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Abstract

We are studying clique graphs of planar graphs, K(Planar), this
means the graphs which are the intersection of the clique family of
some planar graph. In this paper we characterize the K3 — free and
Ky — free graphs which are in K (Planar).

1 Introduction

Let G be a simple finite undirected graph. The clique graph of G, denoted
by K(G), is the intersection graph of the family C(G) of cliques of G.

G is a clique graph if there exists a graph H such that G = K (H). The
complexity of the recognition of clique graphs is an open problem [7.
Given a class Class of graphs, denote by K(Class) the class containing
exactly the clique graphs of the graphs in Class. Over the last decade, many
papers appeared characterizing and solving the recognition problem for
clique graphs of different classes of graphs [7]. We are studying K (Planar),
where Planar is the class of graphs admitting an embedding in the plane.
This paper contains a characterization of the K3 — free and Ky — free
graphs in K (Planar). Although one could expect for a full characterization
to be presented, this problem may not be easy. In fact, as it has been
remarked by the referee, one of the positive aspects of the present paper is
to reveal that characterizing clique graph of planar graph may not be that
simple.

Let us introduce the matter in the following way: a first step to know if a
given graph belongs to K (Planar) could be checking if the given graph is
or not a clique graph. But, so far there is no polynomial time algorithm
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to recognize clique graphs. However, if the given graph is K4y — free the
problem becomes easier because a K4 — free graph is a clique graph if
and only if it is a Helly graph [4] and Helly graphs have polynomial time
recognition [6]. Hence given a K4 ~ free graph G, to determine if G €
K(Planar), first we can check if G is a Helly graph. If it is not, clearly
G ¢ K(Planar). But, if it is, there exist infinite different graphs H such
that G = K(H), then the problem is to show when at least one of these
graphs H is planar, or in other case to show that none of those graphs H
is a planar graph.

Notice that if G is a K4 — free Helly graph and K(H) = G then H is
a Helly graph (if H is not a Helly graph then H contains four pairwise
intersecting cliques), thus K(K(H)) = K(G) is a subgraph of H [1]. It
follows that G € K(Planar) implies K(G) € Planar. The converse is in
general not true. However we have described extra conditions that lead to
a complete characterization of K, — free graphs in K(Planar). On the
other hand we show that for K3 — free graphs the converse is true without
extra conditions. Then a K3 — free graph comes (through K') from a planar
graph if and only if it goes (through K) to a planar graph. We use a result
about line graphs to characterize these graphs.

2 Definitions and previous results

We consider finite, undirected and simple graphs. V(G) and E(G) denote
respectively the vertex set and the edge set of the graph G. A complete of
G is a subset of V(G) inducing a complete subgraph. A clique is a maxi-
mal complete. We also use the term clique referring to the corresponding
subgraph. If v € V(G) the closed neighborhood of v, N[v], is the set of all
vertices adjacent to v, and v. We say that v is dominated if there exists
another vertex u # v such that N[v] C N[u]. An edge with endvertices u
and v is denoted uv. We say that G is a supergraph of H if H is a subgraph
of G.

The union of two graphs G; and G; is the graph G; U G2 satisfying

V(G1UG,) = V(G1)UV(G) and E(G1 UG2) = E(G1) U E(G2).
If T C E(G), G — T denotes the graph such that
V(G-T)=V(G) and E(G-T) = E(G) -T.

Given a set family F = (F)ie1, we call members the sets F; and elements
the elements of Ujcs F;. The family F has the Helly property or is a Helly
family, if any pairwise intersecting subfamily has nonempty total intersec-
tion. We say that the family is separating when for each pair of elements
u and v, there is a member F, such u € F, and v ¢ F,,. Notice that it is
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equivalent to say that for every element u the intersection of all members
containing u is the set {u}. The union of two set families F = (Fi)ier and
F' = (Fj)jey is the set family

FUF = (Fy)serol-

If G is a graph, C(G) denotes the clique family of G. G is said to be a Helly
graph if C(G) is a Helly family. Let Helly be the class of all Helly graphs.
The intersection operator, L, maps a set family F = (F;);es into the graph
L(F) satisfying

V(L(F)) = {Fi,i € I} and E(L(F)) = {FiFy /F; N\ Fy # 0}.
Notice that the members of F and the vertices of L(F) are named in the
same manner. The clique graph of G, denoted K'(G), is the graph L(C(G)).
G is a cligue graph if there exists another graph H such that G = K(H).
If Class is a class of graphs, then K(Class) = {K(G) /G € Class}.
An R-S8 family of a graph G is a family of completes of G, covering the edges
of G and with the Helly property. An E-R-S family of G is a separating
R-S family.
The followings are known results about clique graphs that we use in the
next section:

o K(Helly) = Helly [1).
® G is a clique graph if and only if there exists an R-S family of G [4] .

o If C is a clique of G with at most three vertices, and F is an R-S
family of G, then C is a member of F [4).

e G = K(H) if and only if there exists an E-R-S family of G such that
H = L(F) [2).

