Total domination in K,-covered graphs
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Abstract

A graph G is K,-covered if each vertex of G is contained in a clique
K. Let 7(G) and 7:(G) respectively denote the domination and the total
domination number of G. We prove the following results for any graph G
of order n:

if G is Ke-covered, then 7(G) < %,

if G is K,-covered with r = 3 or 4 and has no component isomorphic
to K,, then 1:(G) < -,%,'_‘-1—,

if G is K3-covered and has no component isomorphic to K, then
YG) +7(G) < 2.

Corollaries of the last two results are that every claw-free graph of
order n and minimum degree at least 3 satisfies 7(G) < 2 and 7(G) +
7:(G) < 2. For general values of r, we give conjectures which would gen-
eralise the previous results. They are inspired by conjectures of Henning
and Swart related to less classical parameters vk, and 7.

1 Introduction

We follow the terminology and notation of {2], and of [10] where domination is
concerned. The graphs G we consider in this paper are simple with vertex set
V, edge set E (if necessary we specify V(G) or E(G)), and order |V| =n. The
neighbourhood of a vertex u is denoted by N(u) and its closed neighbourhood
N(u) U {u} by N[u]. If S is a set of vertices of G, then N(S) = UyesN(u) and
N[S] = N(S)U S. For the sake of simplicity we write N(u,v) for N({u,v}).
The subgraph induced by S in G is denoted by G[S]. We may not always know
the exact nature of such a set S; if S happens to be empty, then G[S] is not
defined.

A set D C V is a dominating set if every vertex in V\D is adjacent to a
vertex in D, and a total dominating set if every vertex in V is adjacent to a
vertex in D. Every graph without isolated vertices has a total dominating set.
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The domination number of G, denoted by 4(G), is the minimum cardinality
of a dominating set and the total domination number of G, denoted by v:(G),
is the minimum cardinality of a total dominating set. If the graph G has ¢
components G, then ¥(G) = EL_,7(G:) and %(G) = =L, 1(G:)-

A K,-component of G is a component isomorphic to a clique K. Following
the notation of Favaron, Li and Plummer in (8], we say that a graph G is K,-
covered, > 2, if every vertex of G is contained in a clique K., and minimally
K,-covered if it is K,-covered but G — e is not K,-covered for any edge e of
G. These properties were already considered by Henning and Swart in [12,
13, 14] under the terms “with no K,-isolated vertex” or “Property C(1,r)",
and “Property C(2,7)”, respectively. They also introduced the concepts of K-
adjacency, K,-domination and K,-connectedness. We repeat their definitions.
If r is an integer, r > 2, and u and v are distinct vertices of G, then u and
v are said to be K -adjacent if there is a subgraph of G, isomorphic to K.,
containing v and v. For r > 2, a K,-dominating set (total K,.-dominating set,
respectively) of a graph G is a set D of vertices such that every vertexin V\D (in
V, respectively) is Kr-adjacent to a vertex in D. Note that total K,-dominating
sets only exist in K,-covered graphs. The K,-domination number v, (G) (total
K,-domination number v _(G), respectively) of G is the minimum cardinality
among the K,-dominating sets (total K, -dominating sets, respectively) of G.

Remark 1 A Kj-covered graph is just a graph without isolated vertices
(the K»-adjacency being the usual adjacency) and thus yx,(G) = v(G) and
Yk,(G) = 7%(G). Moreover, for 2 < r < s, a K,~dominating set must be a
K,-dominating set and similarly a total K,-dominating set (if it exists) must
be a total K .-dominating set. From this it follows that

Y6 = 1K (G) < 1K (G) € -+ S (B) < - -+

and
2(G) = 7i,(G) £ Vi, (D < - <1k (D) < -+
(The latter chain goes up to the largest r such that 7 exists.)

A u-v K,-path of G is a finite, alternating sequence of vertices and subgraphs
isomorphic to K, beginning with u and ending with v, such that the vertices of
the sequence are distinct, the subgraphs of the sequence are distinct and every
subgraph of the sequence is immediately preceded and succeeded by a vertex
that is contained in that subgraph. The vertex u is said to be K -connected
to the vertex v if there is a u — v K-path in G. A graph G is K,-connected
if every pair of its vertices are K,-connected. If G is K,.-connected, then it is
K,-covered and thus v _(G) is well defined.

Domination in K,-covered graphs was studied in [8] and [12]. Henning and
Swart studied total domination in [13] and [14]. They gave interesting conjec-
tures related to v, (G) and 7k, (G) + 7%, (G) in a K,-covered graph G, and
proved them for small values of . Our purpose in this paper is to give sim-
ilar conjectures and results, still holding for K,-covered graphs but related to
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the usual parameters v and 4; and the usual connectedness rather than to the
specific parameters yk, and vk, and the specific concept of K,-connectedness.

