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Abstract

Orthogonal designs and their special cases such as weighing ma-
trices and Hadamard matrices have many applications in combina-
torics, statistics, and coding theory as well as in signal processing.
In this paper we generalize the definition of orthogonal designs, we
give many constructions for these designs and we prove some mul-
tiplication theorems that, most of them, can also be applied in the
special case of orthogonal designs. Some necessary conditions for the
existence of generalized orthogonal designs are also given.
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1l Introduction

In this section we give some basw known facts and definitions on orthogonal
designs that are necessary for our approach in generalized orthogonal de-
signs. Then we present the generahzed orthogonal designs and some other
definitions we shall need.
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An orthogonal design of order n and type (s1,S2,...,84) (8i > 0), de-
noted OD(n; sy, 82, ...,84), on the commuting variables z1,Z2,...,Zy I8
an n X n matrix A with entries from {0, £z, £z,,...,
+z,} such that

AAT = () sizd)n
i=1
Alternatively, the rows of A are formally orthogonal and each row has
precisely s; entries of the type £z;. In [1], where this was first defined, it
was mentioned that

ATA= () sz,
i=1
and so our alternative description of A applies equally well to the columns
of A. It was also shown in [1] that u < p(n), where p(n) (Radon’s function)
is defined by p(n) = 8c + 2%, when n = 2%, bodd, a =4c+d,0<d <4
see [3]. An orthogonal design is said to be full iff it contains no zeros.

Example 1.1 The following matriz D = OD(4;1,1,1,1) is an orthogonal
design of order 4 and type (1,1,1,1).

a b ¢ d
D= OD(4; 1,1,1, 1) = ° —Z Z _:
—-d c =b a

A weighing matrix W = W(n, k) is a square matrix with entries 0, +1
having k non-zero entries per row and column and inner product of distinct
rows zero. Hence W satisfies WW7T = kI,,, and W is equivalent to an
orthogonal design OD(n;k). The number k is called the weight of W.
If k = n, that is, all the entries of W are +1 and WW7T = nl,,, then
W is called an Hadamard matrix of order n. In this case n = 1,2 or
n = 0(mod 4).

A set of matrices U§=1{Bj}’ is said to be disjoint if B; * B; = 0 for all
i#3j, i, =1,2,...,€ where * denotes the Hadamard product.

Let A= {Aj : Aj = {ajl,ajg,...,aj,,}, i=1,... ,e}, be a set of £ se-
quences of length n. These sequences is said to be a set of disjoint sequences
if the set of the corresponding circulant matrices B; = Uj{circ(4;)},
j=1,...,¢ is disjoint.



The non-periodic autocorrelation function N4 (s) (abbreviated as NPAF)
of the above sequences is defined as

n—3s

[4
NA(S) = ZZaj;aj,,-.,.s, 8 = 0, l, wyn—1, (1)

i=1i=1

If Aj(2) = aj1 +aj2z + ... + ajnz™"? is the associated polynomial of the
sequence A;, then

£ n o n

£ n—-1
ARAGET) =337 anauaTF = Na(0) + DY Na(s)z® +27°).

=1 i=1 k=1 =1 s=1
(2)

Given Aq, as above, of length n the periodic autocorrelation function Py(s)
(abbreviated as PAF) is defined, reducing i + s modulo n, as

& n
PA(S) = Z Zaj,-aj,.-+,,, § = 0, 1, ey — 1. (3)
i=li=1

For the results of this paper generally zero PAF is sufficient. However
zero NPAF sequences imply zero PAF sequences exist, the zero NPAF se-
quence being padded at the end with sufficient zeros to make longer lengths.
Hence zero NPAF can give more general results.

Four (0,=1) disjoint sequences T}, T5, T3, Ty of length ¢ are called T-
sequences if they have NPAF=0. Four (0, 1) disjoint circulant matrices
11,73, T3, T, of order t are called T-matrices if they satisfy T1T1T + T2T2T +
TaTg‘ + T4TZ‘ = tl,.

Two (1,~1) sequences of length n are called Golay sequences iff they
have NPAF=0. For the undefined terms we refer to [2].

The following theorem which uses four circulant matrices is very useful in
the construction of orthogonal designs.

