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1. INTRODUCTION

It is worthwhile to consider linear-fractional transformations x,y

satisfying the relations x2 = y™ =1, with a view to studying an action of the
. z+b .
group < x,y > on real quadratic fields. If y:z —)k—d is to act on all real
cz+

quadratic fields then a,b,c,d must be rational numbers and can be taken to be

. : L . a+b .
integers, so that (@+d)” s rational. But if yiz> is of order m one
ad - be cz+
+d)’
must have (ad ) =w+' +2,where @ is a primitive m—th root of unity.
ad —oc

Now @+~ is rational, for a primitive m-th root @, only if
m=1,2,3,4,6. So these are the only possible orders of y. The group <x,y>

is trivial when m =1. When m=2, it is an infinite dihedral group and does
not give inspiring information while studying its action on the real quadratic
irrational numbers. For m=3, the group <x,y> is the modular group
PSL(2,Z) and its action on real quadratic irrational numbers has been discussed
in detail in [3] and [5].

i

c

L a
For a fixed non-square positive integer 72, an element a = and

a-vn
[+

its algebraic conjugate q = may have different signs. If such is the case

then we shall call such @ an ambiguous number. If a and a are both positive
(negative), then we shall call & a totally positive (negative) number.
Ambiguous numbers play an important role in the study of actions of the groups

M=<x,y:x?=y™=1>, for m=1,2,3,4 or 6, on O(+/n).
In this note we are interested in the action of a subgroup of

3(z+1)

are linear-

G=<x,y:x*=y®=1>, where (z)x=;—l and (2)y=
z

fractional transformations, on the real quadratic irrational numbers.

If we let £ =xyx then ¢ can be considered as the linear-fractional

transformation defined by (z)t= l—% and ¢%=1. Some number-theoretic
¥4

properties of the ambiguous numbers belonging to the orbit of G when acting
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a+s/; a’-n
c

on Q*(n) ={ ta,ceZ, b=
¢

discussed in [4]. In this paper we explore group-theoretic properties of this
action vis-a-vis the orbit of @ in H =< y,r>. We shall show that the set of
ambiguous numbers is finite and that part of the coset diagram containing these
numbers form a single closed path and it is the only closed path in the orbit of
@ . We shall show here that in the action of H on Q(vn), Stab, (H) are the
only non-trivial stabilizers and in the orbit aff, there is only one (up to
isomorphism) non-trivial stabilizer.

€Z, (a,b,c)=1} have been

2. COSET DIAGRAMS

We use coset diagrams for the group H and study its action on the
projective line over real quadratic fields. The coset diagrams for the group

H are defined as follows. The six cycles of the transformation y are denoted by

six unbroken edges of a hexagon (may be irregular) permuted anti-clockwise by

 and the six cycles of the transformation 7 are denoted by six broken edges of a
hexagon (may be irregular) permuted anti-clockwise by 7. Fixed points of y
and ¢, if they exist, are denoted by heavy dots. This graph can be interpreted as
a coset diagram, with the vertices identified with the cosets of Stab,(H), the

stabilizer of some vertex v of the graph, or as 1-skeleton of the cover of the
fundamental complex of the presentation which corresponds to the subgroup
Stab,(H).

A general fragment of the coset diagram of the action of H on Q(a/; )

will look as follows.
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In [4], it has been observed that if & # —

the six vertices of a hexagon in the coset diagram, then

@) z< -]

(ii) z>0

Gi)y L<z<o
3 <2

. -1 -1
—<z<—

(iv) > 3

) --_5"2-<z<-:2l

. -2
-l<z<—

(vi) z 3
Also ifk:l,%,

coset diagram, then

@

z<0

1
2

implies that

implies that
implies that
implies that
implies that

implies that

1}

1
3

implies that

(2)y>0,

-1
—<(z 0,
3 <(z)y<

—l<(z)y<_T2,and

(2)y<-1.

