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ABSTRACT

Recently, Babson and Steingrimsson (see [BS]) introduced generalized per-
mutations patterns that allow the requirement that two adjacent letters in
a pattern must be adjacent in the permutation.

In this paper we study the generating functions for the number of permu-
tations on n letters avoiding a generalized pattern ab-c where (a,b,¢) € S3,
and containing a prescribed number of occurrences of a generalized pattern
cd-e where (c,d,e) € S3. As a consequence, we derive all the previously
known results for this kind of problem, as well as many new results.

1. INTRODUCTION

Classical patterns. Let a € S, and 7 € Si be two permutations. We say
that a contains 7 if there exists a subsequence 1 < 4; <ip < ---<ix <n
such that (a;,,...,q;, ) is order-isomorphic to 7; in such a context 7 is
usually called a pattern. We say that a avoids 7, or is 7-avoiding, if such a
subsequence does not exist. The set of all T-avoiding permutations in S, is
denoted by S, (7). For an arbitrary finite collection of patterns T, we say
that o avoids T if o avoids any 7 € T'; the corresponding subset of S, is
denoted S,(T).

While the case of permutations avoiding a single pattern has attracted
much attention, the case of multiple pattern avoidance remains less inves-
tigated. In particular, it is natural, as the next step, to consider permuta-
tions avoiding pairs of patterns 7, 72. This problem was solved completely
for 71,72 € S3 (see [SS]), for 1 € S3 and 2 € S, (see [W]), and for
71,72 € Sy (see [B, K] and references therein). Several recent papers deal
with the case 7, € S3, 72 € S for various pairs 71, 72 (see [CW, Kr, MV?2]
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and references therein). Another natural question is to study permuta-
tions avoiding 7 and containing 7» exactly ¢ times. Such a problem for
certain 71,70 € Ss and ¢t = 1 was investigated in [R], and for certain
71 € 83, T2 € Sk in [RWZ, MV1, Kr, MV2, MV3, MV4]. The tools involved
in these papers include continued fractions, Chebyshev polynomials, and
Dyck paths.

Generalized patterns. In [BS] Babson and Steingrimsson introduced
generalized permutation patterns that allow the requirement that two ad-
jacent letters in a pattern must be adjacent in the permutation.

Following [C], we define our generalized patterns as words with letters
1,2,3,... where two adjacent letters may or may not be separated by a
dash. The absence of a dash between two adjacent letters in a pattern
indicates that the corresponding letters in the permutation must be adja-
cent, and in the order (order-isomorphic) given by the pattern. For exam-
ple, the subword 23-1 of a permutation © = (m,®2,--- ,mp) is a subword
(mi,mig1,m;) where i + 1 < j such that 7; < m; < 1. We say that 7 a
generalized pattern of type (2,1) if it has the form ab-c where (a,b,¢c) € S3.

Remark 1.1. There ezist siz generalized patterns of type (2,1) which are
12-3, 13-2, 21-3, 23-1, 31-2, and 32-1. By the complement symmetric op-
eration (that is (w1, 72, ..., Ty) = (n+1—m,n+1—ma,...,n+1—17y,))
we get three different classes: {12-3,32-1}, {13-2,31-2}, and {21-3,23-1}.

While the case of permutations avoiding a single generalized pattern has
attracted much attention, the case of multiple pattern avoidance remains
less investigated. In particular, it is natural, as the next step, to consider
permutations avoiding pairs of generalized patterns 71, 72. This problem
was solved completely for 71,72 two generalized patterns of length three
with exactly one adjacent pair of letters (see [CM1]). Claesson and Mansour
[CM2] showed (using a result {CSZ, Corollary 11} by Clarke, Steingrimsson
and Zeng) that the distribution of the patterns 2-31 and 31-2 is given by
Stieltjes continued fraction as follows.

Theorem 1.2. We have

Z Z z1+(12)1ry(2l)1rp(2~31)1rq(31-2)1rt|1r| = x]['I] - '
n>0 €S, 1-— g
1— Y[1lpqt
1— z(2]p,qgt
1- y(2]p.qt

where (n],q = ¢""' + pg" 2 + - +p"2q+p" Y, ()7 is the number of
occurrences of T in .
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Several recent papers deal with the case where 7y is a generalized pattern of
length 3 and 7, is a generalized pattern of length k, for various pairs 7, 72
(see [M1, M2, M3] and references therein). Another natural question is to
study permutations avoiding 71 and containing 7, exactly ¢ times. Such a
problem for certain generalized patterns ; and 7» of length 3 and t = 0
was investigated in [CM2], and for certain r; € S3, 72 € S in [M1, M2,
Ma3]. The tools involved in these papers include continued fractions and
Chebyshev polynomials of the second kind.

In the present paper, as follow-up to [CM1] (see also [C, CM2]), we de-
velop a general approach to study the number of permutations avoiding a
generalized pattern of type (2,1) and containing a prescribed number of
occurrences of a generalized pattern 7 of type (2,1). As a consequence, we
derive all the previously known results for this kind of problem, as well as
many new results.

2. AVOIDING 12-3

Let frr(n) be the number of all permutations in S,(12-3) containing T
exactly r times. We denote the corresponding exponential and ordinary
generating function by F..(z) and Fr,(z) respectively; that is, Fr.r(z) =
2 on>0 f—",&fﬁw" and Frr(z) = 3,50 frir(n)z". We extend the above defi-
nitions by fr.-(n) =0 for any 7 and r < 0.

