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ABSTRACT

A graph G is said to be locally hamiltonian if the subgraph induced by
the neighbourhood of every vertex is hamiltonian. Alabdullatif conjectured that
every comnected locally hamiltonian graph contains a spanning plane
triangulation. We disprove the conjecture. At the end, we raise a problem
about the nonexistence of spanning planar triangulation in a class of graphs.

1. INTRODUCTION

By a graph we mean a finite, simple, undirected and connected graph
with at least two vertices. In a graph G, for S ¢ V(G), G[S] denotes the
subgraph induced by S. A graph G is said to be fraceable if it contains a
hamiltonian path. A graph G is said to be hamilton cycle decomposable if the
edge set of G can be partitioned into hamilton cycles if G is even regular or,
hamilton cycles together with a 1-factor, if G is an odd regular graph. A graph
G is said to be locally hamiltonian (resp. traceable) if the subgraph induced by
the neighbourhood of every vertex u, G[N(%)], is hamiltonian (resp. traceable).
The tensor product of graphs G and H, G ®H, is the graph with vertex set
V(G ®H) = V(G)xV(H) and edge set E(GRH) = { (u, x)(v, y)| uv € E(G) and
xy € E(H) }. The tensor product is also called as Kronecker product, direct
product, categorical product and graph conjunction. It is well known that tensor
product is commutative and associative. The lexicographic product of graphs
G and H, GXH, is the graph with vertex set V(G H) = V(G)xV(H) and edge
set E(G*H) = {(u, x)(v,y)| either wv € E(G) or (u = v and xy € E(H))}.
Definitions which are not given here can be found in [2] and [3]. Properties of
locally hamiltonian graphs have been studied in [1], [4] and [5]. Properties of
locally hamiltonian claw free graphs have been studied in [1] and [5]. Locally
hamiltonian planar graphs and locally traceable outer planar graphs have been
completely characterized in [1]. A graph G is said to be Jocally hamilton cycle
decomposable if G[N(u)] is hamilton cycle decomposable for every € V(G).
A planar graph G is called a plane triangulation if every face of G is of degree 3.
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CONJECTURE 1 [ 1 ]. Every connected, locally hamiltonian graph contains a
spanning plane triangulation as a subgraph.

We disprove this conjecture using tensor product of graphs. Infact,
we prove that both C;® K, and C; ® K, are counterexamples to Conjecture 1.
One may be tempted to check if C;® K, n 2 6, is a counterexample to
Conjecture 1; but this is not the case. We show that the graph C;®X, n 2 6,
contains a spanning plane triangulation.

At the end, we raise a problem on the nonexistence of plane
triangulation in certain class of graphs. If this conjecture is true, then this would
yield a class of locally hamilton cycle decomposable graphs in which no graph
has a spanning plane triangulation.

2. COUNTEREXAMPLES

Let G = C;® K, ( see Figure 1 ). We shall show that G is locally
hamiltonian and it does not contain a spanning plane triangulation as a
subgraph.

Let V(C;) = { uy uy, u, }, and let V(K,) = { vy, v}, v, v3 }. For our
convenience, we partition the vertex set of G as follows: X = { x; = () |0 13},
Y={y=@,v)|0<i<3}and Z={ z=(u, v;) |0 <i<3}. Clearly, by the
definition of the tensor product of graphs, X, ¥, Zand { x;, 5, %},0 < i< 3, are
independent sets of vertices of G (see Figure 1).