,0, is one of the six vertices of a hexagon in the

(ze>1,
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Gy  z>1 implies that % <(z) <1,
(iii) % <z<l implies that % <2< i .
(iv) -%- <z <—§ implies that %— <(z} < % .
W) 3 <z <-;— implies that O<(z)< % ,and
(vi) O<z <-;: implies that (z)r<0.
By Q'(Wn) we shall mean a subset {a+cJ;: a,ceZ, b= azc—n

€Z,(a,b,c)=1} of O(Wn).

We state here the following lemmas from [2] for later use.

a+f

Lemma2l Anc= € 0°(n) is a totally positive number if and

only if either a,b,c >0 or a,b,c <0.

a+J'

Lemma 2.2 An a=22Y2c0"Wn) is a totally negative number  if

and only if:

@) either a<0 and 5>0,c>0, or

(i) a>0and b<0,c<0.

asds

Lemma23 An a=———cQ’ (W) is an ambiguous number if and

only if bc <0.
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3. EXISTENCE OF AMBIGUOUS NUMBERS

Ambiguous numbers play an important role in the study of actions of

the group H on Q(J; ) . We shall see here that Stab, (H) are the only non-

trivial stabilizers in the action of A on Q(w/; ) and that there is only one (up to

isomorphism) non-trivial stabilizer in the orbitaH .

a+\/_

Theorem 3.1 If @ ="—"¢c Q" (vJn) is a totally negative real quadratic

irrational number then ()¢’ is totally positive for i =1,2,3,40r 5.

Proof. If ¢ = ah/;,where b= a _”,then (a)t=l—L =l-—
¢ c 3a 3a+n)

_ Ga- c)+3J»7 a-n _-a+3b+n

. Hence the new values of a and ¢
3a+n) an 3b

are —a+3b and 3b. Using these values, we then obtain the new value for 5.

(3b-a)’-n _-6a+9b+c

That is,
3b

. Similarly, the new values for a,b and ¢

with respect to ()¢’ are:

a a b ¢
i=1 —-a+3b M’.-'-_c 3b
3
i=2 -Sa+6b+c —4a+4b+c —6a+9b+c
i=3 ~Ta+6b+2c ﬁ‘%’ﬂ H(—4a+4b+c)
i=4 -Sa+3b+2c —2a+b+c ~12a+9b+4c¢
. [
i=5 -a+c = 3(-2a+b+c)
hl
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If @ is a totally negative number then by lemma 2.2, either
a, b, c satisfy (i) or (ii).

If (i) is the case then from the above table the new a,b,c for (a)t' are
all positive. Hence by lemma 2.1 (a)t' are totally positive.

Similarly, if (ii) is the case then it is easy to see that the new values of

a,b,c for (a)’areall negative. Then by lemma 2.1 ()¢’ are totally positive.

2
“-n
Example3.2 Let a=-2+V3then a=-2,c=1,n=3and b=~
c
Because a is negative and b, c are positive therefore a is a totally negative real
Quadratic irrational number. We can easily tabulate the following information.

a =2 | 1
(@) 5 2 3
3
(a)? 17 13 22
(a)f? 22 33—7 39
(a)? 15 6 37
1
t> 3 - 18
(a) 3

As we seen from the above information the values of a,5 and ¢ for

(@), where i=123,4 and 5, are positive, therefore, (@)’ , for i=1234
and 5 are all totally positive.

Lemma33 ifa-= _a_tﬁ e 0" (Wn) isan ambiguous number then one
¢

of (a)’, where i=1,2340r 5 is ambiguous and the other four are totally

positive.

Proof First we suppose that a is a negative number. Then the possibilities

for & to be positive or negative are as follows:
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a (@) @ @ @t @  a (ay (@ (@ @rt (@)’

-+ o+ o+ o+ 4 + - o+ o+ + o+
+ o+ - + + o+
+ o+ o+ - + o+
+ + o+ + - +
+ o+ o+ + + -

Similarly if a is a positive number then:

a @) (@ (@f @' @ a (@x (@1 (@ @1 (@

+ -+ + + o+ -+ 4+ + o+ o+

+ + -+ + o+

+ + o+ - + o+

+ + + o+ -+

+ + + o+ + -

Therefore from the above tables we can easily deduce that one of
(o)  for i=1,234,or 5 is ambiguous and the other four are totally positive.

az -n

Example 3.4 Let a=1+42 then a=lc=Ln=2and b= =-I.