It is said that a graph is planar if it can be drawn in the plane, in
such a way that no two edges intersect except at an endvertex in common.
Let Planar be the class of all planar graphs. A graph G’ is said to be
a subdivision of a graph G if G’ is obtained from G by subdividing some
of its edges, that is, by replacing the edges by paths having at most their
endvertices in common. Kuratowski’s theorem gives a characterization of
planar graphs in terms of forbidden subgraphs: A graph is planar if and
only if it does not contain a subdivision of Kj or K33 [3, Kuratowski’s
theorem)].

3 The main results
The following theorem describes a total characterization of the K, — free

graphs which are the clique graph of a planar graph. The simple lemma
below is used in the proof of the theorem.
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Lemma 1 Let G be a graph and (H;);e; a family of connected subgraphs of
G. The intersection graph L(F) of the family F = (V(H;))ies is connected,
if and only if U;er H; is connected.

Theorem 1 Let G be a Ky — free cliqgue graph. G € K(Planar) if and
only if the following three conditions are satisfied

(1) K(G) is planar.
(2) Every edge of G is in at most 3 cliques of G.

(3) If an edge uwv of G is in 3 cliques of G: A = {u,v,a}, B = {u,v,b}
and C = {u,v,c}; and T is the set of the edges of the cliques of G
containing u or v, then the vertices a, b and c are not in the same
connected component of G-T.

Proof: Since G € K(Planar), there is a planar graph H such that G =
K(H). Let F be an E-R-S family of G satisfying L(F) = H.

Since G is Ky — free, C(G) is a subfamily of F , then L(C(G)) = K(G) is
an induced subgraph of L(F) = H. This prove that K(G) is planar.
Suppose there is an edge uv of G in four different cliques. Since F is
a separating family, it must contain a member F, such that u € F, and
v ¢ F,. Since the four cliques and F, are different members of F, and all of
them contain the vertex u, their intersection generates a Ks in L(F) = H.
This contradicts the planarity of H. We have proved that every edge of G
is in at most three cliques.

We will prove (3) by contradiction. Suppose (3) is not true, then there
exists an edge uv in three cliques of G: A = {u,v,a}, B = {u,v,b} and
C = {u,v,c}; and the vertices a, b and ¢ are in a same connected component
X of G = T, where T is the set of the edges of the cliques of G containing
w or v. Notice that if e € E(G — T') and e is an edge of a clique C then

ugC andvgC 49)

Since F is a separating family, it must contain a set Fy, such that u € F,, and
v € F, and another set F, such that v € F, and u ¢ F,. The intersection
of the three cliques A, B, C and these two sets generate in H = L(F) the
subgraph S of the Figure 1 which is planar, but we will prove that there is a
supergraph of S in L(F) (it means in H) which is not planar because it has
a subdivision of K3 3. More precisely, we will show that there is a subgraph
S’ of L(F), connected and disjoint from S, which contains vertices adjacent
to 4, B and C. Thus clearly there is a subdivision of K3 3.

Let Cx = (Ci)ies be the family of cliques of G, containing any edge of the
connected component X. Cx is a subfamily of F, then S’ = L(Cx) is an
induced subgraph of L(F).
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If Ci is a member of Cy, by definition of Cx and (I), C; does not contain u
or v, then C; is not 4, B, nor C, and it is not F, neither F,, in case these
sets are cliques of G. It follows that S’ and S are disjoint subgraphs.
On the other hand every C; and U;¢;C; are connected then, by the previous
lemma, §' = L(Cx) is connected. We have proved that $' is a connected
subgraph of H disjoint from S. Now, since a, b and ¢ are vertices of the
connected component X, there exist edges of X incident to those vertices,
then there are members of Cx containing a, b and c. Clearly these members
of Cx are vertices of S’ adjacent in L(F) to A, B, and C respectively, then
the proof follows.
B

Fig.1: Subgraph S of H = L(F)

To prove the converse let G be a K4 — free clique graph, then G is a Helly
graph, so C(G) is an R-S family of G. Let Dom(G) = {uy, us, ..y Uz} be the
set of dominated vertices of G, clearly the family F = C(G)U({u;}) L<i<s 1S
an E-R-8 family of G [2], then H = L(F) is a graph such that G = K (H).
We will prove that if (1), (2) and (3) are satisfied, H is a planar graph.
Exactly we will prove by induction that for every j, 0 < j < s, the graph
H; = L(F;) is planar, where

Fo =C(G) and, if j > 0, F; = C(G) U ({ui})1<i<j)

The proposition is true when j = 0, by (1) and Hy = K (G). Suppose
that for a given I — 1 > 0, H,_; is planar, then we will prove that H; is
also planar. Clearly H; is the planar graph H;_, plus a new vertex {u}
adjacent only to all those cliques of G containing the dominated vertex w;.
Let us show that these cliques are at most three. Since u; is a dominated
vertex, there exists a vertex v # w such that N[w)] C N[v]. It follows that
the edge vy, is in every clique containing v, then by (2), w; is in at most
three cliques. Now, let us consider separately the case when v, is in one or
two cliques and the case when u; is exactly in three cliques of G.

