A Note on Distance-Regular Graphs with Girth 3 *

Gengsheng ZHANG
Department of Mathematics
Hebei Normal University
Shijiazhuang, 050016, P.R. China

Kaishun WANG
Department of Mathematics
Beijing Normal University
Beijing 100875, P.R. China

Abstract

We give some relationships among the intersection numbers of a distance-regular graph Γ which contains a circuit (u_1, u_2, u_3, u_4) with $\partial(u_1, u_3) = 1$ and $\partial(u_2, u_4) = 2$. As an application, we obtain an upper bound of the diameter of Γ when $k \geq 2b_1$.

2000 Mathematics Subject Classification: 05E30 Key words: distance-regular graph, intersection number, girth.

1 Introduction

Let $\Gamma=(X,E)$ denote a finite, connected, undirected graph, without loops or multiple edges, with vertex set X and edge set E. We often write $V\Gamma$ for X and $E\Gamma$ for E. Let r denote a nonnegative integer and let u and v denote vertices of Γ . By a path of length r from u to v we mean a finite sequence of vertices $(u=w_0,w_1,\cdots,w_r=v)$ such that $(w_{l-1},w_l)\in E\Gamma$ for $t=1,\cdots,r$. By a circuit of length r we mean a path (w_0,w_1,\cdots,w_{r-1}) such that $r\geq 3$ and $(w_{r-1},w_0)\in E\Gamma$. A shortest circuit is called a minimal circuit. The girth g of Γ is the length of a minimal circuit. The number of edges traversed in a shortest path joining u and v is called the distance between u and v, denoted by $\partial(u,v)$. Let d denote the maximal value of the distance function. We call d the diameter of Γ .

For vertices $u, v \in V\Gamma$, let

$$\Gamma_i(u) = \{x \in V\Gamma \mid \partial(u, x) = i\}, \ D_i^i(u, v) = \Gamma_i(u) \cap \Gamma_i(v).$$

^{*}This research was supported by the Youth Science Foundation of Hebei Normal University, National Natural Science Foundation of China (10301005,10171006).

For any two subsets Y and Z of $V\Gamma$, let e(Y,Z) denote the number of edges (u,v) with $u \in Y$ and $v \in Z$. If Y contains a single vertex y, i.e., $Y = \{y\}$, we write as e(y,Z).

A connected graph Γ is said to be distance-regular if, for any two vertices u and v at distance h, the parameters $p_{i,j}^h = |D_j^i(u,v)|$ depend only on i,j and h. The parameters

$$c_i = p_{i-1,1}^i, \ a_i = p_{i,1}^i, \ b_i = p_{i+1,1}^i$$

are called the *intersection numbers* of Γ . It is clear that $c_i + a_i + b_i = b_0$ for all i with $0 \le i \le d$, and $k = b_0$ is the valency of Γ .

In [2], Terwilliger found some relationships among the intersection numbers of a distance-regular graph Γ when Γ contains a circuit (u_1,u_2,u_3,u_4) with $\partial(u_1,u_3)=\partial(u_2,u_4)=2$, and gave an upper bound of the diameter of Γ . In this paper, we apply Terwilliger's method to a distance-regular graph containing a circuit (u_1,u_2,u_3,u_4) with $\partial(u_1,u_3)=1$ and $\partial(u_2,u_4)=2$, and obtain some relationships among the intersection numbers of Γ . As an application, we obtain an upper bound of the diameter of Γ when $k\geq 2b_1$. Namely, our main results are the following.

Theorem 1.1 Let Γ be a distance-regular graph of girth 3. For any two adjacent vertices u and v, let Δ be an induced subgraph on a nonempty subset of $D_1^1(u,v)$ such that $e(p,\Delta)<|\Delta|-1$ for all $p\in\Delta$. Let $r=|\Delta|$ and $m=\frac{2|E\Delta|}{r}$. If $m\leq \frac{r}{2}-1$, then for all integers i $(1\leq i\leq d-1)$ the intersection numbers of Γ satisfy the following.

