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Abstract

We give some relationships among the interscction numbers of
a distance-regular graph I which contains a circuit (n1, w2, u3, 1)
with 9(u1,w3) = 1 and J(u2,wa) = 2. As an application, we obtain
an upper bound of the diamcter of T' when k > 20,
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1 Introduction

Let T = (X, E) denote a finite, connected, undirccted graph, without loops
or multiple edges, with wvertez set X and edge set E. We often write VI
for X and ET for E. Let r denote a nonnegative integer and let u and v
denote vertices of I'. By a path of length r from u to v we mean a finite
sequence of vertices (v = wg,wy, -, w, = v) such that (wy_;,w;) € ET
fort =1,---,r. By a circuit of length + we mean a path (wg, wy,-- -, Wy_1)
such that » > 3 and (w,—,,wy) € ET. A shortest circuit is called a minimal
circuit. The girth g ol T is the length of a minimal circuit. The number
of edges traversed in a shortest path joining u and v is called the distance
between v and v, denoted by d(u,v). Let d denote the maximal value of
the distance function. We call d the diameter of T.
For vertices u,v € VT, let

Ti(u) = {2 € VT'| 8(u,z) =i}, Di(u,v)=Ti(u)NT;(v).
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For any two subsets Y and Z of VT, let e(Y, Z) denote the number of
edges (u,v) with u € Y and v € Z. If Y contains a single vertex y, i.e.,
Y = {y}, we write as e(y, Z).

A connected graph I is said to be distance-regular if, for any two vertices
u and v at distance h, the parameters pﬁj = |Dj- (u,v)| depend only on i,
and h. The parameters

— PR — i
Ci = Pi-1,1> @i = P; 15 b; = Pir1n

are called the intersection numbers of I'. It is clear that ¢; + a; + b; = by
for all ¢ with 0 < i < d, and k = bg is the valency of I'.

In [2], Terwilliger found some relationships among the intersection num-
bers of a distance-regular graph I’ when I' contains a circuit (u;,us,us, u4)
with 8(uy,u3) = 0(ug,us) = 2, and gave an upper bound of the diameter of
I'. In this paper, we apply Terwilliger’s method to a distance-regular graph
containing a circuit (u;,us,us,us) with 8(u;,u3) = 1 and uz,uq) = 2,
and obtain some relationships among the intersection numbers of I'. As an
application, we obtain an upper bound of the diameter of I' when k& > 2b,.
Namely, our main results are the following.

Theorem 1.1 Let T be a distance-regular graph of girth 3. For any two
edjacent vertices u and v, let A be an induced subgraph on a nonempty
subset of Di(u,v) such that e(p,A) < |A| =1 for allp € A. Let r = |A|
andm = 4EAl fm < £ — 1, then for all integers i (1 < i< d~—1) the
intersection numbers of ' satisfy the following.

() by — i — bigr > =222 (Vi + V@) - (Vi — VG,
(id) by = ¢; = by > min{y/@(y/birs — &), SZ2m=Ay
(éii) b1 — i — bigr > min{/bi1(v/Ci — V/bis1), M:ﬁ?*ﬁ}
Corollary 1.2 Let T be a distance-regular graph containing a circuit

(u1,u2,u3,uq) with O(uy,uz) = 1 and (uz,us) = 2. If k > 2by, then
by 2 ci+ b1 for 0 < i <d—1. Moreover, we get

ca+a1+1
d< ———.
~a;—-b+2

2 Proof of main results

In this section, we follow the notation in Theorem 1.1.
For each integer ¢ with 1 < < d and for each vertex w € D}(u,v), set

Us(w) ={y |y € &, 8(y,w) =i+ 1},

188



Di(w)=|{y|y €A, d(y,w) =i -1}

Note that
Ui(w) + Di(w) <7, (1 <4< d).

For each ¢ with 1 <7 < d, let
R; = {w | w € Di(u,v), Ui(w) > 1}.
For each vertex p € A and each ¢ with 1 < ¢ < d, we define
ui(p) = {w|w € R;, O(w,p) =i+ 1},

di(p) = {w | w € Ry, d(w,p) =i —1}.
By computing the pairs (y,w) of vertices y € A and w € R; with 8(y,w) =

i+ 1, we get
> Uiw) =Y Jus(p)l- (1)
weER; PEA

Likewise, we have
Y Diw) =Y ld:(p)l. 2)
weR; pEA

Now we will follow Terwilliger’s idea in [2] to prove Theorem 1.1. At
first, We give a lemma.

Lemma 2.1 Let p € A and m; = lc%%'{ Then the following inequalities
hold.

(@) Jui-1(p)] +|di(p)| < mib1, (2< i< d),
(4) |di(p)| > ldi=slell (3 < i < a),

(c) ldi(p)] 2 mibi, (1 < i< d),

(@) lui(p)| > mib;, (1<i<d),

(e) (r-m-ll)m,-b,» 2 Z,,GAIW-'(P)I + Z,eAllui(P)l’ (1<i<d-1).
Proof. (a). For all positive integers r, s, and ¢, let
n(r,s,t) = {w | d(w,u) =r, d(w,p) = s, w,v) =t}
Then the following equalities hold.

n(i = 1,4, = 1) +n( - 1,4,6) = pl_, ;, (3)
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n(i — 1,5 = 1,8} +n(i,i — 1,9) = p}_, ;» (4)
n(i —1,i —1,i) +n(i — 1,i,8) = p}_y 5, ()
By adding (3) and (4), and subtracting (5), we get
n( —1,i,i— 1) +n(,i—1,i) =p}_, ;.
Since n(i — 1,4,i — 1) = |u;—1(p)| and n(%,i — 1,7) > |di(p)|, we have

i1 (P)] + 1di(p)| < Py = mibr.