First we shall show that G is locally hamiltonian. Because of
symmetry, it is enough to show that the neighbour set of x; induces a hamilton
cycle in G[N(xy)]. Clearly, the neighbours of x, are y,, y,, ¥3, 2, 2, and z,.
The hamilton cycle in GN (x,)] is ¥,z,/525230), see Figure 1. This proves that
G = C; ® K, is locally hamiltonian. '

Next we prove that C,®K, does not contain a spanning plane
triangulation. If possible assume that M is a spanning plane triangulation of G.
As M is a spanning plane triangulation of G, M is 3-connected. Clearly,
by the definition of tensor product of graphs, the subgraph induced by ¥ v Z in
M, M[Y U Z]=H is a bipartite subgraph of M. As no two vertices of X are
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Here x, yi and 2 stand for (uo,t), (w, ) and (u,v), 0 i< 3,
respectively.
G = C,®K,
Figure 1

adjacent in M, the vertices of X should be in different faces of H in the plane
embedding of M, where we assume that the plane embedding of H is inherited
from the plane embedding of M. Consequently, number of faces of H should be
the number of vertices of X, that is 4, otherwise M would contain a face of
degree at least 4, which is not the case. Note that M can be reconstructed from
H by placing a vertex of X in M “inside” each face of H and joining it to all the
vertices of its boundary; in the sequel, we call this as “reconstruction of M from
H”. Clearly, H has exactly 10 edges, using Euler’s formula, that is, the number
of edges between Y and Z in M is 10. Similarly, we can show that the number of
edges between X and Y and, X and Z in M is 10 each.

First we claim that A has no face of degree 8. If H has a face of degree
8, then no vertex of X of M can be placed inside this face to reconstruct M,
as each vertex of G, and in particular vertices of X in M, has degree 6.
Thus degree of any face of H is either 4 or 6 as H is a bipartite graph. Next we
claim that H has no face of degree 4. For, if there exists a face f of degree 4 in
H, then the cycle bounding it must contain vertices having all the four suffixes,
namely, { 0, 1, 2, 3 } and hence no vertex of X = { x,, x,, x,, x, } can be placed

227



inside f to reconstruct M as x; is nonadjacent to both y, and z, 0 <i <3, in M.
This proves our claim. Thus H contains only faces of degree 6. Again,

Zd( f) = 2|E (H)| = 20, where d(f ) denotes the degree of the face fand F is
feF

the set of faces of H, a contradiction to |F| = 4 and d(f) = 6. This proves that
G = C,®K, has no spanning plane triangulation. Therefore, G = C,®K, is a
counterexample to the conjecture of Alabdullatif [1].

Next we shall prove that C;®K is also counterexample to Conjecture 1.

Let G = C;®K; (see Figure 2). We shall show that G is locally
hamiltonian and it does not contain a spanning plane triangulation.

Let ¥V (Cy) = { up, uy, u, } and let K) = { v, v, vy, V3, v; }. For our
convenience, we partition the vertex set of G as follows: X={x;=(u, v)|0<i<4 },
Y={y=@,v)|0sis4}andZ={z=(v)|0<i<4} Clealy, by the
definition of the tensor product of graphs, X, ¥, Zand { x;, ,, 7z}, 0 <i < 4, are
independent sets of vertices of G.

First we observe that G is locally hamiltonian. Because of symmetry, it
is enough to show that neighbour set of x, in G induces a hamilton cycle in
G[N(xp)]. Clearly, the neighbour set of xo is {¥), ¥ V3 Y4 215 22 23 24} A
hamilton cycle in G [N (xp)] is ¥\23052032V425y,. This proves that C,®K; is
locally hamiltonian.

Next we prove that G = C,®K; does not contain a spanning plane
triangulation. If possible assume that M is a spanning plane triangulation of G.
As M is a plane triangulation, M is 3-connected. Clearly, M[YUZ] = H is an
induced bipartite subgraph of M. As no two vertices of X are adjacent in M, the
vertices of X should be in different faces of H in the plane embedding of M,
where we assume that the embedding of H is inherited from the embedding of
M, see the proof of the previous counterexample. Consequently, number of faces
of H is same as the number of vertices of X; that is 5. As M is 3-connected and
X is an independent set of G, H cannot contain a cut vertex; for, if y; of H were a
cut vertex, then it must be incident with a face, say, f; of degree at least 4 in H.
As above, let x; the unique vertex of M inside fin the plane embedding of M then
{x;, ;} would be a vertex cut of M, a contradiction. This proves that H is
2-connected. Clearly, H has exactly 13 edges, using Euler’s formula, that is, the
number of edges between ¥ and Z in M is 13. Similarly we can show that the
number of edges between X and Y and, X' and Z in M is 13 each.
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Here x, yi and z stand for (u,v), (wi, 1) and
(uz,v)), 0 <1 < 4, respectively.