Theorem 1.2 /2, Theorem 4.49] Suppose there ezist four circulant matri-
ces A, B, C, D of order n satisfying

AAT + BBT 4 ¢CT + DDT = fI,
Let R be the back diagonal matriz. Then

A BR CR DR
—-BR A DTR -CTR
-CR -DTR A BTR
-DR CTR -BTR A

G =
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is a W(4n, f) when A, B, C, D are (0,1, —1) matrices, and an orthogonal
design

OD(4n; 51,52, .-,8,) ONZ1,Z2, ..., Ty when A, B, C, D have entries from
{0, £xy,...,tzu} and f = 37, (s523). 0

Corollary 1.3 If there are four sequences E, F, G, H oflengthn with
entries from {0, £z, txo, +x3, 14} with zero periodic or non-periodic au-
tocorrelation function, then these sequences can be used as the first rows of
circulant matrices (we write A = cire(E), B = circ(F), C = circ(G)
and D = circ(H)) which can be used in the Goethals-Seidel array to form
an OD(4n; sy, s2,83,84). We note that if there are sequences of length n
with zero non-periodic autocorrelation function, then there are sequences of
length n +m for allm > 0. 0

Orthogonal designs can exist under some necessary conditions. When
these conditions are not satisfied the orthogonal design cannot exist. For
example a full orthogonal design of order n cannot exist if n # 0( mod 4)
and n > 2 or n odd. Thus we were naturally led to the next generalization.

2 Generalized orthogonal designs

Definition 1 Let D be a matrix on the commuting variables z1,z2,...,T:
where each variable can appear (in each column or row) in the form +a;;z;,
t

i=1,2,...,tand j =1,2,...,u; and Eui = n, where ug is the number
=0 s
of zeros in each row or column. Set s; = za?j. Then D is a generalized

i=1
orthogonal design (in short GOD) iff

t
DDT = (Z s,»:v?) I,.
i=1
D will be denoted as

D = GOD(n;a1,1,a1,2; - - - y01,4,382,1, 82,2 - + + 1 82,35 - - + 108,1, C,2; - + - sty )-

Alternate notation of a generalized orthogonal design will be
D = GOD(n; < k11,8110 >1-000 < Klur@1uy > 50005 < ke1,aen1 >0,
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< kt,u,at,u, >) Where k;; denotes how many times the variable z; has
the coefficient a; ;. If k;; = 1 we write (...,a;;,...) otherwise we write

(...,< ki,j,a,-,- >,...).

Remark 2.1 Ifa;; =1foralli=1,2,...,t and j =1,2,...,u; then the
generalized orthogonal design GOD(n;a11,a12, . ..,G14,; - - . j8e1, @e2, - - -
aty,) is an orthogonal design OD(n; uy, u, . . ., u;). Thus orthogonal designs
are a special case of the generalized orthogonal designs we have defined
above,

Example 2.2 1. Let D = GOD(4;1,1;1;1). We have that n =4, u; =
2,U2 = I,U3 =1 and Q11 = Q)12 =0az) =az) = 1. Thus

a b a c
D=GOD(41,1;1;1) = | ~° _‘Z ;’ ‘“b =0D(4;2,1,1)
- a -b a

is an orthogonal design of order 4 and type (2,1,1).

2. As we mention above full orthogonal designs of odd order cannot exist
but this is not forbidden for full (with no zeros) generalized orthogonal
designs. The next matrix is a generalized orthogonal design of one
variable. In thiscasen =3,t=1,u; =3, a1 =2, a10 =2, a13 = 1.

Thus
26 20 b
D=]|-b 20 2

20 -b 2b

3
is a circulant GOD(4;2,2,1) and DDT = | 62 "a}; | I, = 9b?L,.
j=1

N——
S
Some necessary conditions for the existence of a generalized orthogonal
designs are given in the next theorem.

