Hamiltonian cycle

The construction of the cycle follows along the lines of construction of the
Hamiltonian cycle D in the r = s case in the proof of Proposition 2.1. We
begin by modifying the 23 1-labeled cycle provided in Figure 2, by adding
8 to the unique singleton class of each partition label in Figure 2, with the
exception of the edge A; A3s which plays no role in the Hamiltonian cycle
in Gg 4. Thus, we have 35 sets so far, with 34 partititions. Because Figure
2 is an orthogonally 22 1-labeled list, the 34 partitions are distinct. Observe
each of these 34 partition labels of type 2! does not contain a doubleton
class of the form {1,8}, {2,8}, or {3,8}, because neither 1, 2, or 3 are
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singleton classes of the 34 partitions of Figure 2 for which we add {8} to
the singleton class.

In Figure 3, the other “half” of the list is provided; there are 36 par-
titions of type 2% in the list, 37 sets. The first set of Figure 3 is listed for
convenience; it is the last set of Figure 2. The first partition of Figure 3 is
the partition label for the edge {1,2,3,7}{1,2,7,8}. The last partition of
Figure 3 is the label of {1,2,3,8,}{1,2,3,4}.

The first and last sets of the resulting orthogonally 2%-labeled Hamilto-
nian cycle are as Lemma 2.8 stipulate; a quick scan of the “core” column
shows that {1,2,3} occurs as a core exactly once, as the core of the edge
connecting the first and last set.

3 Counterexample, connections with semigroup
theory, open problems

After showing that not every Hamiltonian cycle of Gs,4 can be orthogo-
nally 24-labeled, we present a brief description of the connection between
the combinatorics of orthogonal labeling and questions related to minimal
generating sets of certain finite semigroups of transformations. We also
pose some problems.

3.1 Counterexample

We show that there exist Hamiltonian cycles in G, which do not admit
a single orthogonal 7-labeling, even though the number N(7) of distinct
partitions of type 7 is greater or equal to ('r‘) We begin by presenting a
class of Hamiltonian cycles in G - known as constant weight reflected Gray
codes ([1],(6,(11],(12))-

Definition 3.1. Let n,7 be positive integers withn > r.
1. Let Hyp = {X0}.
2. Let Hoy = {1},...,{n}.
3. Suppose Ho—yr—1 = A1 ...A(:::). Let H®, ,_, ©n be the list

({n}u A(::;)) . ({n}UA)({n}U Airy) ... ({n}U A1)

So HI®Y ._, ®n is the list that results by joining n to each set of
Hy_1,r—1 and then reversing the order of the resulting listing.

4. Forn>r>1,let Hop = Hnoy o (HZT) 1 @n), the list that results
by concatenating Hyp—1,» and H;% ., ®n.
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Figure 3: Second part of orthogonally 2*-labeled Hamiltonian cycle
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The next lemma is a series of basic observations whose proof is left to
the reader. For a positive integer k satisfying () > k > 1, let Hy (k) be
the kth set in the Hamiltonian cycle Hy, ;.

Lemma 3.2. Let n and v be positive integers such that n > r. Then

1. Hy . is a Hamiltonian cycle.
2. Hor(1) ={1,...,7} and Ho (7)) = {1,...,7 = 1,n}.

3 Har((*7')) ={L,...,r=2,n—1} and Ho((";") +1) = {1,...,7—
1,n-1,n}

Lemma 3.3. There exists a Hamiltonian cycle in Gg4 which admits no
orthogonal 2% labeling.

Proof. Consider Hg4(1)...Hs4((5)), the Hamiltonian cycle Hg 4 and the
associated sequence A(Hs (1), Hs,4(2)),..., A(Hs,4((2)),Hg,4(1)), the se-
quence of two element symmetric differences. We begin with a claim that
we prove by induction on n.

Claim. For n > r > 1, the set {1, 2} occurs (’::12) times in the sequence
of symmetric differences associated with Hy, r.

If r = 1, then H,, is defined to be {1},{2},...,{n}; the symmet-
ric differences of the edges in the order in which they occur is given by
{1,2},{2,3},...,{n,1}. By inspection, {1,2} occurs 1 (= (*;?)) time.