Our aim is to count the number of permutations avoiding 12-3 and avoid-
ing (or containing exactly r times) an arbitrary generalized pattern 7. Let
frir(nit1,42,...,4;5) be the number of permutations 7 € S,,(12-3) contain-
ing 7 exactly r times such that my7a...7; = 4142.. .15,

The main body of this section is divided into 6 subsections corresponding
to the cases: 7 is a general generalized pattern, 13-2, 21-3, 23-1, 31-2, and
32-1.

2.1. 7 is a generalized pattern of length k. Here we study certain
cases of 7, where 7 is a generalized pattern of length k without dashes, or
with exactly one dash.

Theorem 2.1. Let k > 2 and Pi(z) = L5255 We define G_y(z) =0,

Go(z) = e* — Pi(z), and G,(z) = Go(z) fy Gs-1(t)dt for all s > 1. Then

X
Fir1)..o1kr(x) = o PO [ | t)dt.
( ) 1) 0

Proof. Let @ € S,(12-3) such that a; = n; so a1 > oz > -+ > aj-;.
Therefore, a contains 7 = (k — 1)...21k exactly r times if and only if
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(0j41,...,0an) contains 7 exactly r times if 5 < k — 1, and contains 7
exactly 7 — 1 times if j > k. Thus

k-1 n
n—1 ) n—1 .
frrm) =3 ( - 1)fm(n Sy ( - 1)fm_1(n -3
=1 M =k M
Multiplying by z™/(n — 1)! and summing over all n > 1 we get
L Fe—1)..216:r (@) = Pi(@)(Flie—1)...2000 (%) — Fa—1)...200r—1(2)) +

+€* Fk-1)...21k;r-1(T)-
The rest is easy to check. O

Example 2.2. (see Claesson [C]) Theorem 2.1 yields for r = 0 that
2! | 22 k=1
Fe—1)..21k0(x) = e THIHF G0,

If k — oo, then we get that the exponential generating function for the
number of 12-3-avoiding permutations in S, is given by e"~1, Besides,
Theorem 2.1 yields for given k > 2 andr — oo that G,4(z) — e ~Jo Pr(t)dt
so F(k—l)...?lk;r(x) — e L

Claesson [C] (see also [CM1, Proposition 28]) proved that the number of
permutations in S,(12-3,21-3) is the same number of involutions in S,.
The case of varying k is more interesting. As an extension of this result.

Theorem 2.3. Fork > 2,
21 k-1
Fik~1)..21-k;0(Z) = PR G

Proof. Let 7 = (k — 1)...21-k, by definitions we get

fr;u(n) = Z fT;O(n;j)) f‘r:O(n; n) = f‘r:O(n - l)a (1)
j=1
and
ij—1
fro(ni iy, ..., 45) = Z fro(nity, ... 85, 8541) + fro(nsdn, ..., 35,n) (2)
i41=1

foralln—1> iy > i3 > --- > i; > 1. Therefore, since fr,0(n;%1,...,3;) =0

foralln—1>i4; >:-->14; > 1 where j > k — 1 and since
ff;l)(n;ily---yijsn) =f'r;0(n_'1"j)

foralm—1>4>:-->4; >1where0< j<k—2wehaveforalln>1

k-2
n-—1 .
f'r;O(n) = Z ( . )f‘r;O(n -1 —.7)-
j=o0 » J
The rest is easy to see as proof of Theorem 2.1. 0O
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In view of Example 2.2 and Theorem 2.3 we get that the number of per-
mutations in S,(12-3, (k —1)...21-k) is the same number of permutations
in §,(12-3,(k — 1)...21k). In addition,

5n(12-3, (k — 1)...21-k) = Sp(12-3, (k — 1) ... 21k), (3)

which can prove as follows. Let a = (o, n, o”); since a avoids 12-3 we get
o' decreasing, so by the principle of induction on length of « it is easy to
see that o avoids (k — 1)...21k if and only if avoids (k — 1)...21-k.

In [CM1] showed that the number of permutations in Sn(12-3,13-2) is given
by 2"~1. We generalize this result in the theorem below.

Theorem 2.4. Let k > 3, then for alln > 1
fk—2).. 216-(k—1);0(n) =
k
= X% (n;1)f(k—2)...21k-(k—1);0(n —-1-j)+
=

n—1 .
+ Zk: \ ("5 Fik-2).. 21k-k-1)0(n — 1 — j).
j=k—-

Proof. Let 7= (k—2)...21k-(k—1) andlet n — 1 > 4; > - >14;>1, 50
forj<k-3

fro(nita, ... 45,n) = fro(n —1—7)
and for j > k -2

f‘l’;O(n; il’ LR )ijtn) =
= fT;O(n;n -L...,n— (.7 —k+ 3)vij—k+47- .- ’ijvn) =
= f-r;O(n - .7)
Therefore, Equation (1) and Equation (2) yield the desired result. a

Example 2.5. (see Claesson and Mansour [CM2]) Theorem 2.4 yields for
k = 3 that the number of permutations in S,(12-3,13-2) is given by 271,
As another example, for k = 4 we get

T
Fa14-3,0(z) =1+ / 2+ /2y
0

As a remark, similarly as proof of Equation (3), we have for all k >3
F(k-2)...216-(k-1);0(2) = Fk—2)...21-k-(k—1);0(Z)-
2.2. 7 =13-2.