Since bc <0, therefore a is an ambiguous real quadratic irrational number. We
can easily tabulate the following information.

a | -1 |
(a) -4 4 3
3
(a)? -10 -7 -14
N -17
t -11 —_ =21
(a) 3
(ayt -6 -2 -17
|
t5 0 - -6
(2) 3
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As we seen from the above information the values of a,band ¢ for
(@), where i=1,23 and 4, are negative, therefore, (a)t’, for i=12,3 and
4 are all totally positive. Since for (a)’, bc<O, therefore, (@)®is an

ambiguous real quadratic irrational number.

Diagrammatically, the six vertices representing the six cycles of y and

t will be as follows.

\/
ay3 Y , OLts',. ~ ot
., A o o".' ~
N.’) yg.d‘ A'," \~.A
3 at' | i
o 5 fot
7 S AN A

Lemma 3.5 if a= € 0°(n) is an ambiguous number then one of

a+vn
c

(a) yj ,for j=1,234, or 5 is ambiguous and the other four are totally positive

numbers.

Proof The proof of this lemma is given in [1].
If the norm of « =a_+c‘_/—1 is defined as |Jaf =|q, then:
Theorem 3.6 if = # € 0" (W) is totally positive then:

@ J@w’|>lal, forj=1234, and 5.

(ii) u(a)ti "<ﬂa“ if (@)t' is totally negative for i =1,2,34, or 5
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Proof

@) If a=

a+\/; a?'—n
(4

, where b= , then we can easily calculate new
c

values of a, b, ¢ for (a) yj , where j=1234, and 5, as follows:

a a b c

j=1 -a-c -‘5 32a+b+c)

j=2 -S5a-3b-2c 2a+b+c 12a+9b+4c¢
j=3 ~Ta—6b—2¢ &'i%ﬁi Hda+4b+c)
j=4 -5a—-6b-c 4a+4b+c 6a+9b+c
j=5 —a-3b fexbee 3

Since @ is a totally positive number, therefore, either a,b,¢ >0 or a,b,c <0.

Ifa,b,c>0(0ra,bc<0)f@y=la+d,  [(a)y?|=|sa+35+2.
l@w?|=pra+6b+2d, [@ry!|=lsa+6b+d and |@)y?]=|a+38|. Thes,
[@w?||>lel], for j =12.34, and 5.

(ii) The new values of a,b,c for (a)}’, where i=123,4, or 5, are

tabulated as follows:

a a b c

i=1 —a+3b bat9b+c 3
3

i=2 -S5a+6b+c —4a+4b+c —6a+9b+c

i=3 —Ta+6b+2c l'-z—“fs%—*"” H—4a+4b+c)

i=4 -Sa+3b+2c¢ —2a+b+c -12a+9b+4c
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c

i=5 -a+c¢ 3(2a+b+c)

By theorem 3.1, one of (a)t', for i=123,4, or 5 is totally negative.
Note also that since « is totally positive, there are only two possibilities,
namely, either a,b,c>0 or a,b,c<0.We deal with these possibilities
separately.

First, we suppose that (a)t is totally negative. If a,b,c >0 then from

the above information we can see that —a+3b <0. Hence —a<—-a+3b<aor

|-a+38 <aor ()| <[la]} Similarly for a,6,c <0 we note that e < [l

Secondly, suppose that (a)t? is totally negative, therefore, (a)f must
be totally positive. If a,b,c>0 then -~a+3b>0,-6a+%9+c>0,
—Sa+6h+c<0 and —4a+4b+c>0. Since -5a+6b+c=(-4a+4b+c)

—a+2b, therefore, —a+2b < —S5a+6b+c or —a <-5a+6b+c <aor

—5a+6h +c1 <a or "(a)t2|| < "a[l . Similarly, for a,b,c <0, um)lz" < {Ia" .