G = C;®8K;
Figure 2

First we claim that H has no face of degree 10. If there exists a face of
degree 10, no vertex of X in M can be placed “inside” this face to reconstruct M, as
each vertex of G has degree exactly 8. Next we claim that A has no face of degree
8. Suppose there exists a face f; of degree 8, then the vertices of the cycle bounding
the face should have the suffixes in the set { 0, 1, 2, 3, 4 Mi}l0<i<4, for
otherwise, no vertex of X can be placed “inside” the face f; to reconstruct M.
Without loss of generality we assume that y,z,),z.,252,y, is the cycle bounding the
face fop of H. As Zd(f) = 2|E(H)| where d(f) denotes the degree of the face fin H

feF
and F is the set of faces in the bipartite graph H, we have

49,+6p,+8p,=26and Y @, = 5 2.1)
i=4,6,8
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Figure 3(a)
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Figure 3(b) Figure 3(c)

where @, denotes the number of faces of degree i in H. Since H is a bipartite
graph and it has exactly 5 faces, the equation (2.1) has a unique solution,
namely, @; = 1, s =1 and ¢, = 3. Then H must be isomorphic to the graph of
Figure 3 (a) and the labels of the vertices of H must be as in Figure 3(b) or 3(c).

Then either y, is common to both the boundaries of the four degree
faces of H (see Figure 3(b)) or z, is common to both the boundaries of four
degree faces (see Figure 3(c)). In the first (second) case y, (z,) is adjacent to
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three consecutive zs (y;'s), mamely, z, z,, and z,, (v, y;,, and y;,)).
Consequently, boundary of every face of H contains either z;,, or y,,,. Thus x;,,
cannot be placed inside any of the faces of H to reconstruct M, a contradiction.
Hence @ 3 =0, and therefore equation (2.1) can be rewritten as follows:

D d(f) =2/E@)|
feF
4p,+6¢p=26,and p,+ ps=35 22

The equation (2.2) has a unique solution, namely, ¢, =2 and ¢, = 3.
The possible 2-connected bipartite graphs with bipartition (4, B) with |4] = |B| =
5and ¢, =2 and ¢ ; = 3 are shown in the list of graphs of Figures 4, 5, 6 and 7.
Hence A must be isomorphic to one of these graphs of Figures 4, 5, 6 and 7.
We shall show that A cannot be reconstructed from none of the graphs in the
Figures 4, 5, 6 and 7. (The graphs of these figures have been obtained by
considering the number of vertices or edges in the intersection of the boundaries
of the two four degree faces of H).

First we consider the graphs 1 to 15 of Figure 4. If H is isomorphic to
any one of the fifteen graphs, then in each of them there are faces of degree
4 and 6, say, F, and F, respectively, such that the vertex set of the
cycle bounding F, is contained in the vertex set of the cycle bounding F,.
Observe that the suffixes of the vertices of the cycle of length 4 bounding F,
shouldbe {0,1,2,3,4 \N{i}0<i<4. As{0,1,2 3,4 })\{i}iscommon
suffixes of the vertices to both the faces of F| and F>, x, is the only vertex that
can be placed inside both F| and F, to reconstruct M from H, which is
impossible.

Next we shall prove that M cannot be reconstructed from H, if H is
isomorphic to the graphs 16 to 23 of Figure 5.