(i)
$$b_1 - c_i - b_{i+1} \ge \frac{r - 2m - 2}{2r} (\sqrt{b_{i+1}} + \sqrt{c_i})^2 - \frac{1}{2} (\sqrt{b_{i+1}} - \sqrt{c_i})^2$$
,

$$(ii) \ b_1 - c_i - b_{i+1} \ge \min\{\sqrt{c_i}(\sqrt{b_{i+1}} - \sqrt{c_i}), \ \tfrac{c_i(r - 2m - 2)}{m + 1}\},$$

(iii)
$$b_1 - c_i - b_{i+1} \ge \min\{\sqrt{b_{i+1}}(\sqrt{c_i} - \sqrt{b_{i+1}}), \frac{b_{i+1}(r-2m-2)}{m+1}\}.$$

Corollary 1.2 Let Γ be a distance-regular graph containing a circuit (u_1, u_2, u_3, u_4) with $\partial(u_1, u_3) = 1$ and $\partial(u_2, u_4) = 2$. If $k \geq 2b_1$, then $b_1 \geq c_i + b_{i+1}$ for $0 \leq i \leq d-1$. Moreover, we get

$$d \le \frac{c_d + a_1 + 1}{a_1 - b_1 + 2}.$$

2 Proof of main results

In this section, we follow the notation in Theorem 1.1.

For each integer i with $1 \le i \le d$ and for each vertex $w \in D_i^i(u, v)$, set

$$U_i(w) = |\{y \mid y \in \Delta, \ \partial(y, w) = i + 1\}|,$$

$$D_i(w) = |\{y \mid y \in \Delta, \ \partial(y, w) = i - 1\}|.$$

Note that

$$U_i(w) + D_i(w) \le r, \ (1 \le i \le d).$$

For each i with $1 \le i \le d$, let

$$R_i = \{ w \mid w \in D_i^i(u, v), \ U_i(w) \ge 1 \}.$$

For each vertex $p \in \Delta$ and each i with $1 \le i < d$, we define

$$u_i(p) = \{ w \mid w \in R_i, \ \partial(w, p) = i + 1 \},$$

$$d_i(p) = \{ w \mid w \in R_i, \ \partial(w, p) = i - 1 \}.$$

By computing the pairs (y, w) of vertices $y \in \Delta$ and $w \in R_i$ with $\partial(y, w) = i + 1$, we get

$$\sum_{w \in R_i} U_i(w) = \sum_{p \in \Delta} |u_i(p)|. \tag{1}$$

Likewise, we have

$$\sum_{w \in R_i} D_i(w) = \sum_{p \in \Delta} |d_i(p)|. \tag{2}$$

Now we will follow Terwilliger's idea in [2] to prove Theorem 1.1. At first, We give a lemma.

Lemma 2.1 Let $p \in \Delta$ and $m_i = \frac{k_i c_i}{k_2 c_2}$. Then the following inequalities hold.

- (a) $|u_{i-1}(p)| + |d_i(p)| \le m_i b_1$, $(2 \le i \le d)$,
- (b) $|d_i(p)| \ge \frac{b_i|d_{i-1}(p)|}{c_{i-1}}$, $(2 \le i \le d)$,
- (c) $|d_i(p)| \ge m_i b_i$, $(1 \le i \le d)$,
- (d) $|u_i(p)| \geq m_i b_i$, $(1 \leq i \leq d)$,

(e)
$$\frac{1}{(r-m-1)m_ib_i} \ge \frac{1}{\sum_{p \in \Delta} |d_i(p)|} + \frac{1}{\sum_{p \in \Delta} |u_i(p)|}, \ (1 \le i \le d-1).$$

Proof. (a). For all positive integers r, s, and t, let

$$n(r, s, t) = |\{w \mid \partial(w, u) = r, \ \partial(w, p) = s, \ \partial(w, v) = t\}|.$$

Then the following equalities hold.

$$n(i-1,i,i-1) + n(i-1,i,i) = p_{i-1,i}^1,$$
(3)

$$n(i-1,i-1,i) + n(i,i-1,i) = p_{i-1,i}^1, \tag{4}$$

$$n(i-1,i-1,i) + n(i-1,i,i) = p_{i-1,i}^1,$$
(5)