A graph is claw-free if it does not contain any induced subgraph isomorphic
to the complete bipartite graph K),3. Claw-free graphs of minimum degree at
least 3 form a special class of K3-covered graphs with no K3-component. Hence
results on Kjs-covered graphs with no K3-component give as corollaries results
on claw-free graphs of minimum degree at least 3

The conjectures and results of Henning and Swart are related to the following
properties.

Definitions
¢ Property A(r): every K,-covered graph G of order n satisfies 7. (G) <
2n

I3

e Property B(r): every K,-connected graph G of order n > r + 1 satisfies
7%.(G) < 25.

¢ Property C(r): every K,-connected minimally K,-covered graph G of or-
der n > r + 1 satisfies v, (G) +7%,.(G) < 3%.

¢ Property D(r): every K,-connected graph G of order n > r + 1 satisfies
1%.(G) +7%,(G) < EF2n.

Conjecture A [13] Property .A(r) is true for all r > 3.
Conjecture B [13] Property B(r) is true for all r > 3.
Conjecture C [14] Property C(r) is true for all r > 3.
Conjecture D [14] Property D(r) is true for all r > 3.
Theorem A [13] Property A(r) is true for r = 3,4 and 5.
Theorem B [13] Property B(r) is irue for r = 3 and 4.
Theorem C [14] Property C(r) is true for r = 3.
Theorem D [14] Property D(r) is true for r = 3.
Note that for r = 2, Property .A(2) is obvious, and Properties B(2) and D(2)
(and thus C(2)) are respectively proved in [3] and in [1).
In a K,-covered graph, a good vertez is a vertex of degree r — 1 and a good
clique is a clique K- containing a good vertex. The following result, indepen-

dently proved in [6] and in [8], will be of constant use throughout the paper.

Theorem E [6, 8] Every edge of a minimally K,-covered graph is contained
in a good cligque.

291



Remark 2 In minimally K,-covered graphs, adjacent vertices are K,-adjacent
since every edge is contained in a K,. Hence a minimally K,-covered graph G

satisfies v(G) = vk, (G) and %(G) = 7%, (G), and is K,-connected whenever it
is connected.

Upper bounds for the total domination number +, are given in [10, pp. 160-
161}, {11] (for graphs with minimum degree 2) and [7] (for graphs with minimum
degree 3). The following conjecture also appears in (7).

Conjecture F [7] If G has order n and §(G) > 3, then 1:(G) < n/2.
Some progress towards proving Conjecture F was made in [4):
Theorem F [4] If G is a claw-free cubic graph of order n, then v(G) < n/2.

We obtain an improvement of Theorem F as a corollary to our results on
K,-covered graphs in Section 4. But recently we became aware of the existence
of three preprints proving Conjecture F for cubic graphs [9] and more generally
for any graph [15, 16].

2 Conjectures on v and v; in K,-covered graphs

In this section we present four conjectures related to v and 4 + 4 and begin
to discuss their relationships with Conjectures A to D. First we define four
properties similar to Properties .4 to D.

Definitions

* Property Py(r): every K,-covered graph G of order n satisfies 7, (G) < 22.

o Property P2(r): every K, -covered graph G of order n with no K,-component
satisfies 7:(G) < 2.

¢ Property Ps(r): every minimally K,-covered graph G of order n with no
K,-component satisfies ¥(G) + %(G) < 3%.

o Property P4(r): every K,-covered graph G of order n with no K,-component
satisfies v(G) + n(G) < 372n.

Conjecture 1 Property P;(r) is true for all r > 3.
Conjecture 2 Property P,(r) is true for all r > 3.
Conjecture 3 Property Ps(r) is true for all 7 > 3.

Conjecture 4 Property Py(r) is true for all r > 3.
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For r = 2, Properties P, (2) to P4(2) are respectively the same as Properties
A(2) to D(2), and are true as already noticed.

Conjecture 2 is stronger than Conjecture 1 The difference comes from the
K,-components of G since 1 (K,;) = 2 = 22, and disjoint unions of cliques
K, show that Conjecture 1 is sharp. Sxmllarly, disjoint unions of Kry; —e (a
clique Ky4; minus one edge) show that Conjectures 2 and 3 are sharp. The
sharpness of Conjecture 4 is shown for instance by the following graphs. Let
G(r) consist of = cliques K, say K°, K, .., K™1, plus r — 1 edges usv; of
a matching with u; € K° and v; € K for 1 < i < r —1 (the graph G(3) is
represented in Section 5, Figure 2). Then n = 12, YGr) =7, %(Gy) =2(r — 1)
and ¥(G,) + %(G,) = 3"“271 Obviously, this equality is also satisfied by every
disjoint union of graphs G(r)

The first theorem shows that Conjectures 1 and 3 are respectively equivalent
to Conjectures A and C.