First we observe that di(y,z) 2 3, 0 <i< 4. Further, anyy,—z, 0<i<4,
path in H is of odd length and diameter of H is 4, implies dy(y,z) = 3. Without loss
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of generality assume that y, is fixed as shown in the graphs 16 to 23. Then z;
must be as marked in the graphs of Figure 5 as dy(y,z;) = 3 (if there are two
labels z;, then they are possible representatives for z;). But all the faces of H are
incident with at least one of these two vertices y; and z. Hence x; cannot be
placed inside any of the faces of A to reconstruct M.
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Figure 5

Next we shall show that M cannot be reconstructed from H, if H is
isomorphic to graphs 24 and 25 of Figure 6.

Z. z,

(zj)zi Y
24 25

Figure 6
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If we fix y; as shown in the graphs of Figure 6, then there are two choices for z;
(as dy(y,z) = 3). Having these choices for z;, fix another vertex y; as shown in
the graphs of Figure 6. This uniquely fixes z; in graph 24 but two vertices in
graph 25 have the choice for z; also. In either case, all the faces of H are
incident with the vertices in {y;,2;} or {);,z}. Consequently, x; or x; cannot be
placed in any of the faces of H to reconstruct M from i.

Finally we show that H cannot be isomorphic to the graph 26 of Figure 7.

Yi

26
Figure 7

Clearly, the vertices of the subgraph K, , in the graph of Figure 7 must
have all suffixes in {0, 1, 2, 3, 4}. As a consequence, the suffixes of the vertices
of the path P in the graph (see Figure 7) must be {0, 1, 2, 3, 4}. Thus the
vertices of the exterior face have the suffixes 0, 1, 2, 3, 4. Hence no vertex of X
can be placed in the exterior face of H to reconstruct M from H.

Thus we conclude that M cannot be a spanning plane triangulation of
G = C,®K,. This completes the proof. B

One may be tempted to see if there is a spanning plane triangulation in
C,®K,. Infact, we can find a spanning plane triangulation in C,®K,. Asin the
previous cases we write the vertex set of C;®K, as X = { Xo,X| X3 X3, XeXs b
Y= { yoliVabsVays } and Z = { 20,2),25,25,2,75 }. With this vertex set we give
below a spanning plane triangulation of C,®X.
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A spanning plane triangulation in C; ® K.

Figure 8

Next we present a general construction for the existence of a spanning
plane triangulation in C;®K, n> 7.

In the case when n = 0 (mod 3), we consider the array of numbers
together with x, y and z as shown in (a) below:
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o WO X
N h -
0 o NN

n-3 n-2 n-1

2 0 1
5 3 4
8 6 7

n-1 n-3 n-2

1 2 0
4 5 3
7 8 6

n-2 n-1 n-3

(a)

[« 7S I =
N h e
0 U NN

0
2 3 4
G) 6 7
8 9 10
n-2 n-1 0
1 2 3
4 5 6
7 8 9

n-3 n-2 n-1

()

x Yy z
0 1 2
3 4 5
6 7 8

n-2 n-1 0
1 2 3
4 5 6
7 8 9

n-1 O 1
2 3 4
S 6 7
8 9 10

n-3 n-2 n-1

(c)

We take the rows as suffixes of x, y and z in order, for example,

namely x,, y, and z,.
triangulation.
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the first row corresponds to xo, ¥, and z, the vertices of the innermost cycle Cy
(see for example, Figure 8). The next innermost C, is based on the second row,
Proceed further to construct a spanning plane
Similarly we can find spanning plane triangulation in the cases
n=1 (mod 3) and n=2 (mod 3) using the arrays (b) and (c).



Finally, we raise the following problem.

Problem. If G has no spanning plane triangulation as a subgraph, then
G* K, where K, denotes the complement of K, and n 2 3, does not contain a
spanning plane triangulation as a subgraph.

If this problem is true, then this will give families of infinitely many
locally hamiltonian graphs not admitting a spanning plane triangulation by
taking G = C,®K, or G = C,®K.

If the above problem is true, then H, = (C,®K,)* K,, n 23, is a
locally hamilton cycle decomposable graph since the subgraph induced by a
vertex of H, is isomorphic to Cg K, which is hamilton cycle decomposable,
see [6]).
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