Theorem 2.6. Let r be a nonnegative integer. Then

d-1 .
2 r F13-2;,_d(x) - z: fl3-2;r—d(j)z]
1-2z z J=0

B
1-2c"° " T-2z 2« 1-2)7

Fi3.0,(z) =
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Proof. Let 7 > 0, bp(n) = fis-2,+(n), and let 1 < i # j < n. If i < j, then
since the permutations avoiding 12-3 we have b.(n;i,j) =0 for j <n -1
and by(n;4,n) = b,_(n—1-i)(n — 2), hence

n
Z br(n;isj) = br—(n-l—i)(n -Lin-—- 1) = br—(n—l-i)(n - 2)-
J=itl

If i > j then by definitions we have
be(n; 1,J) = be(n — 1;5)-
Owing to Equation (2) we have showed that, for all 1 <i < n -2,

i—1

by (138) = by—(n1-)(n — 2) + Y br(n = 1;9). (4)
j=1

Moreover, it is plain that
br(n;n) = bp(n;n — 1) = be(n — 1), (5)

and by means of induction we shall show that Equation (4) implies: If
2<m<n-1then

be(rin = m) = S(-1) [("5%) + (3=D)] brln ~ 1= )+
+by—(m-1)(n = 2) = dgl';(—l)j (™7 %)br—a(n — 3 - 5).
) (6)

First we verify the statement for m = 2; in this case Equation (6) becomes

br(n;n —2) = be(n — 1) — 2b,(n — 2) + br_1(n — 2).

Indeed,
br(n; n- m) =
n—m-1 . m .
= Y b(mn-mji+ X b(nyn—m,j)
j=1 j=n-m+1
n—-m-1
= 'Zl b‘r(n - 11.7) + br—(m-—l) (n -1Ln- 1) (7)
J=

=b,(n—1) — 2b.(n — 2) + br_(m-1)(n — 2)
m—1
- Y b(n—1n—-1-k),

k=2
where the three equalities follow from Equation (2), and Equation (1) to-
gether with (4) and (5), respectively. Now simply put m = 2 to obtain
Equation (6).
Assume that Equation (7) holds for all k such that 2 < k < m — 1. Then,

employing the familiar identity (,lc) + (i) 4o+ (',2) = (Zﬂ), the trailing

206



sum in Equation (7) expands as follows. Since
K= i| -1y | (k-2 .
kz=:2 ‘?(_I)J (57 + G5 |br(n—2-5) =
=20 (Fa) + (";-2)] br(n — 2~ 5) = by(n - 2) =

=— ;(-1)1‘ [(";1) + (322 ]b,(n —1-j)+b(n—1)—2b(n —2),

m-1
Y br_e-ny(n—3) = br_a(n —3),
k=2 d>1

and

S T S Ybeoaln— 4~ ) =

k=2d>1;

=— ¥ S (" Ybroa(n =3~ 5) + T by_a(n - 3)
d>17 d>1

with using Equation (7) we get that Equation (6) holds for kK = m, by the
principle of induction the universal validity of Equation (6) follows.

Now, if summing b.(n;n — m) over all 0 < m < n — 1, then by using
Equation (1), (5), and (6) we get

2-1? (59 + @2 beln— ) =

- S S —2-g). O
d>1 j

Using [CM2, Lemma 7] to transfer the above equation in terms of ordinary
generating functions

(1 — u)Fiz-2;r (l-}-Lu) = 0r0+

r d-1 j
+u? ‘El(l + u)d-1 [F13-2;r—d (1%,,) ~ f:‘; Siz-2;r—a(9) (1%)1] .

Putting z = u/(1 + u) (u = /(1 — z)) we get the desired result. O

As application of Theorem 2.6 we get the exact formula for fiz-2,-(n) for
r=0,1,234.
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Corollary 2.7. Foralln > 1,

fiz-20(n) =21,

fiz21(n) = (n —3)2""2 + 1;

fiz-22(n) = (n? —3n—6)2"" 1 +n;

fiz-23(n) = 3(n® —31n - 18)2" "5 +n? —n + 1

fiz-2a(n) = 3(n - 1)(nd + Tn? — 546n 312)2"-8+
+%(n-1)(n? —2n+3).

2.3. 7 = 21-3. The following lemma is the base of all the other results in
this subsection, which holds immediately from definitions.
Lemma 2.8. Let n > 1; then

fa-3;r(n) = far-3r + E fa1-3;-(n5 %),

i~-1

f21-3;r(n; 2) = f21-3;r(n -2)+ Zlf21-3;r—(n—i)(n - 2;j)1 1<i<n-1.
J=

Using the above lemma for given r we obtain the exact formula for fa;-3;r
Here we present the first three cases r =0,1,2.

Theorem 2.9. Foralln>1
far-30(n) = far-30(n — 1) + (n — 1) f21-30(n — 2);

fa-31(n) = far-3a(n — 1) + (n — 1) far-3a(n — 2)+
+fa1-3;0(n — 1) — fa1-3,0(n — 2);

Fa1-3.2(n) = far-a2(n — 1) + (n — 1) fa1-3,2(n — 2) + fa1-31(n — 1)
~fa1-31(n — 2) + fa1-3,0(n — 1) — 2f21-3,0(n — 2).

Proof. Case r = 0: Lemma 2.8 yields fo1-3,0(n;%) = f21-3,0(n — 1) where
1<i<n-1,soforalln>1

f21-3;0(n) = far-z0(n — 1) + (n — 1) fa1-30(n — 2).

Case r = 1: Lemma 2.8 yields f21-3.1(n;1) = fa1-3;1(n — 2) where 1 <i <
n —2, and

n-2
fasp(mn—1) = fa-zo(n — 1;5) + far-3a(n — 2)

=1
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which equivalent to (by use the case r = 0)

fa-ga(nin — 1) = forz1(n ~ 2) + far-z0(n — 1) — far-30(n — 2).
Therefore, for all n > 1
fa1-3:1(n) = fa1-31(n—1)+(n—1)f21-31(n—2)+ for-3,0(n—1)— for-3,0(n—2).

Case r = 2: Similarly as the cases r =0, 1. 0

2.4. 7 = 23-1. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.