Now, suppose that (az)t3 is totally negative. Then (a)t and (a)t* must
be totally positive. If a,b,c>0 then -a+3b>0, -6a+9b+c>0,
-5a+6b+c>0, -da+4b+c>0, -Ta+6b+2c <0 and -12a+9b+4c>0.
Since ~l4a+12b+4c = (—12a+9b + 4c) — 2a+3b, therefore,
—2a<-l4a+12b+4c or —a<-Ta+6b+2c or —a<-Ta+6b+2c<a or

l—- Ta+6b +20| <a or ”(::c)t3 " < "a" Similarly, for a,b,c<0 we obtain
@] <[]

Next, let (@)t* be totally negative. Therefore, (a), (@¥* and (a)r’ are
totally positive. If a,b,c>0 then -5a+3b+2c<0, -2a+b+c>0. Since

-5a+3b+2c= (4a+2b+2¢c)—a+b, therefore —a<-5a+3b+2c<a or
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|-sa+3b+2d<a or @)'|<[a]. Similarly, for ab,c<0 we get
] <l

Finally, suppose that (a)t* is totally negative. Therefore (a},(a)" (@}’
and (ay* are totally positive. If a,b,c>0 then -a+c<0, and
~a<-a+c<a or |-a+d<a or [(@)’|<[e] Similarly, for a,b,c<0 we
have [(@)r*] <[a]}

Example 3.7 Let @ =3++3 then a=3,c=1,n=3and b=2""_6 As
c

a,band ¢ are positive therefore a is a totally positive real quadratic irrational
number. We can easily tabulate the following information.

R
w
[=)]

(a)y -4 % 39

(@)p? -35 13 9%

@y’ 59 kad "
3

(a)y? -52 37 73

(@)y® -24 RE) 18
3

()t 15 37 18
3

(a)? 22 13 37

(a)F® 17 2 39
3

(ay* 5 1 2
1

5 -2 - 3
(a) 3
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We can see from the above information that (a)y”, where j =1,2,3.4

and 5, are totally negative numbers and ll(a) y/ ">[|a[| for j=1,234 and 5.

Also (a)f’ is a totally negative number such that H(a)ts n <] -

a+n
¢

Theorem 3.8 If a = cQ'(Jn) isa totally negative number. Then

@ |e@r|>le], for i=1.234, or 5, and

(i) “(a)yf u<ua“ if (a)y’ is totally positive for j=12,34, and 5.

Proof

(i)

, then we can easily calculate new

2—
".a=a+~/; acn

, where b=
c

a,b,c for (a)ti as follows:

a a b c
i=1 -a+3b “ba+9b+c 3

3
i=2 —Sa+6b+c - a+4bh+c —6a+ b+c
i=3  —Ta+6b+2c ﬂ:—"—ﬁi 3(~4a+4b+c)
i=4 -5a+3b+2c —2a+b+c -12a+9b+4c

c

i=5 —-a+c 3- 3(-2a+b+c)

Since a is a totally negative number, therefore, a>0, and

b<0,6<0 ora<0,and b>0,c>0.1f a>0,and b<0,c<0 (ora<0,
and 5>0,06>0) then ||(a)1||=|-a+3bl, “(a)t2"=|—50+6b+c|,
||(a)t3||=|—7a+6b+2c|, “(a)t‘ﬂ=|—5a+3b+2c| and Il(a)'5||=|_"+4

Hence"(a)t’ " > ﬂaﬂ, for i=1234,and 5.
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5) Again, we can write information about (&) ¥/, as follows.

a a b c

c
j=1 —-a-c -5 3Ra+b+rc)
j=2 -5a-3b-2¢ 2a+b+c 12a+9b+4c
j=3 ~Ta-6b-2c w 3(4a+4b+c)
j=4 =Sa-6b-c 4a+4b+c 6a+9b+c
j=5s —a-3b 3‘1%92 3

Analogous to Theorem 3.1, if a is totally positive then (a)y’,
j=1234, and 5 are totally negative.

First, let us suppose that (a)yis totally positive. As a is totally
negative, there are two possibilities, either a<0 and 5>0,¢>0 or a>0 and
b<0,c<0. If a<0 and b>0,c>0 then ~a~c¢>0. Hence —a>-a-c>a
or |—a—c| <|a| or “(a) y||<||a|| Similarly, [[(a) y[|<|la|| for a>0 and
b<0,c<0.