Assume 7 > 1. We have Hp, = Hn_1(H® .,y ® n). Observe
that {1,2} is not the symmetric difference of the two “connecting edges”,
{1,...,7r}{1,...,r=1,n}and {1,...,r = L,n - 1}{1,...,r = 2,n — 1,n}.
Consider H}¢" ,_; ® n. Reversing the order of the occurrences of vertices
has no effect on the set of symmetric differences associated to this part of
H, ,; the same can be said adding n to each set of Hp_1,r—1. In summary,
the number of times {1,2} occurs as a symmetric difference in Hp,, is the
sum of the number of times it occurs in Hy,—1, with the number of times
it occurs in Hy—1,r—1. By the inductive assumption, we have that the total
number of occurrences of {1,2} as a symmetric difference is (?73) + n-3)

r—1 r=2
= ("2 , completing the proof of the Claim.
g

r—1

For Gs4, the Claim shows that there are () = 20 edges of Hg4 with
symmetric difference {1,2} in Gg4. Thus, a 2%-labeling of Hs 4 would
require that at least 20 distinct 24 partition labels have {1, 2} as a doubleton
set, which in turn would require the existence of 20 distinct partitions of
type 23 of the set {3,4,5,6,7,8}. But as can be verified quickly, there
exist only 15 distinct partitions of type 23 of the set {3,4,5,6,7,8}. This
completes the proof of the lemma. O
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3.2 Semigroup connections, conclusion

All semigroups here are assumed to be finite. For a semigroup S with a
subset U C S, let < U > denote the subsemigroup of S generated by U.
We say S is generated by U if S =< U >. The rank of S is the cardinality
of a smallest generating set of S.

An element e € S is said to be idempotent if €2 = e. If S has a
generating set consisting of idempotents, then S is said to be idempotent-
generated. The idempotent rank of an idempotent-generated semigroup S is
the cardinality of the smallest set of idempotent elements which generates
S.

For a transformation f of X,, let im(f) denote the image of f, let
ker(f) = {(a,b) € X2 : af = bf} denote the kernel of f, and let h(f)
= |im(f)|, the height of f. Let K(n,r) be the semigroup consisting of
transformations of X, of height at most r. In [3], it was proved that for
n > r, the semigroup K'(n,r) is generated by its idempotents with height r.
Recall that the Stirling number of the second kind S(n,r) is the number of
partitions of {1,...,n} of weight . We describe the Howie and McFadden
argument that is used in [4] to prove the following theorem.

Theorem 3.4. [{] The idempotent-rank of K(n,r) is S(n,r).

It is not difficult to see that the rank of K(n,r) is at least S(n,r).
Suppose U is a generating set of K(n,7) consisting of transformations with
height 7. Let f € K(n,r) be an arbitrary element of K(n,r) with height
7. If f is a product s152... 5.y, such that for i = 1,...,m we have s; € U,
then because ker(f) has weight r, it follows that ker(f) = ker(s;). Thus
|U] is at least S(n,r) and so the rank (and the idempotent rank) of K (n,7)
is at least S(n,r).

We demonstrate how the existence of orthogonally labeled lists (Theo-
rem 1.2} leads to Theorem 3.4. Since an idempotent transformation is the
identity on its image, an r-set A along with a weight r partition = orthogonal
to A uniquely determines an idempotent transformation e An Xn 2 X,
such that im(ea,») = A and ker(ea,») = .

Let Aym ... A(:)w(:) be an orthogonally labeled list of r-sets of {1, ..., n}.

Consider the set {eq;,r, : 4 = 1,...,(})}. We can extend {eq, r, : i =
1,...,(})} to a set of S(n,r) idempotents U, selecting S(n,r) — (%) idem-
potents in such a way that each of the partitions of weight r is represented
exactly once as the kernel of an idempotent in U. Now take an idempotent
e of height 7 with ker(e) = m and im(e) = A;, for some i = 1,..., ("). By
the choice of U, there exists a unique idempotent f = ea; r in U, for some
i=1,..., (’r') By proceeding “clockwise” along the orthogonally labeled
list, from m;A; 171 4j42... to mAi, sequentially construct the idem-
potents e4;,,,m;s.--,€A;,2,m54012--+»€A;,m;_, associated with the orthogo-
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nal label affixed to each successive pair of r-sets by the orthogonal label-
ing. Observe that the orthogonality of the labeling guarantees that g =
fea;pim; - €Asm, has image A; and kernel 7. Since e is idempotent,
we have A; and 7 are orthogonal. By the finiteness of X,,, there exists a
positive integer k such that g* is idempotent. Since ker(g*) = ker(e) and
im(g*) = im(e), it follows that g* = e, thus proving that every idempotent
with height 7 is contained in < U >. Since K(n,r) is generated by its
idempotent with height 7, we have that K(n,r) =< U > and S(n,r) is a
lower bound for the rank of K(n,r), it follows that the rank of K(n,r) is
S(n,r). That U consists of idempotents implies that the idempotent rank
of K(n,r) is also S(n,r).

More generally, let P be a subset of the Part(n,r), the set of all weight
r partitions in Part(n). Let S(P) be the semigroup generated by all trans-
formations with kernel in P. Assume that S(P) is idempotent-generated
and there exists an orthogonally P-labeled Hamiltonian cycle. In that case,
the Howie and McFadden arguments above can be used to show that the
rank and the idempotent rank of S(P) are both |P|. For example, let n,s,r
be positive integers such that n = s + 7 > 4. Theorem 1.7 guarantees the
existence of orthogonally 2°17~*-labeled Hamiltonian cycles. It is not dif-
ficult to see that S(2°17~°) is idempotent-generated. Thus, we have that
S(2°17-%) has rank and idempotent rank both equal to (r+s)!/(s!(r —5)12%),
the number of distinct partitions of type 2°1"7%.