Lemma 2.10. Letn > 1; then
n—1
faz-1r(n) = fogop;r(n — 1) + 21 Jo3-1;7(n; 8),
- i-1
f23-1,0(n3%) = fozar—(i-(n —2) + Z foz-r(n—1;5), 1<i<n-1.

Theorem 2.11. For any nonnegative integer r, the generating function
Fz1;(z) is given by
]

Or0
T w2 +-'L'2 Z(l-—x)’ -2 [an “Lir—d ( ) Zfzs 1r—d(J) (
d=0
Proof. Using the same argument proof of Equation (6) together with Lemma 2.10
we obtain forall 1< m <n-1,

f23-l;r(n;m) =
= fos-1ir41-m(n —2) + d%:l ¥ (™77 faz-virs1-a(n — 3 ~ 5).
217

Therefore, by summing fo3-1.-(n; m) over all 1 < m < n we shall show that
Lemma 2.10 implies for all n > 1,

r n—2-d n— 2 d
fos1;r(n) = fas1r(n—1)+ Y D ( )fza- wr—d(n —2—j).
d=0 j=0
Hence, using [CM2, Lemma 7] we get the desired result. O

Example 2.12. (see Claesson and Mansour [CM1, Proposition 7]) Theo-
rem 2.11 for r = 0 yields

1 z2 T
Fazoq0(z) = . i)y Fa3.150 (1 — z) .

An infinite number of application of this identity we have

2%
Fogpo(z) =)

kZo pk“'l(z)pk+1 (w)’

T
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where pm(2) = [[joo(1—jz). An another ezample, Theorem 2.11 forr =1
yields (similarly)

L20+2 z2k
Fp3-12(2) = d;o [Pd (@) (zgm Prtd-1(®)Perar1(z) 1)] '

2.5. 7 = 31-2. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.

Lemma 2.13. Letn > 1; then

n—-1
fa1-2r(n5n) = 21 fa1-2r41-j(n — ;0 = 4),
J:
i-1
fa1-2;r(n33) = far-2p(n—Lin—1) + Zl fa1-25r—(i-1-5)(n — 1;5),
]:

wherel <i<n-1.

Theorem 2.14. Let r be a nonnegative integer, then fai-2,-(n) is a poly-
nomial of degree at most 2r + 2 with coefficients in Q, where n > 0.

Proof. Using Lemma 2.13 for r = 0 we obtain that, first fai-2,0(n;n) =1
and fa1-2,0(n;1) = 1, second fai-2,0(n;5) = j for all 1 < j < n — 1. Hence,
for all n > 0,

Farz(n) = (’2‘) +1

Now, assume that faj-2.4(n;j) is a polynomial of degree at most 2d +

1 with coefficient in Q for all 1 < j < n where d = 0,1,2,...,7 — L.

Therefore, Lemma 2.13 with induction hypothesis imply, first f31-2;+(n;n)

and f31-2,~(n; 1) are polynomials of degree at most 2r, and then f31-2;-(n; j)

is a polynomial of degree at most 2r+1. So, by use the principle of induction

on r we get that f31-2,-(n; 7) is a polynomial of degree at most 2r + 1 with
n

coefficient in Q for all > 0. Hence, since fa1-2;/(n) = Y fa1-2;r(n;5) we
j=1

get the desired result. O

Aa application of Theorem 2.14 with the initial values of the sequence
fa1-2,+(n) we have the exact formula for f31-2,r(n) where r =0,1,2,3.
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Corollary 2.15. For alln > 0,
Ja1-20(n) =1+ ztﬁz,:l).;
fa1-21(n) = ﬂ"—-'}2)41"—"22(3'ﬂ -5);
far-ga(n) = 2e=t0D=3) (5,2 _ 3, _ 38);

720

far-z3(n) = 2e=De=A0=9(n-4) 7,3 4 10n2 + 2050 — 1142).

2.6. 7 = 32-1. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.

Lemma 2.16. Let n > 1; then
n~-1 .
faz-r(nim) = 21 fa1-2;r1—(n — 1; ),
=
i-1
fa2-1,r(n58) = faz-1r(n—Lim—1) + 21 fa1-2;r+1-5(n — 1;9),
J:

wherel<i<n-—1.

Theorem 2.17. Let r be a nonnegative integer, then f3z-1.+(n) is a poly-
nomial of degree at most r + 1 with coefficients in Q, where n > r + 2.

Proof. Using Lemma 2.16 for 7 = 0 we obtain that, first faz-1,0(n;n) = 1
and fas-1,0(n;1) = 1, second f31-2;o(n;]') =2 for all 2 < j < n—1. Hence,
foralln > 2,

fa1-20(n) =2n —2.

Let n > r+2 and let us assume that f3.1.4(n; j) is a polynomial of degree
at most d with coefficients in @ forall1 < j <n whered =0,1,2,...,7r —
1. Lemma 2.16 with induction hypothesis imply, first f32-1.-(n;n) and
faz-1,r(n; 1) are polynomials of degree at most r with coefficients in Q, and
then f31-2,r(n;j) where 2 < j < n — 1 is a polynomial of degree at most
r with coefficients in Q. So, by use the principle of induction on r we get
that fag.1,-(n;J) is a polynomial of degree at most r with coefficients in Q@
for all 7 > 0. Hence, since faz-1,r(n) = X7, f32-1,+(n; j) we get the desired

J
result. O

As application of Theorem 2.17 with the initial values of the sequence
faz-1,-(n) we get the exact formula for f35-1..(n) for r = 0,1,2,3.
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Corollary 2.18.
(i) Foralin>2, [fz2a,0(n)=2n-2;

(ii) Foralln>3, fa-;1(n)=(n-3)2n-1),

(iii) Foralln>4, fi.2(n)=(n—-4)(n?~3n+1);

(iv) Foralln>5, fsa(n)=3§(n—5)(2n® —13n%+47n - 6).
3. AVOIDING 13-2

Let g,,r(n) be the number of all permutations in S,(13-2) containing 7
exactly r times. We denote the corresponding ordinary generating function
by Gryr(z); that is, Grir(z) = Y ,509nr(n)z™. We extend the above
definitions by g,,-(n) = 0 for any 7 and r < 0.