Theorem 1 Properties Py(r) and Ps(r) are respectively equivalent to Proper-
ties A(r) and C(r).

Proof. 1f A(r) holds, then P;(r) holds since (@) < 7k.(G) for every K,-
covered graph G by Remark 1. Similarly, suppose Property C(r) to be true and
let G be a minimally K,-covered graph of order n and with no K,-component.
Each component G* of G is minimally K,-covered of order at least r + 1 and
is K,-connected by Remark 2. Adding the inequalities of Property C(r) for all
the components G* shows that Property Ps(r) is true.

Conversely, Ps(r) implies C(r) by Remark 2. Suppose P;(r) to be true and
let G be a K-covered graph of order n and F a mlmmally K,-covered spanning
subgraph of G. Then, by Remark 2 and Py(r), 7%, (G) < 7k, (F) = %(F) < 22.
Hence A(r) is true. l

An immediate consequence of Theorems 1, A and C is

Proposition 2

L. Forr € {3,4,5}, every K-covered graph G of ordern satisfies 1,(G) < 22.

2. Every connected minimally K3-covered graph G of order n > 4 satisfies
7G) +%(G) < .

In Section 3 we improve Theorem A by proving that P;(6), and thus by
Theorem 1 also A(6), is true. In Section 4 we prove that Conjectures 2 and B
are equivalent and deduce P»(3) and P,(4) from Theorem B. In Section 5 we
show that Property P,(r) implies Property D(r) for all  and that Property
D(3) implies Property P4(3). This allows us to deduce P4(3) from Theorem D.
Corollaries on claw-free graphs of minimum degree at least 3 are deduced from
P2(3) and Py(3).
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3 Some results on Conjecture 1

The proof of Property P; (6) uses a particular family F, of minimally K,-covered
graphs which was already considered in [8]. Recall that the corona of a graph
H is obtained from H by adding a pendant edge at each vertex of H and that
the middle graph of H is the line graph of the corona of H (see for instance [5)).
Definition: F, is the family of the middle graphs of (r — 1)-regular graphs.
From this definition, F, is the collection of graphs G consisting of edge-
disjoint cliques of order r, where each such clique contains exactly one vertex
of degree r — 1 and the remaining r — 1 vertices have degree 2(r — 1). Let S
be the set of these edge-disjoint cliques. Then each vertex of G of degree r — 1

belongs to exactly one K, in S and each vertex of degree 2(r — 1) belongs to
exactly two K,’s in S.

We first show that for r > 3, Property Pa(r), and thus also Py(r), holds for
every graph of .. We need a lemma.

Lemma 3 Bvery d-regular graph H, d 2> 2, has a spanning subgraph consisting
of p1 isolated vertices, p» paths of length one and ps paths of length two such
that py < 432ps.

Proof. Let L be a spanning subgraph of H of the required form such that
P2 + p3 — p; is maximum. Let X be the set of isolated vertices of L, Y (Z,
respectively) the set of the vertices of degree two (one, respectively) of the
paths of length two, and T the set of vertices of the paths of length one. Let u
be any vertex in X. The vertex u has no neighbour in T, for otherwise we could
find a spanning subgraph L' of the required form with p3 —p] = ps —p1 +2 and
p5 = p2 — 1. Similarly, % has no neighbour in Z. Hence X sends dp; edgesto Y’
and Y sends at most (d — 2)ps edges to X. Therefore p; < 432ps. ]

Theorem 4 Forr > 3, every graph G of order n of F, satisfies %(G) < ,.2—_{_‘1-

Proof. Let V be the disjoint union V; U V>, where V; and V, are respectively
the sets of vertices of degree r — 1 and 2(r — 1) of G. Each vertex in V; has
r — 1 neighbours in V; and each vertex in V2 has two nexghbours in V;. Hence
2|Va| = (r — 1)|VA). Since |[Vi| + |V2| = n, we get [Va] = 2. Now consider the
graph H whose vertices are the elements of S and where two vertices A and B
of H are adjacent if the cliques A and B of G share (exactly) one vertex zap.