Let S be a finite subsemigroup of K(n,r) generated by its members of
height 7 and let S, be the elements of S of height r, let ks = |{ker(f) :
f € 8, lim(f)] = r}|, and let is = |[{im(f) : f € S, |im(f) = r}|. Using
an argument of the type above that shows that the rank of K(n,r) is at
least S(n,7), one can show that a generating set for S must have at least
maz{ks,is} elements.

Definition 3.5. Let S be a finite subsemigroup of K(n,r) generated by S;.
We say that S is extremally-generated if S has a generating set U such
that (U| = maz{ks,is}.

Using that S(n,) > (%), Theorem 3.4 shows that K (n, ) is extremally-
generated. The discussion above shows that for r > s, the semigroup
S(2°17—) is extremally-generated. The authors have proved the non-trivial
result that for any partition type 7, the semigroup S(7) is extremally-
generated ([7], {9]).

Problem 3.6. Let P be a subset of Part(n,r).

1. Determine conditions on P which guarantee that there exist orthogo-
nally P-labeled lists.
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2. Determine conditions on P which guarantee that there exist orthogo-
nally P-labeled Hamiltonian cycles.

3. Determine conditions on P which guarantee that S(P) is extremally-
generated.

The second part of Theorem 1.3 asserts the existence of an orthogonally
Part(n,r)-labeled list Aa; ... A(n)a(n) which satisfies a “two-fold Gray

condition”, namely that A, ...A(n) is a Hamiltonian cycle in G, , and
that m; .. S(m) is a cycle in Part(n,r).

We ask if there exist orthogonally 2° 17~4- labeled lists which satisfy the
same “two-fold Gray condition”.

Problem 3.7. For whichr > 4, r > s, and s > 1, does there exist an
orthogonally labeled 2°17~*-labeled Hamiltonian cycle of Gsyrr such that
the associated partition-sequence m ST (my is a cycle in Part(n,r)?

In Lemma 3.3 we provided an example of a Hamiltonian cycle in Gg 4
which does not admit any orthogonal 27-labeling.

Problem 3.8. Which weight r partition types T have the property that
every Hamiltonian cycle of Gn r can be orthogonally T-labeled?

In [8], the authors prove that if 7 is a type of weight r with no sin-
gleton classes and n > 18, then every Hamiltonian cycle in G, , can be
orthogonally T-labeled.

References

[1) James R. Bitner, Gideon Ehrlich, Edward M. Reingold, Efficient Gen-
eration of the Binary Reflected Gray Code and Its Applications, Com-
munications of the ACM , Vol. 9, Number 6, (1976), 517-521.

[2] Phillip J. Chase, Combinations of m out of n objects, Communications
of the ACM , Vol. 13, Number 6, (1970), 368.

[3] A. E. Evseev and N.E. Podran, Transformation semigroups that are
generated by idempotents with a given defect. (Russian) Izv. Vyss.
Utebn. Zaved. Matematika 1972, no. 2(117), 44-50, translated in
American Math. Soc. Transl. (2), 139, (1988) 77-84.

(4] J.M. Howie and R.B. McFadden, Idempotent rank in finite full trans-
formation semigroups, Proc. Royal Soc. Edinburgh, 114A (1990), 161-
167.

185



[5] Jend Lehel and Inessa Levi, Loops with partitions and matchings, Ars
Combinatoria, 54(2000), 237-253.

(6] Inessa Levi, Robert B. McFadden and Steve Seif, Efficient algorithms
for producing minimal idempotent generating sets of finite transfor-
mation semigroups, submitted.

[7) Inessa Levi and Steve Seif, Constant Weight Gray codes labeled by
partitions, with application to minimal generating sets of finite semi-
groups, Proc. Edinburgh Math. Soc., to appear.

[8] Inessa Levi and Steve Seif, Counting Techniques to Label Constant
Weight Gray Codes, in preparation.

[9] Inessa Levi and Steve Seif, Constructive Techniques for Labeling Con-
stant Weight Gray Codes, in preparation.

[10] Carla Savage, A SURVEY OF COMBINATORIAL GRAY CODES,
SIAM Rev., Vol. 39, No. 4, 605-629, December 1997.

(11] Carla D. Savage and Peter Winkler, Monotone Gray codes and the
middle levels problem, J. Combin. Theory Ser. A, 70 (1995), no. 2,
230-248

[12] AJ. van Zanten, Index system and Separability of constant Weight
Gray Codes, IEEE Trans. Inform. Theory, Vol. 91, Number 6, (1991),
1229-1223.

186