In the current section, our aim is to count the number of permutations
avoiding 13-2 and containing 7 exactly r times where T a generalized pattern

of type (2,1). Let g,,7(n;%1,12,...,%;) be the number of permutations = €
S5 (13-2) containing 7 exactly r times such that myma...m; = i1i2...1;.

The main body of this section is divided to three subsections corresponding
to the cases 7 is 12-3; 21-3, 23-1; 31-2; or 32-1.

3.1. 7=12-3.

Theorem 3.1. Let r be any nonnegative integer; then there exist polyno-
mials pr(n) and g.—1(n) of degree at most r and r — 1 respectively, with
coefficients in Q such that for alln > 1,

g12-3;+(n) = pr(n) - 2" + gr—1(n).

Proof. Let 7 > 0, and let 1 < ¢ # j < n. If i < j, then since the
permutations avoiding 13-2 we have gjo.3.r(n;%,j) =0fori+2<j < n
and g12-3,+(n; 1,7 + 1) = 912-3;r— (n—1-4)(n — 1;), hence

n
D 912-8(n34,5) = G12-3;7—(n1-0) (1 = 1;9).
j=i+1

If i > j then by definitions we have
g12-3;+(15 4, 5) = g12-3;+(n — 1; 7).
Owing to the definitions we have showed that, for all1 < i< n -2,
i-1

912-3:r (039) = G12-3r—(n-1-0) (7 — Li) + Y _ g12-3:+(n — 1;5)- (1)

=1
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Moreover, it is plain that

912-3;- (15 ) = g12-3r (M1 — 1) = g12-3.0(n = 1), (2
andforalll1<j<n—-r-—2

f12-3;+(n;7) = 0. (3"

Now we ready to prove the theorem. Let r = 0; by Equation (3') we get
912-3,0(n; 7) = 0 for all j < n—2 and by Equation (2') we have g15-3.0(n; n—
1) = g12-3,0(n;n) = do(n — 1), so dr(n) = 2"~1. Therefore, the theorem
holds for r = 0.

Let r > 1, and let us assume that foral 0 < m <s—1landall0< s <
7 — 1 there exist polynomials p,,(n) and ¢,,—;(n) of degree at most m and
m — 1 respectively with coefficients in Q such that gjo.3.5(n;n —s -1+
m) = pm(n)2" + gm-1(n), and there exist polynomials vs(n) and u,_;(n)
of degree at most s and s — 1 respectively with coefficients in Q such that
912-3;s(n — m) = v5(n)2" + u;_1(n) where m =0, 1.

So, using Equation (1’) for m = 0,1,...,7—1 and the induction hypothesis
imply that there exist polynomials @,,(n) and b,,—1(n) of degree at most
m and m — 1 respectively with coefficients in Q such that

G12-3r(nsn — 1 = 14+ m) = @ (n)2" + bm_1(n).
Besides, Owing to Equations (1°), (2’), and (3') we have showed that

r+1
912:3;r(n) = 2012-3,- (R — 1) + Y _ gr2-3(msn — ),
i=2 '

which means that g12-3,-(n) is given by v.(n)2"+u,_;(n) and g12-3.+(n; n) =
912-3;7(n;n — 1) = g12-3.(n — 1). Therefore, the statement holds for s = 7.
Hence, by the principle of induction on r the theorem holds. (M|

As application of Theorem 3.1 with the initial values of the sequence
912-3;+(n) we obtain the exact formula for gj2-3.-(n) for r = 0,1,2,3.

Corollary 3.2. For alln > 1;

gi12-3;0(n) = 2"
g12-3:2(n) = (n = 3)2" 2 + 1;
g12-3;2(n) = (n? — 11ln + 34)2"~% —n — 2;

912-33(n) = 3(n3 — 24n? + 257n — 954)27-5 4+ n2 + 4n + 10.
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3.2. 7 = 21-3. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.

Lemma 3.3. Letn > 1; then
n—1
921-3;r(n) = g21-37(n — 1) + 21 g23-1;r (13 ),
=
i=1
921-3;r(n;i) = 921-3;1'("' - 1;i) + _221921-3;1'—(1!—1')(” - 1;j)’
J=

wherel <i<n-1

Theorem 3.4. Let r be any nonnegative integer, then there exists a poly-
nomial p.(n) of degree at most r with coefficients in Q, such that for all
n>2r

9n1-3;-(n) = pr(n) - 2".
Proof. Lemma 3.3 implies for 7 = 0 as follows. First go1-3,0(n;m) = 2m~2

for all m > 2, and second g21-3.0(n;1) = 1. Hence ga1-3,0(n) = 2", so the
theorem holds for r = 0.