Theorem 2.3 Let D be a generalized orthogonal design of order n and type
(a1,1,81,2,...,81,u,;-- .} ae,1,8¢,2,- - -, 0eu,) ON the set of commuting vari-
ables {z1, 2, ..., ¢}, where each variable can appear in the form tair;, i=
L,2,....,0 and j =1,2,...,u;. Then £ < p(n).
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Proof. We write D in the form D = Dyxy + ... + Dyze where D; are
Ui

real or integer matrices of order n. Set s; = Za?'j. Using the fact that
i=1

¢
DDT = siz? I, we have that D;DT = s;I,,, i =1,2,...,¢ and
3

D;DT + D,-I;? = 0 for all i # j. If we replace integer matrices D; by
the matrices B; = (—\/%f) D;, then B; are real and orthogonal matrices
satisfying B,-BJT + B;BT =0 for all i # j, and Radon [3] had shown that
there are no more than p(n) such real matrices. This completes the proof.
O

Thus, generalized orthogonal designs (because of their orthogonality)
cannot have more variables than the upper bound that Radon’s function
gives.

3 Some Construction Theorems

The theorem of this section gives us many general construction methods
for generalized orthogonal designs. Some of them are a straight forward
generalization of the theorems given in [1] for orthogonal designs and some
other can only be applied in generalized orthogonal designs.

We use one, two or four suitable circulant matrices to construct circulant
generalized orthogonal designs and block circulant generalized orthogonal
designs.

Theorem 3.1 (The two circulant construction) Let A;, Az be two cir-
culant matrices of order n with entries of the form *a;;z;, i = 1,2 and
§=1,2,...,u;. where T1,, are commuting variables, satisfying

A1AT + A,AT = fI.

2
If f is the quadratic form Zs,-:z?, there exist uy,uz > 1 and aij, & =

i=1

i

1,2, j=1,...,u; such that s; = za?j then there is a generalized orthog-
5=1

onal design

GOD(2n;a11,012, - - - , 814,321,822, - - -  02u;)-
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Moreover if uy = ug = 1 and a;; = as) = 1 then there exist an orthogonal
design (special case) OD(2n;s1,82). If f is an integer then there ezists a
W (2n, ).

Proof. We use the matrices as follows

_ A As _ A,y AR
p-(lg i) o 2-(An W)

(n]

Corollary 3.2 If there are two sequences E, F, of lengthn with zero
periodic or non-periodic autocorrelation function, then these sequences can
be used as the first rows of circulant matrices (we write A; = circ(E) and
Ag = cire(F)) which can be used in the above arrays to form a

GOD(2TL; a11,Q12,..+,214,;021,8022,..., a2u2)'

We note that if there are sequences of length n with zero non-periodic auto-
correlation function, then there are sequences of length n+m for allm > 0.
0

Example 3.3 Using the sequences A and B as are given below in Corollary
3.2 we give some examples of full

GOD(2n;a11,a12, . . - ,01u,;821,822, - - - G20, )
1. A= {a,—a,-b} B = {2a,3a,—a} gives a GOD(6;1,1,1,2,3;1).
A = {a,3b,b} B = {—b,3b,—2a} gives a GOD(6;1,2;1,1,3,3).
. A={a,-2a,-2a} B = {b,—2b,—2b} gives a GOD(6;1,2,2;1,2,2).
. A={a,—2a,-3b} B = {a,2a,-b} gives a GOD(6;1,1,2,2;1,3).
A ={a,4b,—a} B = {3a,—a,2a} gives a GOD(6;1,1,1,2,3;4).

I T S

A={a,a,a,a,a} B={-3a,—-4a,a,—aqa,3a} givesa GOD(10;1,1,1,
1,1,1,1,3,3,4).

Theorem 3.4 Suppose there exist four circulant matrices A, B, C, D of
order n with entries from the set of commuting variables {x,z2, %, 4},
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where each variable can appear to the form *a;;z;, © = 1,2,3,4 and j =
1,2,...,u; satisfying

AAT + BBT + cCT + DDT = (I,
Let R be the back diagonal matriz and set

A BR CR DR
—BR A DTR -CTR

G=| _¢crR -DT™R A  BTR
-DR CTR -BTR A
2
Now if f is the quadratic form Zsixz?, there exist u1,ug,us,us > 1 and
i=1

u;
aij, 4=1,2,3,4, j=1,...,u; such that s; = Za?j then there ezist a
Jj=1
generalized orthogonal design GOD(4n;a11,a12, - - -, G1u, 3021, 022, - - -, Q2u,;
31,832, - . - » Q3u3}041, 842, - - - , Cdu, ). Moreover if uy = up = ug =uz =1
and @11 = gy = az1 = a4y = 1 then there exist an orthogonal design (spe-
cial case) OD(4n; s1, 82, 53, 84). If f is an integer there exists a W(dn,f). O