The graph H has order N(H) = |Wj| = ; +1 and is (r — 1)-regular. Consider a
spanning subgraph L of H as in Lemma 3. We construct a set D of vertices of G
as follows: for each path ABC of L, let D contain the vertices z4p and zgc; for
each path AB of L, let D contain the vertex z4p and one of its neighbours; for
each isolated vertex A of L, let D contain two vertices of A. Hence D is a total
dominating set of G of order |D| = 2p3 +2py +2p; = N(H) +p) —p3 < N(H)
by Lemma 3. Therefore %(G) < 2. n

We can now prove P;(6).
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Theorem 5 Every Kg-covered graph G of order n satisfies 7,(G) < 3

Proof. The proof is by induction on n > 6. If n = 6, then G 2 K, and the
property is true. Suppose the property to be true for graphs of order less than
n and let G be a K -covered graph of order n > 6. Let H be a minimally
Ke-covered spanning subgraph of G. Since 1(G) < % (H), it is sufficient to
prove v (H) < %, and we henceforth consider H instead of G.

For every pair of adjacent vertices u and v, let

P(u,v) = {z € N(u,v)\{z,v} : N(z) C N(u,v)}.

By Theorem E, the edge uv is contained in a good clique C. Let u’ be a
good neighbour of u in C. The r — 1 neighbours of u’ are vertices of C and
thus are adjacent to u. Hence every good neighbour of u, and similarly ev-
ery good neighbour of v, belongs to P(u,v) U {u,v}. Note also that if ¢t €
N(u,v)\(P(u,v) U {u,v}), then ¢ has a neighbour ¢; ¢ N(u,v), and thus a
good neighbour ¢’ ¢ N(u,v) belonging to a good clique containing the edge
tt1. The graph H[V\(P(u,v) U {u,v})], if it exists, is still Kg-covered and sat-
isfies the induction hypothesis. Note that {u,v} is a total dominating set of
H[P(u,v)U {u,v}]. Hence if |P(u,v)| > 4, we are done. We suppose henceforth
|P(u,v)| < 3 for every pair of adjacent vertices of H.

Lemma 5.1 Two good cliques Kg cannot share more than one vertez.

Proof of Lemma 5.1. Suppose to the contrary that C and C' are two good
Kg'’s both containing the (non-good) vertices u and v, and let z (respectively
z') be a good vertex of C (respectively C’). Since |(C U C')\{u,v,z,2'}| > 3
and |P(u,v)\{z,z'}| < 1, at least one vertex ¢ of (C U C")\{u,v,z,2'} is not in
P(u,v). Let ' be a good neighbour of ¢ not in N(u,v). Since {z,2’,t'} C P(v,t)
and |P(v,t)| < 3, u is not in P(v, t) and has a good neighbour u’ not in N(v, ).
Similarly, v has a good neighbour v’ not in N(u, t). The four vertices z,z’,4’,v'
are distinct and belong to P(u,v), a contradiction. a

Lemma 5.2 No vertez can belong to three good cliques Kg.

Proof of Lemma 5.2. Suppose to the contrary that u belongs to three good
dliques C, C', C", and let z,2’,z" be good vertices of C, C’, C" respectively. Let
w and ¢ be two vertices of C\{u, z}. Since {z,z',z"} C P(u,t), w ¢ P(u,t) and
w has a good neighbour w’ not in N(u,t) and thus distinct from z,z’,z”. But
then {z,z',2",w'} C P(u,w), a contradiction. a

We now complete the proof of the theorem. Let C be any good K of H. Then
C contains at least two non-good vertices u and v, for otherwise we would have
|P(z,y)| 2 4 for a pair of adjacent vertices = and y. Each of u and v belongs to
another (exactly one, by Lemma 5.2) good K;. By Lemma 5.1, these two good
Kg's are distinct, say Cy, and C,. Let z, u’ and v’ be good vertices of C, Cy, and C,
respectively. If C contains a second good vertex z’, then {z,z’,u’,v'} C P(u,v),
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a contradiction. Therefore each good clique contains exactly one good vertex
and five non-good ones, and each non-good vertex is contained in exactly two
good Kg’s. The graph H belongs to the family ¥4 described above and thus
Y (H) < 32 < 28 This completes the proof by induction. [ ]

4 Some results on Conjecture 2
In this section we prove the equivalence of Conjectures B and 2.

Theorem 6 For any r > 3, Properties B(r) and Pa(r) are equivalent.

Proof. 1. Pa(r) implies B(r).

Suppose Pz(r) to be true and let G be a K,-connected graph of order n > r+1.
Let F = (V, E') be the spanning subgraph of G obtained by deleting the edges
of G which are not contained in a K,. The graph F is still K,-connected,
and thus connected since the K,-paths have not been destroyed. By P,(r),
% (F) < 2% +1 Since every edge of F is contained in a K, 7 (F) = n(F).
Therefore 7} (G) < vk, (F) < 24 and B(r) is true.