m
Let r > 1. Assume that for 2 < m < n — 1 the expression ) g21-3,4(n; )
j=1
is given by ¢*(n)2™ where ¢J*(n) is a polynomial of degree at most d with
coefficients in Q for all 0 < d < r — 1. Lemma 3.3 yields

g21-3;(n; 1) = ga1-3;7(n — 1;1),
921-3;+ (15 2) = ga1-3;r(n — 1;2),

go-sr(min—r—1) =gagr(n—-1Ln—r-1),

n—r
ga-sr(nin—r+1) =gng(n—Lin-r+1)+ 21 g21-3;1(n — 1;7),
J:

n—2
921-3;1'(";"' - 1) = ng-S;T(n -Lin- 1) + Zl 921-3;1’—1(" - l;j),
J=

g21-3;r(n; 1) = ga1-3;r(n — 1),
with induction hypothesis imply for 2 <m <n -1
m m
2921-3;r(n§j) = 2921-3;1'(" - 1;5) + ¢/t 1(n)2™,
j=1 j=1
where g™ ;(n) is a polynomial of degree at most r — 1 with coefficients
m
in Q. Therefore, for 2 < m < n—1 3 g12-3,/(n; ) can be expressed by

j=1
g™ (n)2™ where ¢™(n) is a polynomial of degree at most r with coefficients
T r
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in Q. Hence, with using Lemma 3.3 we get there exists a polynomial ar(n)
of degree at most r with coefficients in Q such that

912-3;7(n) = g12-3;r(n — 1) + a,(n)2",
so the theorem holds. O
Using Theorem 3.4 with the initial values of the sequence g21-3./(n) for
r=0,1,2,3 we get
Corollary 3.5.
(i) Foralln>1, go-30(n)=2""1

(i) Foralln>2, gs-31(n)=(n—2)2"3

(i) Foralln>3, go-32(n)=(n?+n—12)2"";

(iv) Foralln>4, gn-33(n)=3(n—4)(n?+13n+6)2"8,
3.3. 7=23-1, 7 = 31-2, or 7 = 32-1. Similarly, using the argument proof
of Theorem 3.4 with the principle of induction yield

Theorem 3.6. Let r be any nonnegative integer. Then

(i) there ezists a polynomial p,_1(n) of degree at most r —1 with coefficients
in Q and a constant ¢, such that for alln > r

g23-1;7(n) = ¢+ 2" + p,_1(n).

(ii) there ezist polynomials p,(n) and gar—2(n) of degree at most r and 2r—2
respectively; with coefficients in Q such that for alln > 1

931-2;+(n) = pr(n)2" + gor_a(n).

(iii) there exists a polynomial p,,2(n) of degree at most r+2 with coefficients
in Q such that foralln > r

932-1;r(n) = pry2(n).

Using Theorem 3.6 with the initial values of the sequences 923-1,r (1), g31-2;r(n)
and g3s-1;-(n) for r =0,1,2,3,4 we get that the following:

Corollary 3.7.
(i) Foralln>1, go34,0(n)=2""1

(i) Foralln>2, go393(n)=2""2—-1;
(i) For alln >3, g23-12(n) =2""1 —pn—1;

(iv) Forallmn >4, 923-1;3(71) =5.27-3 _ %(’I'I.2 —n + 8).
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Corollary 3.8. Foralln > 1;

(i) gs1-20(n) =271
(i) 931-2;1(n) =(n- 3)2"--2 +1;
(i) go1-za(n) = (? = 3n — 14)2°~4 + §(n 4 + 12);

(iv) ga1-2;3(n) = 3(n® — 550 — 90)2"~5 + & (n? + 11n% + 12n 4 12).
Corollary 3.9. Foralln > 1;
(i)  gse-10(n) = gn(n—1)+1;

(i)  gaz-12(n) = §(n—1)(n - 2)(2n - 3);
(iil) gs2-1.2(n) = §(n — 2)(n — 3)(2n - 5);
(iv) ga2-1;3(n) = §(n — 3)(n® — 3n? — 10n + 32);

(v)  gap-1,4(n) = 25 (n — 4)(3n® — 10n? — 550 + 198).

4. AVOIDING 21-3

Let h,r(n) be the number of all permutations in S,(21-3) containing 7
exactly r times. We denote the corresponding exponential and ordinary
generating function by H...(z) and H,, () respectively; that is, H,,r(z) =
Y om0 %x” and H;,(z) = Y 50 hrir(n)z". We extend the above
definitions by A,..(n) = 0 for any 7 and 7 < 0.

In the current section, our aim is to count the number of permutations
avoiding 21-3 and containing 7 exactly r times where 7 a generalized pattern
of type (2,1). Let h;,r(n;iy,i2,...,%;) be the number of permutations
7 € Sp(21-3) containing 7 exactly r times such that myw2 ... 7; = 4122... ;.

The main body of the current section is divided to five subsections corre-
sponding to the cases 7 is a general generalized pattern; 12-3; 13-2, 31-2;
23-1; and 32-1.

4.1. 7 is a general generalized pattern. Here we study certain cases
of 7, where 7 is a generalized pattern of length k& without dashes, or with
exactly one dash.

First of all let us define a bijection ® between the set S,(12-3) and the set
S,(21-3) as follows. Let m = (n/,n,n"), where n the maximal element of
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@, be any 12-3-avoiding permutation of s elements; we define by induction
&(m) = (R(n'),n, 8(x")),

where R(n’) is the reversal of #’ (that is R : (my,...,m) — (%, ... 'y 71)).
Since 7 is 12-3-avoiding permutation we have m; > --- > m;j—1 SO by using
the principle of induction on length = we get ®(r) is 21-3-avoiding per-
mutation. Also, it is easy to see by using the principle of induction that
®~! = &, hence & is a bijection.

Theorem 4.1. For all k> 1;

Haz. (k-1)k0(2) = Fr—1)..2160(2),  Haz (k-1)ki1 (%) = Fr—1y...2151(2)-

Proof. Using the bijection & : S,(12-3) — S,(21-3) we get the desired
result: the permutation m € 5,(12-3) contains (k — 1)...1k exactly r
(r = 0,1) times if and only if the permutations &(r) contains 12. .. (k—1)k
exactly r. (]

Example 4.2. (see Claesson [C]) Theorem 2.1 and Theorem 4.1 yield for
r =0 that

a2 k-1
Hia.. k0(z) = eTrHart+dom,

If k — oo, then we get that the exponential generating function for the
number of 21-3-avoiding permutations in S, is given by e®” ~1.