Now. suppose that (a)y* is totally positive. Then (a)y must be

totally negative.
If a<0 and 5>0,c>0 then 2a+b+c>0,-a~c<0,-5a-3b-2c>0and

12a+9h+4c>0. Since ~15a-9b—6¢ =(~12a-9h—-4c)-3a-2c, therefore

-15a-9b~6c <-3a.Hence a<-5a-3b-2c<-a or |-5a-3b-2d<|d or

||(oz)y2

<|lf. Similarly, “(a)y2"<ﬂa|| for a>0and b<0,c<0.

Let (a)y® be totally positive. Then (a)y and (a)y* are totally
negative. If a<0 and > 0,c>0 then —a-c <0, 2a+b+c>0,

—Sa—3b-2c<0 ,12a+9%+4¢>0 ,-Ta—6b-2c>0 and 4da+4b+c>0.
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Since -14a~12b—4c =(~12a-9b~4c)—2a~-3b < —2a. Then
~Ta-6b-2c <-a or a<-Ta-6b~2c <~a or |-Ta-6b-2d<|a| or
"(a)y3||<{|a" Similarly, ll(a)y3u<[|a|| for a>0 and b<0,c<0.

Next, suppose that (a)y" is totally positive. Then (a)y,(a)yzand
(a)y3 are totally negative. If a<0 and b>0,c>0 then
-a-c<0,2a+b+c>0 ,-5a-3b~2c <0 ,12a+9b+4c>0 ,
~Ta-6b-2¢<0,4a+4b+¢>0,-5a-6b-c>0 and
6a+9b+c¢ > 0. Since ~10a-12b-2c=(-8a—-8b-2c)-2a—-4b. Then
-10a-12b~2c<-2a or a<-5a-6b-c<-a or ]—Sa—6b—c|<la| or

lkery*]| <lall Simitarty, )y*| <[l for a>0 and b<0,c<0.

Finally, we suppose that (@)y’is totally positive. If a<0 and

b>0,c>0then -4-3b>0. This implies that a<-a-3b<-a or
|-a-3b<|a] or ﬂ(a)y5“<[]a[|. Similarly, |I(a)y5“<||au for a>0 and
b<0,c<0.

2
a - -n

Example 3.9 Let @ =-3++2 then a=-3,c=1,n=2and b= =17.

¢
As ais negative and b, ¢ are positive therefore a is a totally negative real
quadratic irrational number. We can easily tabulate the following information.

a -3 7 l
(@) 2 % 6
(a)y? -8 2 31
(@)y? -23 33'- 51
(a)y* -28 17 46
(a)y® ~18 4—36 21
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t 24 = 21
(a) 3
(a)? 58 41 82
()® 65 % 123
(a)t? 38 14 103
5 1
t 4 - 42
(@) 3

We can see from the above information that ()¢, where i=1234
and 5, are totally positive numbers and I|(a)t' “>|[a[| for i=1,23,4 and 5.

Also (@)y is a totally positive number such that [(@)y] < [e]-

Theorem 3.10 If o =ﬂe 0°(/n) is a totally positive number. Then
¢

there exists a sequence a(= ,),a,,as,...,@,, such that a; is alternately totally
positive and totally negative number, for i=123,.,m—1 and a,, is an

ambiguous number.

. at+«n
Proof Since a=¢, =

is a totally positive number, therefore,
by theorem 3.1, one of (a)t', for i=12,3,4, or 5 is totally negative. If (a)¢’ is
totally negative then by theorem 3.5, "(a)t’“<[|aﬂ. Also(a)t’ is totally
negative, then, one of (a)‘y”/, for j=12,3,4, and 5 is totally positive. If
(@)’y’ is totally positive then by theorem 3.4, u(a)ti ! Il < "(a)ti " <[l . 1£ we

let @=a,, (a)t'=a,,and (@)’'y/=a; and continue in this way we obtain an
alternate sequence a,,a,,a;,....a, of totally positive and totally negative

numbers such that les[|> ezl > sl > - > ] - Since
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ﬂa, [I,[laz ﬂ,ﬂa3[|,...,|!a,,,[]is a decreasing sequence of non-negative integers

therefore it must terminate. That is, after a finite number of steps we reach to
) . a +n
@, such that [a,[<vn. This means that, if a,=2FY" (hen
4]

2
al -n

lenl=|a|<Vn. Thus a2 <n or a®-n<0 or <0 or a,a, <0.