Proof. Observe that GGT = flsn. ]

Corollary 3.5 If there are four sequences E, F, G, H of length
n  with zero periodic or non-periodic autocorrelation function, then these
sequences can be used as the first rows of circulant matrices (we write A=
circ(E), B = circe(F), C = circ(G) and D = circ(H)) which can be used
in the Goethals-Seidel array to form an GOD(4n;a11,a12, - . - , 14,3021, @22,
ey 02uy3031,832, - - -  G3ug 3041, 342, - - -, Qdu,)- We note that if there are se-
quences of length n with zero non-periodic autocorrelation function, then
there are sequences of length n +m for allm > 0. 0

Example 3.6 Using Corollary 3.5 we give some examples of full
GOD(4n;a11,812, - « -y Gluyg; - - - 301, G225+ + + 5 Qtuy)

1. Sequences E = {a,b}, F = {a,b}, G = {a,b}, and H = {a,—3b} have
zero NPAF and thus gives a GOD(4(2+5s); < 4,1 >;< 3,1>,3), s =
0,1,....

40



2. Sequences A = {a;,1a,a2,1b}, F = {a3,1¢,04,1d}, G = {az,1a, —ay,,b},
and H = {a4,1¢, ~a3,1d} gives a GOD(4(2 + s); a11, 021; 011, 621 a3,
a41;031,841), s =0,1,....

Theorem 3.7 Let X, X3, X3,X,4 be four disjoint sequences of length t
with PAF=0 (or NPAF=0) and a,b,c,d are commuting variables. Then

X= aX,+bXs+cX3+dX, Y = —bX; +aX;+dX3—cX,
Z= —cX1—-dXo+aX3+bXy W= ~dX; + X3 - bX3+aX,

4 u;
have elements from the set {O}U U{:t:a:,-,ja, +xz; ;b, +x; jc, £z, ;d} and
i=1j=1
can be used for the construction of a generalized orthogonal design

GOD(4t;9;9;9; 9)

and g = Z1,1,-.. 1x1,u1 1 T2,1y 00 1:':2,112)13,1) . ’m3,u3)x4,ly ce 1 Thuy where
Zij, 1 =1,2,3,4, j = 1,2,...,u; are the non zero elements of sequences
X;, 1=1,2,3,4.

Proof. Set A = circ(X), B = cire(Y), C = cire(Z), D = cire(W) and
5= Z:r:?,j for all i = 1,2, 3,4. Then we have
J=1
4
AAT + BBT +CCT + DDT = (3 _sH)l.
i=1

and thus we can use theorem 3.4 to construct the desirable generalized
orthogonal design.

Exa.mple 3.8 Let T1 = {xl_l,0,0}, T2 = {0,.’1:2'2,0}, T3 = {0, 0,1‘3'3},
T, = {0,0,0}. This are four disjoint sequences of length ¢t = 3 and can be
used in theorem 3.7 to obtain a

GOD(12;z1,1, 29,2, 73,3, 1,1, 2,2, T3,3; T1,1, T2,2, £3,3)-

These sequences have NPAF=0. Thus (by adding p zeros at the end of each
of them) we obtain a

GOD(4(3 + p); 21,1, T2,2, T3,3; T1,1, T2,2, T3,3; T1,1, £2,2, T3,3).-
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Corollary 3.9 Let X1, X2, X3, X4 be T-sequences of length t (or the first
rows of T-matrices of ordert) and a,b,c,d are commuting variables. Then
if by, ba, ba, by are real numbers then

X = biaX;+bbXo+ bacX3 + badX4

Y= —bbX;+baXo+ bad X3 — bscXy
Z = —bgeX; —bzdXos+ b1aXs + bobXy
W = —bsdX; + bzeXs — bobX3 + biaXy

have elements from the set {+ba,=+beb, £bsc, +byd} and can be used for
the construction of a generalized orthogonal design

GOD(4t; < t,by >;< t,by >;< t,b3 >;<t,bs >)

Proof. Set A = cire(X), B = cire(X), C = cire(X), D = cire(X ). Then

we have
AAT + BBT + CCT + DDT = (nb%a? + nb3b® + nb3c® + nbid®)1,

and thus we can use theorem 3.4 to construct the desirable generalized
orthogonal design.