In [C, CM1] proved that the number of permutations in S, (21-3) avoiding
12-3 is the same number of involutions in S,,. The case of varying k is more
interesting. As an extension of these results (the proofs are immediately
holds by using the bijection ®).

Theorem 4.3. Fork > 1,
21 k=1
Hia...(k~1)-kio(z) = e T+ =m0,
12...(k=2)k-(k-1):0(Z) = Hi2...(k=2)k-(k~1):0(Z) = Flr—2)...21k-(k—1):0(T)-
Using the bijection ® we get easily other results as follows.

Theorem 4.4. (i) The number of permutations in S, containing 12-3
ezactly once is the same number of permutations containing 21-3 exactly
once;

(ii) The number of permutations in S, containing 12-3 ezactly once and
containing (k —1)...21-k (resp. (k—1)...21k) exactly r = 0,1 times, is
the same number of permutations in S, containing 21-3 ezactly once and
containing 12...(k — 1)-k (resp. (12...(k —1)k) ezactly r = 0,1 times.

217



4.2. 7 = 12-3. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.

Lemma 4.5. Let n > 1; then

n—1
h12—3;r(n) = h12-3;r(n - 1) + 21 h12-3;r(n;j),
J=
n-1
hi2-3;r (1 §) = hag-a;r(n = 2) + 3= hiagir—(n-i-1)(n — 1;9),
i=j
where1<j<n—-1.
Theorem 4.6. Foralin >1,
hi2-3,0(n) = hi2-30(n — 1) + (n — 1)hi2-3,0(n — 2);

hi2-31(n) = hiz-3n(n — 1) + (n — 1)hi2-31(n — 2)+
+(n - 2)h12-3;0(n - 3);

hi2-3;2(n) = hi2-32(n — 1) + (n — Dh12-32(n — 2)+
+(n — 2)h12-3;1(n — 3) + (n — 3)h12-3;0(n — 3).

Proof. Case r = 0: Lemma 4.5 yields hi2-3;0(n; j) = hi2-3,0(n — 2) where
1<j<n-1,hence
hi2-3;0(n) = hiz-3;0(n — 1) + (n — 1)h12-3,0(n — 2).

Case r = 1: Lemma 4.5 yields
hi2-3:1(n; 5) = hi2-3;(n — 2) + hia-3,0(n — 1;n — 2)

where 1 < j < n —2, and hy2-g1(n;n — 1) = hia-32(n — 2), which means
that

hi2-3:1(n) = hiz-3a(n — 1) + (n — Dhiz-31(n — 2) + (n — 2)h12-3,0(n — 3).

Case r = 2: similarly as the above cases. O

4.3. 7=13-2.

Theorem 4.7. Let r be a nonnegative integer. Then

d-1 )
, r Hizzr-a(z) - 3" hiz-2r—d(5)2?

T T j=
220t T2 ; 1 —x)?

1-—-
Higor(2) = 72
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Proof. Definitions imply hi3-2;+(n; n) = h13-2,r(n—1),and for 1 < j < n—1,
n—-1
hiz-2;r(n; 5) = Z h1g-2;r4i-j(n — 1; 7).
i=j
By means of induction it is easy to obtain for 1 <m <n -1
m—1 m—1
maae(min—m) = 3 (" 7Y hiazosn 1= m +5)
=0
Now, if summing hj3-2;-(n;7 — m) over all 0 < m < n — 1, then we get
r n—-2-d n—2—i
haz-2;r(n) = h1z-2,r(n — 1) + Z Z: ( d J) h13-2;r—a(j + d).
d=0 j=0
To find the desired result, we transfer the last equation to terms of ordinary
generating functions by use [CM2, Lemma 7). O

In view of Theorem 2.3 and Theorem 4.7 we have that the number of per-
mutations in S,(12-3) containing 13-2 exactly r times is the same number
of permutations in S,(21-3) containing 13-2 exactly r times. To verify that
by combinatorial bijective proof let w be any 12-3-avoiding permutation; it
is easy to see 7 = (my,...,mj—1,n,7') where m; > --+ > m;_1, so the num-
ber of occurrences of 13-2 in wis given by N :=n—1—m;_; - (j —2)+ N’
where N’ the number occurrences of 13-2 in 7. On the other hand, let
B = &(x), so by definitions of ® with induction hypothesis (induction on
length of w) we get that B contains the same number N of occurrences of
13-2. Hence, by means of induction we shall showed that ® is a bijection,
and Hj3-2,-(2) = Fi3-2,~(z) for all > 0.

4.4. T = 23-1. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.
Lemma 4.8. Letn > 1; then
n-1
h23-1,7(n) = hoz-1r(n — 1) + 21 haz-1;+(n; 7),
j':
n—1
haz-1;7(n; j) = Z h23-1;r—(j—l) (n—1;1),
=5
wherel1<j<n-1.

Theorem 4.9. Let r be any nonnegative integer, then there ezists a poly-
nomial p.(n) of degree at most r with coefficients in Q such that for all
n2r

haz-1;+(n) = pr(n)2".
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Proof. Lemma 4.8 yields, hos-1,-(n;n) = haz-1,r(n;1) = hoz3;r(n — 1),
hos-1.+(n;j) =0forallr+2<j<n-1, and

has-1;+(n; ) = has-1r(n55 — 1) — hog-1;rp1-5(n — 15 — 1)
forall2<j<r+1.

