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Abstract

One of the most important problems of coding thecry is to construct
codes with the best possible minimum distance. The class of quasi-cyclic
codes has proved to be a good source for such codes, In this paper,
we use the algebraic structure of quasi-cyclic codes and the BCH type
bound introduced in {17] to search for quasi-cyclic codes which improve
the minimum distances of the best-known linear codes. We construct 11
new linear codes over GF(8) where 3 of these codes are one unit away
from being optimal.
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1 Introduction

In this paper we apply similar methods introduced in [21) on quasi-cyclic codes
over GF(8). We begin with the basic definitions of linear codes and g0 over some
well-known properties of quasi-cyclic codes. Then, we give an example that
explains the search method applied for constructing new codes. We conclude by
giving the parameters, generator matrices and Hamming weight enumerators of
new linear codes.

Let Fy (or GF(g)) be a finite field of order g. A linear code C of length n over
F, is a vector subspace of V := F7. The elements of C are called codewords.
The (Hamming) distance d(u,v) between two vectors u = (uj,... yUp) EV
and v = (vy,... ,v,) € V is defined by

d:VxV Ny

where d(u,v) := |[{i : u; # v;}}, No = NU {0} and N is the set of positive
integers, d is a metric on V. The minimum distance between distinct pairs of
codewords of a code C is called the minimum distance of C and denoted by
d(C) or simply d.

Definition 1.1 A vector subspace C of Fg of dimension k and d(C) = d is
denoted by [n, k,d],.
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Another important notion is the (Hamming) weight of a codeword u which is
defined by w(u) = |{i|u; # 0}}, i.e. the number of the nonzero entries of u. The
minimum weight w(C) of a code C is the smallest possible weight among all its
nonzero codewords. We observe that if C is a linear code then d(C) = w(C).
The Hamming weight enumerator, Wc(y), of a code C' is defined by

We(y) = Y v*™ = ZA ¥ ()

ueC

where A; = |[{u € Clw(u) = i}| i.e. the number of codewords in C with weights
equal to 1.

The smallest nonzero exponent of y in We(y) is equal to the minimum
distance of the code.

A linear code C is called a t-error correcting code if ¢ = |[45!], where
d = d(C). One of the important problems of coding theory is to construct a
linear code over a finite field F; that has the largest possible minimum distance
for a fixed length n and dimension k.

2 . Quasi-Cyclic Codes

Definition 2.1 A linear code C over a field F is called an l-quasi-cyclic (1-QC)
code if and only if any codeword in C after a cyclic right shift of { positions is
still a codeword in C.

Quasi-cyclic codes form an important class of linear codes which also include
cyclic codes (I = 1). These codes meet a modified version of Gilbert Varshamov
bound unlike many other classes of codes, {16]. Recently, there has been much
research on quasi-cyclic codes. Many record breaking quasi-cyclic codes over
finite fields of orders 2,3,4, 5,7,8, and 9 have been discovered. Most can be
fg‘ll]nd in [9], {10}, (11, [12), [15), [24], [1), [22], [14}, (5], [6),[13], [7}, [8}, [3], and

Tet
g0 g 92 .- Im-1
Im-—1 go a --- Im-2
Go=| 9m-2 9m-1 90 ..o 9m-3 |, ()
9N g g3 ... g0

An (m x m) matrix of the type G is called a circulant matrix of order m or
simply a circulant matrix.

If a code C, can be obtained from another code C; by permuting the co-
ordinate positions, then C; is said to be (permutation) equivalent to C. It is
shown in [23] that the generator matrices of QC codes can be transformed into
blocks of circulant matrices by suitable permutation of columns.
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Since a code C is I-QC if and only if it is (I,n)-QC [7], (({,n) denoting the
greatest common divisor of n and [) we will assume, without loss of generality,
that {|n, so that n = ml for some integer m. Note that if ({,n) = 1, the code is
cyclic.

Similar to the cyclic code case, an I-QC code over F, of length n = ml can
be viewed as an Fylz]/(z™ — 1) submodule of (F,[z]/(z™ — 1)). Then an r-
generator QC code is spanned by r elements of (Fy[z]/(z™ — 1))'. 1-generator
QC codes have proven to be more suitable for constructing new codes, so, we
restrict our search to 1-generator QC codes.