By adding (3) and (4), and subtracting (5), we get

$$n(i-1,i,i-1) + n(i,i-1,i) = p_{i-1,i}^1$$

Since $n(i-1, i, i-1) = |u_{i-1}(p)|$ and $n(i, i-1, i) \ge |d_i(p)|$, we have

$$|u_{i-1}(p)| + |d_i(p)| \le p_{i-1,i}^1 = m_i b_1.$$

- (b). For each $w \in d_{i-1}(p)$, let $\bar{w} \in \Delta$ with $\partial(w,\bar{w}) = i$. Pick $y \in D_1^{i+1}(\bar{w},w)$. Then we get $\partial(y,u) = \partial(y,v) = i$ and $\partial(y,p) = i-1$, so that $y \in d_i(p)$. Therefore $e(d_{i-1}(p),d_i(p)) \geq |d_{i-1}(p)|b_i$. On the other hand, each vertex $y \in d_i(p)$ is adjacent to at most c_{i-1} vertices in $d_{i-1}(p)$, so $e(d_{i-1}(p),d_i(p)) \leq |d_i(p)|c_{i-1}$. Consequently, $|d_i(p)|c_{i-1} \geq |d_{i-1}(p)|b_i$.
- (c) and (d). By assumption, there exists a vertex $q \in \Delta$ such that $\partial(p,q)=2$. For any vertex $w \in D_{i+1}^{i-1}(p,q)$, we have $w \in d_i(p) \cap u_i(q)$. Hence

$$|d_i(p)| \ge p_{i-1,i+1}^2 = m_i b_i, \ |u_i(q)| \ge p_{i-1,i+1}^2 = m_i b_i.$$

(e). For any integer i with $1 \le i \le d$, let

$$Y_i = \{(w_1, w_2, w_3) \mid w_2, w_3 \in \Delta, \ w_1 \in d_i(w_2) \cap u_i(w_3)\}.$$

It is obvious that $|Y_i| = \sum_{w \in R_i} U_i(w) D_i(w)$. We may also write

$$Y_i = \{(y_1, y_2, y_3) \mid y_2, y_3 \in \Delta, \ \partial(y_2, y_3) = 2, \ y_1 \in D_{i+1}^{i-1}(y_2, y_3)\},\$$

so

$$|Y_i| = |\{(y_2, y_3) \mid y_2, y_3 \in \Delta, \ \partial(y_2, y_3) = 2\}|p_{i-1, i+1}^2$$

= $r(r-m-1)m_ib_i$.

Consequently, we obtain

$$\sum_{w \in R_i} U_i(w) D_i(w) = r(r - m - 1) m_i b_i.$$
 (6)

By Cauchy-Schwarz inequality, we have

$$\begin{array}{l} (\sum_{w \in R_i} U_i(w) D_i(w))^2 \\ \leq (\sum_{w \in R_i} U_i(w)^2) (\sum_{w \in R_i} D_i(w)^2) \\ \leq (\sum_{w \in R_i} U_i(w) (r - D_i(w))) (\sum_{w \in R_i} D_i(w) (r - U_i(w))). \end{array}$$

Solve for $r(\sum_{w \in R_i} U_i(w)D_i(w))^{-1}$ in above inequality to get

$$\frac{r}{\sum_{w \in R_i} U_i(w) D_i(w)} \ge \frac{1}{\sum_{w \in R_i} D_i(w)} + \frac{1}{\sum_{w \in R_i} U_i(w)}.$$

Applying (1), (2) and (6) to the above inequality, we get (e).

Proof of Theorem 1.1. Let

$$E_i = \sum_{p \in \Delta} |d_i(p)|, \ F_i = \sum_{p \in \Delta} |u_i(p)|.$$

Then (a) and (b) yield

$$\frac{b_{i+1}}{c_i}E_i + F_i \le \frac{rm_ib_ib_1}{c_i},\tag{7}$$

and (c), (d) and (e) can be rewritten as

$$E_i \ge rm_i b_i, \tag{8}$$

$$F_i \ge r m_i b_i, \tag{9}$$

$$\frac{1}{(r-m-1)m_ib_i} \ge \frac{1}{E_i} + \frac{1}{F_i}.$$
 (10)

If i = d - 1, by (7) and (9), we have

$$b_1-c_{d-1}\geq 0,$$

which implies the theorem holds.