Assume that hgs-1,4(n) can be expressed as pg(n)2™ and ha3-1,4(n;j) can
be expressed as pg—1(n)2” where 2< j<r+1forall0 <d<r—1. The
statement is trivial for » = 0, and by using the principle of induction with
the above explanation we get, immediately, the desired result. O

Theorem 4.9 with the initial values of the sequences ha3-1;r(n) forr = 0,1,2
yield

Corollary 4.10.
(i) For alln>1, hazg0(n) =2""1

(i) For alln>2, hoa11(n) = (n—2)2""3;

(iii) For alln >3, haos-1.2(n) = (n — 3)(n + 8)2"C.

4.5. 7 = 31-2.
Theorem 4.11. Let r be a nonnegative integer. Then
d-1 ,
- 2 H31-0;r-d(z) — ’ h31-2;r-a(5)z’
_1- J=
Ha1-2:r(2) = 1- 2:1:6r'° t1 % Z (1-x)d

d=1

Proof. Definitions imply hs1-2;r(n;1) = hy3-2,+(n—1), and for2 < j < n-1,

n-1 j—-1
ha1-2;+(n; 3) = z hai-2;r(n — 1;4) = hargir(n — 1) — Z hai-o;r(n — 1;1).
i=j i=1

By means of induction it is easy to obtain for 1 <m <n -1
! m—1
hai-2;+(n;m) = Z (_1)'7( j )h31-2;r(n -1-7).
j=0

Similarly as Theorem 2.3 (or Theorem 4.7), by using the above equation
with (it is easy to check by definitions)

-
hat-2r(nin) = D haregr—i(n — Lin—1-j),
3=0
we get the desired result. O
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Again, we have H3y_9,,(z) = Fiz-2,r(z) for all r > 0. But here we failed
to find a combinatorial explanation that the number of permutations in
5n(12-3) containing 13-2 exactly 7 times is the same number of permuta-
tions in 5,,(21-3) containing 31-2 exactly r times.

4.6. 7 = 32-1. The following lemma is the base of the main result in this
subsection, which holds immediately from definitions.

Lemma 4.12. Letn > 1; then

n
h32-1;r(n) = hso-1;+(n — 1) + _Zzhsz-l;r(n;j),
J=

j—1
h3z-1,r(n; §) = haz-1p(n — 1) — Zl h3a-1;+(n — 1;4),
=

where1 < j<n-1, and
h3g-1;r(n;n) = haz-1;r(n—1;1)+haz-1;r-1(n~1;2)+- - -+hgo-10(n—1;7+1).
Theorem 4.13. Foralln > 1,

n—-2 X .
haz-vo(n) = % (=1)7 (331 haz-air(n = 1 = )+
J=

r41j5—1 - )
+ 21 _):(:)(—1)’(],- Yhaz-ir41-5(n — 2 — ).
J=1i=l

Proof. By means of induction with use Lemma 4.12 we imply that for all
1<m<n-1
m-—1 m—1
haz-yr(nsm) = ) (~1)‘< ; )h32-l;r(n —-1-1).
i=0
On the other hand, using Lemma 4.12 the third equality and then using
Lemma 4.12 the first equality we get the desired result. 0

For example, Theorem 4.13 with [CM2, Lemma 7] (as Example 2.12) yield
the exact formula for H3o y..(z) where r = 0,1 (see Claesson and Mansour
[CM1] for the case r = 0).

Corollary 4.14.
2k
Hsz.10(z) = kz>:0 Pk-x(;jpkﬂzxj;

_ z?(1~(n+2)z) w2(k+n)
H3z.11(z) = ngo [ I3z kgo pn+k(m)pn+k+2(z)] .

where pg(z) = I'[;Lo(l - dz).
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5. FURTHER RESULTS

The first possibility to extend the above result is to count occurrences of
two generalized patterns. For example, the number of permutations in Sn
containing 12-3 exactly once and containing 13-2 exactly once is given by

(n? - Tn +14)2"3 -2

for all » > 1. As another example, the number of permutations in S,
containing 12-3 exactly twice and containing 13-2 twice is given by

(n* — 18n® + 163n? — 826n + 1832)2"~7 —4n — 14
for all n > 1. These results can be extended as follows.

Theorem 5.1. Let us denote the number of permutations in S, containing
12-3 ezactly v times and containing 13-2 ezactly s times by ay®; then there
exists polynomials p(n) and g(n) of degree at most v + 5+ 1 — br0 — ds,0
and T + 8 — 6y,0 — 85,0, respectively, such that for alln > 1

ap® = p(n)2" +q(n).

Another direction to extend the results in above sections is to restricted
more than two patterns. For example, the number of permutations in
S,.(12-3,13-2, 21-3) is given by the (n+1)th Fibonacci number (see [CM1]).
Again, this result can be extended as follows.

Theorem 5.2. (i) The ordinary generating function for the number of
permutations in S,,(12-3, 21-3) such containing 13-2 ezactly r 2> 1 times is
given by
xz(l — z)r—l
(1-z—22)rH1

and for r = 0 is given by 1—=—

(i) The ordinary generating function for the number of permutations in
Sn(12-3, 21-3) such containing 23-1 ezactly r > 1 times is given by
z2(1 —z)r !

(1-z-z2)yrH!
and for r = 0 is given by 1——7.
In view of Theorem 5.2 suggests that there should exists a bijection between
the sets {12-3,21-3}-avoiding permutations such containing 13-2 exactly r
times and {12-3,21-3}-avoiding permutations such containing 23-1 exactly
r times for any r > 0. However, we failed to produce such a bijection, and
to find it remains a challenging open question.
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