Example 3.10 Using T-sequences of length 3 :
X, ={1,0,0}, Xo={0, 1,0}, X3={0, 0,1} X4={0,0, 0}
we obtain the sequences
X = {a,2b,3c}, Y = {—2b,a,5d}, Z = {-3c,~5d,a}, W = {—5d,3c, —2b}

which, for all s =0, 1,... (we just add s zeros at the end of each sequence),
can be used to construct the corresponding circulant matrices and therefore
the desirable generalized orthogonal design

GOD(4(3+5);<3,1>;<38,2>;<3,3>;<3,5 >).

We give the full matrix of the GOD(12;< 3,1 >;< 3,2 >;< 3,3 >;<
3,5 >) we can construct from these sequences.
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[« 26 3¢ -2 e 5d -3¢ -5d a —-5d 3¢ -2b]
3c a 2b a 5d —-2b —5d a -3¢ 3¢ -2 -5d
2b 3c a 5d —-2b a a ~-3¢ -5d -2 -5d 3c
2b —a -5d a 2b 3c 5d 26 -3¢ -3¢ a —-5d
—a —5d 2b 3c a 2b 20 -3¢ 5d a -5d -3¢
—5d 26 -—a 2b 3c a -3¢ 5d 26 -5d -3¢ a

3c 56d —a -5d -=2b 3c a 2b 3c 2b -—bd a
5d -—a 3 -2 3¢ -5d 3c a 26 -5d —-a -2b
—a 3¢ 5d 3¢ -5d -2b 2b 3c a =—a 2b -5d
5d -3¢ 2b 3¢ —-a b5d -2 5d a a 2b 3c
-3c 26 5d -—a 5d 3c 54 a -2 3c a 2b

2b 5d -3¢ 5d 3 -a a -—2b 5d 2b 3e a

Example 3.11 Using the T-sequences of length 11

Xi={1,1 -1, 1, 0, 1, 0, 0, 0, O, 0 }

Xo = { 0, 0, 0, 0, 1, 0, 1, 1, -1, -1, O }

Xs={ 00 0 0 0 0, 0, 0, O, 0, 1 }

X4={ 0,0, 0 0 0 0 0, 0, 0 0 0 }
we get

X = {2q,2a,—2a,2a,3b, 2a, 3b, 3b, —3b, —3b, 5c}
Y = {3b,3b, ~3b, 35, —2a, 3b, —2a, —2a, 2a, 2a, —d}
Z = {5c¢, 5¢, —5¢, 5¢c, d, 5¢,d, d, —d, —d, —2a}

W = {d,d, —d,d, —5¢,d, —5c¢, —5¢, 5¢, 5¢c, 3b}

from which, for all s = 0,1, ... (just add s zeros at the end of each sequence),
we obtain GOD(4(11 +s); < 11,1 >; < 11,2 >; < 11,3 >; < 11,5 >).

Theorem 3.12 Set a;,; = "T‘zal,g. Then there ezist a circulant gener-
alized orthogonal design D of one variable and D = GOD(n; a1, < n-—
l,al,z >) = G’OD(n;am, a1,2y.. ,01,2).

Proof. Set D = circ(—ay,171,01,271,. . . ,a1,2Z1). Then

n—1 :a'mes
2
n
DD = [(a}; + (n — Vi oL = (G-,

and thus D is the required GOD(n;a1,1,< n —1,a; 2 >).
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Example 3.13 (i) Let n = 5. From the above theorem 3.12 we have that
D = circ(—3a1,171, 201,171,201,1%1,261,1%1,201,1Z1) is a circulant
one variable generalized orthogonal design GOD(5; 3a;,1, < 4,2a1,2 >).