£y

G
Hence a,, is an ambiguous number.

Example 3.11 Let o =6+4/3 then a=6,c=1,n=3and

-

a”-n

b=

=33. As a,b,c are positive therefore  is a totally positive real

quadratic irrational number. We can easily tabulate the following information.

a=a, 6 33 1 (totally positive)
a, = ()’ -5 % 66 (totally negative)
a, =(a,)y’ 4 13 1 (totally positive)
ay =(ay)’ -3 % 18 (totally negative)
a, =(ay)y’ 2 1 1 (totally positive)

|
—

as =(a)t’ -6 (ambiguous)

We can see from the above information that ay,a,,a,,a;,a, is an
alternating sequence of totally positive and totally negative numbers and asis

an ambiguous number.

The above information are shown by the following coset diagram in
which 0,1,2,3,4and 5 represent a,,a,,a,,a;,a, and a5 respectively.
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4. CLOSED PATHS

The ambiguous numbers play an important role in studying the action of H

on Q. (1/;)\.) {o}.Let ae Q‘ (\/;) and al denote an orbit of Q'(J;). The
existence of an ambiguous number in aH is related to the stabilizers of H. We
describe the action of H on Q'(J; ) U {oo} in the following theorems.

Theorem 4.1 The ambiguous numbers in the coset diagram for the orbit

aH , where a = %—JE 3 Q'(J;), form a closed path and it is the only closed
C

path contained in it.

Proof Let %, be an arbitrary ambiguous number in aH . We pass on to

another ambiguous number by successive applications of either y/or ¢, for
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i, j=12,3,4 or 5. Without loss of generality, we assume that (k,)y” is another
ambiguous number.

Since each hexagon, representing six edges of y or ¢ contains two
ambiguous numbers (by virtue of lemmas 3.2 and 3.3), therefore at the second
ambiguous number within the k —t# hexagon, we successively apply the second
generator, namely fr(or y) to reach the next ambiguous number in the
(k +1)~th hexagon.

Suppose k—th hexagon (depicting either the six cycles of the
generator ¢ or y ) contains two ambiguous numbers, namely @, and a,. We

assume that the k -k hexagon is the one which depicts the six cycles of the

generator ¢. Then a%™" =a®*™ys a® =g® 2 and o) = U‘“’y”J

where &),€,,6; =1,2,34, or 5. Also, since a-‘," =P and aff

(k=1)
i

(k+l)
a

therefore, a{*™" yJit/: y/s = a{**Y. We can continue in this way and since by

lemma 3 in [2] there are only finite number of ambiguous numbers of the form

a+JZ ,
n

a=

Q‘(J;) , after a finite number of steps we reach to the vertex

(ambnguous number) a{**" = g,

Hence the ambiguous numbers form a path in the coset diagram. The
path is closed because there are only finite number of ambiguous numbers in a
coset diagram. Since only ambiguous numbers form a closed path and these are
the only ambiguous numbers therefore all the ambiguous numbers form a single
closed path in the coset diagram of the orbit aH .

2+J_

Example 4.2 Let a = then a=2,c=3,n=7and

2

b=2 c'- 2 ——1.As be <0 therefore  isan ambiguous number. We can
easily tabulate the following information.

a=a, 2 -1 3 (ambiguous)
a, =(a, e 1 1 -6 (ambiguous)
a, =(a)y® -1 -1 6 (ambiguous)
az =(a )t -2 1 -3 (ambiguous)
a, =(a;) y5 -1 -2 3 (ambiguous)
as =(a, 3 1 2 -3 (ambiguous)
ay =(as)y 2 -1 3 (ambiguous)

We can see from the above information that a,,¢,,a,,a;,a, and a;
form a closed path. The above information are shown by the following coset
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diagram in which 0,1,2,3,4and 5 represent ay,a,,a,,a3,a4 and a;
respectively.