Now we consider the case $1 \le i \le d-2$. Combining (7)–(10), we obtain

$$\frac{1}{(r-m-1)m_ib_i} \ge \frac{1}{E_i} + \frac{1}{rm_ib_1b_ic_i^{-1} - b_{i+1}E_ic_i^{-1}},\tag{11}$$

where

$$rm_i b_i \le E_i \le \frac{rm_i b_i (b_1 - c_i)}{b_{i+1}}.$$
 (12)

Let $s = \frac{rm_ib_1b_i}{c_i}$ and $w = \frac{rm_ib_i(b_1-c_i)}{b_{i+1}}$. By inequalities (11) and (12), it is clear that

$$f(y) = \frac{1}{(r-m-1)m_ib_i} - \frac{1}{y} - \frac{1}{s-b_{i+1}c_i^{-1}y}.$$

is nonnegative somewhere in the range $[rm_ib_i, w]$. Since

$$\lim_{y\to 0^+} f(y) = \lim_{y\to \frac{sc_i}{b_{i+1}}^-} f(y) = -\infty,$$

in $(0, \frac{sc_i}{b_{i+1}})$, f(y) has a maximum at

$$y_0 = s(\sqrt{\frac{b_{i+1}}{c_i}} + \frac{b_{i+1}}{c_i})^{-1} \ge 0.$$

Therefore, we have

$$\frac{1}{(r-m-1)m_ib_i} \ge \frac{1}{y_0} + \frac{1}{s-b_{i+1}c_i^{-1}y_0},$$

i.e.,

$$\frac{rb_1}{r - m - 1} \ge (\sqrt{c_i} + \sqrt{b_{i+1}})^2,$$

which reduces to

$$\begin{array}{l} b_1 - c_i - b_{i+1} \\ \geq \frac{-m-1}{r} (\sqrt{c_i} + \sqrt{b_{i+1}})^2 + 2\sqrt{b_{i+1}c_i} \\ \geq \frac{r-2m-2}{2r} (\sqrt{c_i} + \sqrt{b_{i+1}})^2 - \frac{1}{2} (\sqrt{b_{i+1}} - \sqrt{c_i})^2, \end{array}$$

which is (i). Next suppose $b_1 - c_i - b_{i+1} \le \sqrt{c_i}(\sqrt{b_{i+1}} - \sqrt{c_i})$, then $y_0 \le m_i b_i r$. In this case, f(y) is decreasing in $[m_i b_i r, w]$, and so $f(m_i b_i r) \ge 0$, i.e.,

$$b_1 - c_i - b_{i+1} \ge c_i \frac{r - 2m - 2}{m + 1}$$
.

Consequently, (ii) is valid. In a similar way, we can prove (iii). Hence, we complete the proof of Theorem 1.1.

Proof of Corollary 1.2. Let Δ be the induced subgraph on $\{u_2, u_4\}$. Then r and m in Theorem 1.1 are 2 and 0, respectively. Applying (ii) if $b_{i+1} \geq c_i$, or applying (iii) if $b_{i+1} < c_i$, we get

$$b_1 \ge c_i + b_{i+1}, \ (1 \le i \le d-1),$$

so

$$(d-1)b_1 \ge \sum_{i=1}^d c_i + \sum_{i=1}^d b_i - c_d - b_1.$$
 (13)

Proposition 5.5.1 in [1] tells us that

$$b_i + c_{i+1} \ge a_1 + 2$$
, $(1 \le i \le d - 1)$,

which implies that

$$\sum_{i=1}^{d} c_i + \sum_{i=1}^{d} b_i - 1 \ge (d-1)(a_1+2). \tag{14}$$

Combining (13) and (14), we find that

$$(a_1+2-b_1)d \leq c_d+a_1+1.$$

Since $k \ge 2b_1$, $a_1 - b_1 + 2$ is a positive integer. We divide the both sides of the above inequality by $a_1 - b_1 + 2$ to obtain

$$d \leq \frac{c_d + a_1 + 1}{a_1 - b_1 + 2},$$

as desired.

References

- [1] A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, New York, 1989.
- [2] P. Terwilliger, Distance-regular graphs with girth 3 or 4: I, J. Combin. Theory Ser. B 39 (1985), 265-281.

Acknowledgments. The authors would like to thank the referees for their many valuable comments and suggestions.