(ii) Let n = 6. From the above theorem 3.12 we have that D = circ(
—2a,,171,01,171,01,1 71, a1,1Z1,01,1Z1,01,1Z1) is a circulant one vari-
able generalized orthogonal design GOD(6;2a4 1, < 5,a1,1 >)-

Theorem 3.14 Let Ty = {c1,¢2,...,¢n} and Tz = {dy,ds,...,dn} be two
disjoint sequences of length n with zero PAF (NPAF). Then the following
generalized orthogonal design exist:

(Z) GOD(2n;a1,a2,...,a,l,bl,bg,...,b,,;al,az,...,a.,l,bl,bg,... :bsg)
where a;,i =1,2,...,81 and b;,i = 1,2,...,82 are the non zero ele-
ments of Ty and T, respectively.

(ii) GOD(4n;ay,...,a4,,b1,. .., bsy301,. 00,84y, 01, -, bsp501, .0 0,04y, b1,
verbsy; @y e ey ey b1y bsy) where gy, 1 =1,2,...,5 and b;,i =
1,2,..., 52 are the no n zero elements of T\ and To respectively.

Proof.

(i) Use sequences E = z,T} +z2T3 and F = z2T1 — T3 in corollary 3.2
to obtain the result.

(i) Use sequences E = 1Ty + 22T, F = 23Th + 241>, G = zoTy — 21T
and H = 24T} — 23T% in corollary 3.5 to obtain the result.

0O

Example 3.15 Let T} = {—2,0,6,0,0} and T> = {0,4,0,3,0}. These are
two disjoint sequences of length n = 5 with zero NPAF. Then using theorem
3.14 we obtain a generalized orthogonal design D of two variables of length
2n =10, D = GOD(10;2,3,4,6;2,3,4,6).

Corollary 3.16 Let A, B be Golay sequences of order n Then there exist
a GOD(2n;< n,a1,1 >; < n,a1; > and a GOD(4n; < n,a1,1 >;<n,01,1 >
;< n,a1,1 >;< n,a11 >).

Proof. Set X; = a1, (442) and Xz = a1, (452) and apply theorem
3.14 to get the designs. 0O



Remark 3.17 We know Golay sequences for all n = 2% - 10® - 26¢, where
a,b and c are non negative integer numbers. Then from corollary 3.16 we
obtain a GOD(2n; < n,a;1,; >;< n,a;,; >) and a GOD(4n; < n,ay,1 >;<
n,a1,1 >; < n,a1,1 >; < n,ay1, >) where a;,; is any real number.

4 Multiplication Methods

In this section we discuss some results on multiplication of generalized or-
thogonal designs. Some theorems for multiplying the length of the design
or/and increasing the number of variables in the design or/and multiplying
some of the variable’s coefficients by a number.

Lemma 4.1 Let D be a
GOD(n;a11,012,...,81u;5 ..} Q¢1,Ge2, - - -, Qpa,)
genemlz’zetf orthogonal design with variables from the set
S = {O}U O{iai,ja:,-}, where 1,22, ...,z; are commuting variables.
Then we ic=alnj:;nstruct the following generalized orthogonal design:

i) GOD(n;ay1,a12,. . 3 @luyie -+ il + 851,042 + @52, 0 0y Qi F Gy,
Qjui 1y« v oy Gjuzi e« -3 el e2, - - - 5 Gtu, ) ON t — 1 variables.

i) GOD(n;a11,812, -« @1uys -3 @i 1,1, Bic 1,25 -+ Bim L us_y Bick 1,15
@it1,2y 0oy Qiklugqyi -3 081,042, ., Qu,) 0N £ — 1 variables.

i) GOD(2n;a11,812,...,01uy}.--;041,842, - . ., 01y, ) ON t variables.

i) GOD(2n;a11,011,012,812, - - -, Gluy, Qlu, ;- - - ; Ge1, Bel, Ge2, Ge2, - - -
Qtu,,Qty, ) 00 t variables.

v) GOD(2n;a10; 811,812, . ., G1uy; - - -} Be1, Be2y -+ -, Btw,) OT t + 1 vari-
ables.

vi) GOD(2n;a10; 011,012, ... » @luy @21,0821, 322,822, - . . , A2uy, A2uy;- - - 5
Qt1,Q41, @12, Qe2, - - - , ey, , Gtu, ) ON T+ 1 variables.

vii) GOD(’n;Cll,Clg,...,Clul;...;Cu,Cu,Ctg,...,Ctu‘) where ¢;; = b;a;;
and b; any real numbers on t variables.