Theorem 4.3 The graph of the action of H on the rational projective line in
connected.

Proof To prove this we need only to show that for any rational number &,
there is a path joining 44 to .

Let k, be a positive rational number, say, #, =%. Then

b —(a+b) —(B3a+2b) —Qa+b) ~Ba+b)
ky )y’ = , , , , d —=, fi
GV =303 D av2b 3Gash) 3aib 3a or
j=1234, or 5.  Let Jko) = max(alje).  Then

k)] = 3¢a + b),[l(k) y2“ =3a+2b, ||(k)y3|[ =3Qa+b), N(k)y‘“ =3a+b and
“(k) y5|| =3a+b. Therefore, ﬂ(k) y [| >[k] for j=1234, or 5. Similarly, if

ko is a negative rational number, say, &, = % with b <0, then

3a-b 2a-b 3a-2b a-b and -b
3a ' 3a-b" 3Qa-b) 3a-2b 3(a-b)

fkod) =3a - b, ko )r?| = 30 - b, Jtko )| =323~ B).Jtko )*| = 3a- 26 and

(ko)ti =

. That is
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u(ko ):’||= 3(a-b). Hence lI(/c(, )z'u >k for i=1234, or 5. If &y is
positive then one of (ko )t' is negative. If we let this negative number to be &,
then Hko“ > nklﬂ As k, is negative one of (k,)y” is positive. Let it be &, that

is, k, =(k))y’ where j=1,23,40r5. This implies that ||k2[|<uk,[|. If we
continue in this way, we get a unique alternating sequence of positive and
negative rational numbers ko, k,k;...such that [lof > [,[|>[k,] > ... The

decreasing sequence of positive integers must terminate after a finite number of

steps. It will terminate only when ultimately we arrive at a hexagon with vertices

- I,——z,——l,_—l,o,oo or 1,3,-1-,-’-,0 and «. An alternating sequence of
3°2°3 323

positive and  negative rational numbers kg, k;,k;5...such  that

kol > llerf) > Jk[| > ... shows that there is a path joining k, to . Hence every

rational number occur in the coset diagram and that the diagram for the action of
H on the rational projective line is connected.

Theorem 4.4 The action of H on the rational projective line is transitive.

Proof We shall prove transitivity of the action by showing that there is a path
from a rational number p to a rational number ¢, that is, there exists some 4

in H such that ph =gq.

As we have shown in theorem 4.2 that there exists a path joining pto
o, that is, there exists an clement g, =¢%yMS2y™ %% of H such that
= pg, = p(t?y"tc1y™ 15 y™) where & =0,,23,4 or 5, £ =1,234 or
5, for i=23,.,nand 75,=0,1234 or 5, 77,=1234 or 5, where
J=12,..,n~-1. Similarly we can find another element g, in H such that

w0 =gg,. Hence pg, =qgg, or pg,g; ! =¢. That is, the action of H on the
rational projective line is transitive.

We conclude with the following observations. If we are given a real
quadratic irrational number « , we can find the closed path in the orbit af . If
a is totally negative then one of (a) yl , for j=1234 or 5 is totally positive,
and we can use theorem 3.10 to find an ambiguous number in the same orbit.
When we have an ambiguous number, the proof of theorem 4.1 shows how to
construct the closed path. This means that if @ and 8 are two real quadratic
irrational numbers then we can test whether or not they belong to the same orbit.
We can find closed paths in the orbits af and SH and see if they are same or
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not. Note that for a fixed value of #, a non-square positive integer, all possible
ambiguous numbers do not lie in the same orbit.

For instance, if we take n=17, then
(l+ﬁ)t5y515y315y515y5t3y5 = (I+ﬁ) and
=¥y’ 5%y = (1-J7). If we let a@=1+47 and

B=1 —7 then af N PH is empty. That is, @ and B do not lie in the same
orbit.
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