(b). For each w € d;—1(p), let ¥ € A with (w,w) = i. Pick y €
Di*!(w,w). Then we get 8(y,u) = d(y,v) = i and 8(y,p) =% — 1, so that
y € d;(p). Therefore e(d;—1(p),di(p)) > |di-1(p)|b;- On the other hand,
each vertex y € d;(p) is adjacent to at most ¢;_; vertices in di—(p), so
e(di-1(p),di(p)) < |di(p)|ci-1- Consequently, |di(p)lci-1 > |di—1(p)|b;-

(c) and (d). By assumption, there exists a vertex ¢ € A such that
9(p,q) = 2. For any vertex w € D};}(p,q), we have w € d;(p) N u;(g)-
Hence

|di(p)| > p?~1,i+1 = m;b;, |ui(g)l 2 P?—l,i+1 = m;b;.
(e). For any integer ¢ with 1 <% < d, let
Y; = {(w1, w2, w3) | w2, w3 € A, wy € di(wz) Nu;(ws)}.

It is obvious that |Y;| =} ¢ p. Ui(w)D;i(w). We may also write

Yi = {(y1,¥2,93) | y2,93 € A, 8(y2,u3) =2, 11 € D7} (v2,¥3)},

$0
1Yl = H{(y2,¥3) | y2,43 € A, 8(y2,¥3) = 2}|pi_1,i11
=r(r —m— 1)m;b;.

Consequently, we obtain

)" Us(w)D;(w) = r(r —m — L)m;b;. (6)
weR;

By Cauchy-Schwarz inequality, we have

(X wer, Uilw)Di(w))?
< (X wer, Uiw)®) (X e r, Di(w)?)
< Cwer, Uiw)(r = Di(w)) (X yer, Di(w)(r — Ui(w))).
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Solve for (3, ¢ r, Us(w)D;(w))~! in above inequality to get

r 1 1
S oer U@Di(®) > Suer Di@) T Suen, Uiw)’

Applying (1), (2) and (6) to the above inequality, we get (e). [ ]

Proof of Theorem 1.1. Let
Ei =Y @) Fi= 3 Jui(p)l-

peEA PEA

Then (a) and (b) yield

b’c“ Ei+F: < ——_rmf(f‘b‘, (7)
and (c), (d) and (e) can be rewritten as
E; > rm;b;, (8)
F; > rm;b;, (9)
1 >t 1 (10)

(7’ -m- l)m,-b.- - E; F;
If i=d~1, by (7) and (9), we have
bl —Ci-1 2 0’

which implies the theorem holds.
Now we consider the case 1 < i < d—2. Combining (7)—(10), we obtain

1 1 1

—_— >+ ) 1
(r—m-1m;b; = E; rmiblb,-ci - b,+1E,c"1 (1)
where be(b
rmb; < E; < w (12)
i+1
Let s = M and w = ﬂ-"ib—,;{f:—"ﬂ By inequalities (11) and (12), it is
clear that
fly) = 1 _1__ 1
(r-m-1mib; y s—bicly

is nonnegative somewhere in the range [rm;b;, w)]. Since

lim f)= lim f@)=

y—0+ 25—~
i1
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in (0, b“’il) f(y) has a maximum at

biv1  biyr,_,
=s(4f — +—)"" > 0.
Yo = s( o + p )

Therefore, we have

1 S 1 + 1
r—-m-Umib; "y s-— bi+lci’ly0 ’
i.e.,

b
_——:_nl—_l > (Vi + Vbi)?,

r
which reduces to

bl — ¢ — b1+1

—-m= l(\/—+ /1+1 +2,/b,+1c, )
> r—7m 2(\/0_;+ \/Im)z-—- (vVbit1 — \/c_i)z’

which is (£). Next suppose by — ¢; — biy1 < /Ci(y/bi+1 — /Ci), then yo <
m;b;ir. In this case, f(y) is decreasing in [m;b;r,w], and so f(m;bir) > 0,
be r—2m-—2

m+1
Consequently, (i) is valid. In a similar way, we can prove (iii).

Hence, we complete the proof of Theorem 1.1. [ |

by —ci —biy1 2 ¢

Proof of Corollary 1.2. Let A be the induced subgraph on {uz,u4}.
Then r and m in Theorem 1.1 are 2 and 0, respectively. Applying (ii) if
bit1 > ¢;, or applying (4#2) if b;+1 < ¢;, we get

b Zci+bi+ls (122$d"1),
SO

d d
(d=1)by >> ci+ Y bi—ca—br. (13)

i=1 =1

Proposition 5.5.1 in [1] tells us that
bitcivi2a1+2, (1<i<d-1),

which implies that

d d
Yo+ bi—12>(d-1)(a +2) (14)
i= i=1
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Combining (13) and (14), we find that
(a1 +2-b0)d<cg+a; +1.

Since k > 2b;, a; — b, + 2 is a positive integer. We divide the both sides of
the above inequality by a; — b, + 2 to obtain

cg+a;+1
“a—-b+2

as desired. u
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