1-Generator QC codes and their structural properties have been studied in
[20] and [4}, respectively. Recently, in [17] the structure of r-generator QC codes
has been investigated by use of Grdbner basis.

Let 1 < i< L. For a fixed i consider the following i** restriction map on
an [-QC code C of length n = mi:

nc' : (c(l)o- .. !c(ml)) -
(c(t + (¢ —1)m),... ,c(m + (i — 1)m)).

In view of the result in (23] cited above, II;(C) is a cyclic code for all i.
A well-known result regarding the 1-generator QC codes is the following:

Theorem 2.1 [20/17] Let C be a 1-generator I-QC code over F, of length
n = ml. Then, a generator g(x) € (Fyz]/(z™ ~ 1))! of C has the following

form
9(z) = (fi(z)91(z), f2(2)g2(2), ... , filz)ge(x)),
where gi(z)|(z™ ~ 1) and (fi(z), (=™ - 1)/gi(z)) =1 forall 1 < i <.

The following theorem which plays an important role in our research has
been introduced in [17] also an alternative proof to this theorem is given in [21).

Theorem 2.2 [17] Let C be a 1-generating I-QC code of length n = ml with
the generator of the form:

9(z) = (f1(z)g(), f2(z)g(2),. . . , fi(z)g(z)) @3
where g(z)|(z"™ ~ 1), 9(z), fi(z) € Flz]/(z™ - 1), and (fi(z), Z5) =1 for all
1 <3 <l Let e denote the largest consecutivity among the ezponents of the
primitive mth root of unity that are roots of g(z). Then,

l-(e+1) <d(C), (4)
and dimension of C is equal to n — deg(g(z)).

We have restricted our research to 1-generator QC codes with generators of

the following form:
(g(x)s f?(z)g(z)v K vfl(x)g(r))’
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In most cases we have taken ! = 2. For small dimensions our search for
2-quasi cyclic codes is almost exhaustive. In order to refine the search we have
worked with good g(z)’s, i.e. g(x)’s which give reasonably high minimum dis-
tances due to the Theorem 2.2. When choosing g(z) we have compared the
BCH bound (Theorem 2.2) with the best-known codes (table of A.E. Brouwer).
Having chosen m and g(z), we search for f;(z), in case [ = 2 it is only one
f(z) with deg(f(z)) < m — deg(g(z)) and in this case the search is exhaustive
if dimension is not too large. Depending on the degree of g(z), we obtain im-
provements on minimum distances for some dimensions. We wrote a program
in C** to search for f;(z)’s.

Let a be a primitive element of F§ = Fg — {0} where we take a to be a root

of mq(z) = 28 + z + 1 over F,. In order to save space, we use the following
notation for the elements of Fg :

Fg = {8 = 2222 4 2 4 qq|B = ag + a1 + @202, a; € F; and m,(a) = 0}.

We explain the search method with the following example:

Example: We take m = 9. The degree of the splitting field of z° — 1 over
GF(8) is 2 (that is the multiplicative order of 8 mod 9), and p{z) = z° +z°+1
is a primitive polynomial of degree 6 over GF'(2). Let 3 be a root of p(z) which
is & 63-rd primitive root of unity. Hence, 87 is a 9t primitive root of unity.

8
2® -1 =[]~ (")
=0
Let ¢!, denote the cyclotomic coset of 8 mod 9 containing a. Then, the
cyclotomic cosets of 8 modulo 9 are

do = {0},¢cly = {1,8},¢ly = {2,7},cl3 = {3,6}, and cl; = {4,5}.