If 4 is in one or two cliques of G, to obtain H; we have to add to H_,
the vertex {w} adjacent only to one vertex of H;_; or adjacent to both
extremes of an edge of H;_,, then is clear that H is planar if H;_, is so.
If w is in three cliques of G, these cliques must be triangles because G is
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K, — free, so we can denote these cliques A= {w;,v,a}, B= {w;,v,b} and
C= {u;,v,c}. If H;_; admits a planar representation with the triangle A,
B, C forming a face, we can add to H;_, the vertex {u;} in the center of
that face and do {w;} adjacent to A, B and C maintaining planarity. If
there is not such representation we will prove in the following that (3) is
contradicted, i.e. we will prove that a, b and ¢ are in a connected subgraph
of G — T, where T is the set of the edges of the cliques of G containing u;
or v.

If H;_, does not admit a planar representation with the triangle A, B,
C forming a face, it must be because in H;_, there are disjoint induced
subgraphs S and S’, not containing the vertices A, B or C, and containing
vertices adjacent to A, B and C, as it is shown in Figure 2.

B

Fig.2: The graph H_, = L(}-[..l)

It is clear that the vertices of S and S’ are members of F;_,. Since u; is
not in a member of F;_; except A, B and C, and since v is in A, B,C and
in at most one other member of F;_,, we can assume that:

the vertices of S’ does not contain u; or v 1)

Call F' the subfamily of Fi_; such that L(F') = S'. Since each member
of the subfamily F' is the vertex set of a connected subgraph of G, and
since S’ = L(F') is connected, by the previous lemma, the union of those
subgraphs is a connected subgraph of G, call X that union. Then we have
proved that X is connected. We have to show that a, b and c are vertices
of X. In S' there is a vertex adjacent to A = {u,v,a}, by (II) that vertex
contains a, thus by definition of X, a is a vertex of X. In a similar way we
prove that b and ¢ are vertices of X.

Finally we will prove that X is a subgraph of G—T. Let e be an edge of X,
this means e is an edge of a clique of G such that its vertex set is a vertex
of §’. Clearly the endvertices of e are not u; or v. It follows that e is not
in a clique containing u; since the only cliques containing that vertex are
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A, B or C. For the same reason, if e is in a clique containing v, this clique
must be a vertex of S, and then there is a vertex of S adjacent to a vertex
of §'. This is not possible since H;_; is planar. a

Corollary 1 Let G be a K4 — free clique graph. Denote by F the family
C(G) U ({u})uepom, where Dom is the set of dominated vertices of G.
G € K(Planar) if and only if L(F) is a planar graph.

3.1 K3 - free Graphs

Any K3 — free graph is a Helly graph, so any K3 — free graph is a clique
graph. On the other hand if G is a K3 — free graph then G satisfies
immediately the second and third hypothesis of the preceding theorem, so
if G is K3 ~ free, G € K(Planar) if and only if K(G) is planar. Notice
that for a K3 — free graph G, K(G) is the line graph of G, this is the
graph L(A(G)) where A(G) is the family of the endvertices of the edges of
G. Thus, we use the result in [5] to prove the following theorem:

Theorem 2 Let G be a K3 — free graph. The following three statements
are equivalent

1. G € K(Planar).
2. K(G) € Planar.

3. (a) G € Planar,
(b) Every vertex of G has at most degree four, and
(c¢) If a vertex of G has degree four then it is a cut vertez.

4 Comments

4.1 Some graphs not in K(Planar)

Using the results of the previous section, we show that none of the graphs
of the Figure 3 are in K (Planar).

G\ is K3 — free and it has a vertex in four cliques which is not a cut vertex,
so G, € K(Planar).

G2 is K4 — free and K(G.) is non planar so G, ¢ K(Planar).

K(G3) is planar but G3 has an edge in four cliques so G3 ¢ K(Planar).
K(G4) is planar too, and every edge is in at most three cliques, but there
is an edge in exactly three cliques and the vertices a, b and ¢ do not satisfy
the third hypothesis of Theorem 1 so G4 ¢ K(Planar).
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G, Gs

G2 G4

a

Fig.3: Some graphs not in K(Planar).
The following interesting result is easily deduced from Theorem 2:

If G is a K3 — free non planar graph, then
K(G) € Planar and G € K(Planar),

K3 3 is an example of such a graph .

4.2 Complexity

The conditions stated in Theorem 1 can be verified in polynomial time. The
same applies for the construction of L(F) as well as for checking planarity.
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