Proof. In D we do the following replacement of the variables:
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i) Set z; = z;.
ii) Set z; =0.

a:.-O

iii) Replace z; by [ 0

],fora.lli=1,2,...,t

iv) Replacex,-by[ : ] for all i =1,2,.

1

t

v) Repla.cea:;by[ o xl] anda:,by[ :lg]foralli=2,3,...,t.

Zo
-

T

vi) Replace z; by [
2,3,...,t

I T
%o ], and z; by [z

i

]foralli:

1

vii) Replace z; by b;z;, where b; are any real numbers, for alli=1,2,...,t
0

Example 4.2 Let D = GOD(6;1,2;1,1,3,3) be the generalized orthogo-
nal design as it is given in example 3.3. Then using theorem 4.1 we have

i) If we set b = a we obtain the generalized orthogonal design D =
GOD(6;1,1,1,2,3,3).

ii) If we set a = 0 we obtain the generalized orthogonal design D =
GOD(6;1,1,3,3) and if we set b = 0 we obtain the generalized or-
thogonal design D = GOD(6;1,2)

iii) If we replace a and b by [ 8 2 ] .and [ g g ], respectively we

obtain the generalized orthogonal designGOD(12;1,2;1,1,3,3).

iv) If we replace a and b by [ Z fa ] and [ : fb ], respectively we

obtain the generalized orthogonal design GOD(12;< 2,1 >,< 2,2 >
1< 4,1>,<4,3>).

¢ Z], and b by [?) g] weobtgainthe
generalized orthogonal design GOD(12;1,2;1,2;1,1,3, 3).

v) If we replace a by [ _
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c

a b b ]
c],andbby [b —b] we obtain the

generalized orthogonal design GOD(12;1,2;1,2;< 4,1 >,< 4,3 >).

vi) If we replace a by [

vii) If we replace a by ca and b by db, where c, d are any real numbers, we
obtain the generalized orthogonal design GOD(6; ¢, 2¢; d, d, 3d, 3d). O

Lemma 4.3 If there exist two circulant matrices which gwe a GOD(2n;a,,,
ce+18,u,382,1,-.+,82,u,) then there exist two circulant matrices which give
a GOD(2pn;ay,1,...,81,4,i82,1,- . .,02,4,) and a GOD(2pn;a1,1,04,1,. .-,
@1,u101,u,302,1582,15 - - -, B2,uy, B2,u;) fOr all integers p > 1.

Proof. Write 0, for the sequence of p — 1 zeros. Suppose X =
{z1,29,...,2n} and Y = {y1,73,... »Yn} are the two sequences of length
n with zero PAF that can be used as the first rows of the corresponding
circulant matrices to construct the G’OD(n Q115001 B1,uy382,15 -« B2,u,)-
Now by considering the sequences X' = {z1, p_1,$2,0p_1, . ,:cn,O,,_l}
and Y' = {¥1,0p-1,92,0p_1, ..., ¥n,0p_1} of length pn with zero PAF
that can be used to construct the GOD(2n, Q1,1y--+,8,uy; G2,1,-..,82 1,,)
If we now form another sequence Y’ by permutmg the first row of Y’
by one posxtlon (1e y, =y +1) Then X' and Y are disjoint. Hence
X +Y" and X' - Y" are two sequences of length pn with zero PAF
that can be used to construct the desirable GOD(2pn;a1,1,a1,1,-..,61,4,,

Q1,u,,02,1, Q2,1+ +y02,uz, ‘7'2,“2)' =

Example 4.4 From example 3.3 we have the sequences A = {e,3b,b}, B=
{—b,3b, —2a} which give a GOD(6;1,2,3;1,2,3). Now using lemma 4.3 we
obtamaGOD(Gp,l 2,3;1,2,3) and a GOD(6p; 1,1,2,2,3,3;1,1,2,2,3,3)
for all p=2,3,.
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