We pick clp and ¢} to form the polynomial g(z) = 2® + 522 + 5z + 1 € Fglz].
Thus, the 3-QC code generated by

(9(=), fi(2)g(x), fa(x)g(z))

where fi(z) = 4z + 2 + 52* + 2°, and fa(z) =2 + 7z + 32% + 228 + 2% + 25,
has minimum distance at least 9 and dimension 6 by Theorem 2.2. As it is
apparent from the cyclotomic cosets, this choice is the best possible for forming
a polynomial of degree 3 that has the largest consecutivity among the exponents
of its roats. Actually, this code has minimum distance 18 and improves the
minimum distance of the best-known linear codes for this particular length and
dimension.
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3 The generator matrices and weight enumer-
ators of new codes

Since a generator matrix of a 1-generator QC code is determined by the first
row alone, we give only the first rows of generator matrices, where the blocks
will be separated by a comma.

In the representation of the Hamming weight enumerator, W (y), the bases
will correspond to the weights of codewords and the exponents will correspond
to the number of codewords having that particular weight.

1. A [26,4,20]s 2-QC code:

(1327337231000, 024213031242).
The weight enumerator of this code is
012059721 3842254631093 9472895728
2. A [28,4,22]3 4-QC code:
(7201000, 15464261, 0415156, 6740624).
The weight enumerator of this code is
012998194137296161798175
8. A [27,6,18]3 3 QC code:
(155100000, 264274001, 043747201 ).
The weight enumerator of this code is
01181185 127729825391 175149933327 93519120 46237050274 927342977224
4. A [30,6,20]s 2-QC code:
(110011100100000, 342672011614371).
The weight enumerator of this code is
(0120201691 84099462093126000 4211069537800966174097512409476700(18480314032
5. A [38,6,28]5 2-QC code:
(0017561772745140621, 1776072221245327701).

The weight enumerator of this code is

01 2855862971823014364 31 1915232400933350274 3451737 35388383624339377980381995 .
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6. A [42,6,29]5 2-QC code:
(032247041167114234361, 535527467201353475341).
The weight enumerator of this code is
010911763()13233 882304704 3388204 419698 3536582 3636603 3749392 3349088 3932340414700
41588049945
7. A [90,6,67]g 2-QC code:

(133355172345401674116751312273273473202100000,
340665256171230077614445150474244536276456121).

The weight enumerator of this code is
01 671336824569448 70868712184 72345! 7364407 410101 75157297620993 77270137830933
79330898032921 812126582'3098883142108487018539698617368753988168 8921 .
8. A [30,7,19]g code:
(100010111600000, 742170421325551).
The weight enumerator of this code is
01 1921002048302 1 133502237300238539024193935253‘39658264483502744373028332850
291623303041818.
9. A [38,7,26]g 2-QC code:
(1667136317661000000, 1761240637372342651).
The weight emumerator of this code is

01 262394 2795762825935294149630120882 31 208278 3227810333390222 34405384 35359898
3617728937460183825676 .

10. A [42,7,28]s 2-QC code:
(20771651120751100000, 0450172762371043240561).

The weight enumerator of this code is

01 281 8272958830808531 1 16133247481 337541 1 34176]“3521256236391 1673735133038399105
39215349401 5934841380154210864 .

11. A [30,8,18]s 2-QC code:
(100010110000000, 560656726647257).
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The weight enumerator of this code is

01 1 829401 99030 203255021 10600022307440237581002 41 5469652 525981202634734(”273807030
282721 18029131376030301700.

Remark: Among these new codes, it has come to our attention that recently
the codes # 3 and # 4 are also constructed independently in [25] and [2]. The
codes # 1, # 2 and # 5 are one unit away from being optimal.

Definition 3.1 The largest possible minimum distance for a linear code of
length n and dimension k over the finite field of order q is denoted by dg[n, k] »

Before we conclude with the main theorem we would like to point out that
by several methods such as puncturing or shortening these new codes, we obtain
further improvements on minimum distances.

Theorem 3.1
20 < dg[26,4] < 21, 22 < dg[28,4] < 23, 18 < dg[27,6) < 20,
20 < dg[30, 6] < 23, 28 < dg[38,6] < 29, 30 < dg[42,6] < 32,
70 < dg[90, 6] < 75, 19 < dgf30,7) < 22, 26 < dg[38,7) < 28,

28 < dg{42,7] < 32, and 18 < dg[30, 8] < 21.
Finally, we would like to thank the referee for his/her valuable suggestions.
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