2. B(r) implies Py(r).

We suppose B(r) to be true and prove P,(r) by inductiononn > r+ 1. If
n =r+ 1, then the K,-covered graph G is isomorphic to K,4; or to K,y1 —e
and thus v (G) =2 = 2. Suppose the property to be true for graphs of order
at most n — 1 and let G be a K,-covered graph of order n > r + 2 and with no
K,-component. Let F = (V, E;) be a minimally K,-covered spanning subgraph
of G. All the components of F are K,-connected but some of them may be of
order r, that is, isomorphic to K. If no component of F is isomorphic to Ky,
then, by Property B(r) applied to each oomponent of F, we get 'nyr(F) < '_'*:;'1
and thus %(G) < 7k, (G) < 7k.(F) < &4

Suppose now that F has some K,.-components and let H = (V, E;) be a
spanning subgraph of G obtained by joining each K -component of F to another
component by one edge of G (this can be done since G has no K,-component).
Each edge e € E»\E, is a cut-edge of H such that at least one component of
H - e is a K,. Indeed, since r > 3, the edges in E2\E; are the only cut-edges
of H. Since 1(G) £ 7 (H) and since we can apply the induction hypothesis to
each component of H, it is sufficient to suppose H to be connected and to prove
n(H) < Z5.

Lety be a vertex of H incident to the cut-edges yz;,yz2, -+ ,yzk, k > 1, of
H such that each z; belongs to a K,-component A; of F and the other edges
incident to y are not cut-edges of H. Let

k
X = {o1,25,++ 2} and X' = [J(V(4)\{z}).

i=1

We first prove a lemma.
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Lemma 6.1 If y is incident Lo at least two cut-edges, then v, (H) < 2%.
Proof of Lemma 6.1 Let y be incident to the cut-edges yz, and yz, such that
each z; belongs to a K,-component A; of F, and let H' = H—(V(4,)UV(43)).
Clearly, H' is a K,-covered graph of order n - 2r with no K,-component, and so
by the induction hypothesis, H' has a total dominating set S’ with |S'| < 2n-dr,
Then § = §'U{z1,%2,y} is a total dominating set of G with |S| < 2n=dridrtd <
22, as required. a

We thus assume that zy is the unique cut-edge of H incident to y, where z
belongs to the K,-component A of F (see Figure 1). Then

|{z,y}| =2= r_-?.'i'{xs y}UX'|. (1)

Let L= N(y)\{z} and P={z € L : N(z) C LU {y}}. Let Q be the set of the
vertices ¢ € L\ P such that all the edges of H incident to ¢ and not in H[L] are
cut-edges of H. Let

T=N@WMLU{y}} and T'= N(T)\Q.

By Lemma 6.1 applied to each vertex in @, |T| = |Q|, H[T U T"] consists of
|Q| isolated cliques K, and |T'| = (r — 1)|Q|. Since the sets Q, T and 7" are
mutually disjoint, we have

[QUTUT'| =(r +1)|Q|

and so
lQuUT|=2|Q|= Z;|QuUTuUT. 2)

Let M = TUT'U{z,y} U X". The vertices of PUQU M have no neighbours in
VA(LU M). Recall that each edge of F is contained in a good K, of F. Every
vertex u in L\(PUQ) has at least one neighbour v in V\(LU M) such that the
edge uv is not a cut-edge of H and thus belongs to a good clique C of F', which
cannot contain y since v ¢ L. Let w be a good vertex of C in F. Note that
w ¢ L, for otherwise yw (which is not a cut-edge) is contained in a good clique
C' # C. But then w belongs to two distinct cliques and is not a good vertex of
F, a contradiction. The clique C is entirely contained in V\(PUQU M) since w
is not in L and thus has no neighbour in M, and w has no neighbour in PU Q
by the definition of P and Q. Therefore H[V\(PU QU M)] (if it exists) is K-
covered, but may have K,-components. In this case, all these K,-components
have at least one vertex in L\(PU Q). For each K,-component B;, 1 <i < s,
of H[V\(PU QU M)], choose a vertex b; € V(B;) N (L\(PU Q)) and let

R= {bl:“' ,b,}, R = U(V(Bi)\{bi})°

i=1
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Since the cliques B; are disjoint,
|R| = 128l < 2 |RUR|. @)

The graph H[V\(PUQ U M U RU R’)] (assuming that it exists) is K-
covered and has no K,.-components. By the induction hypothesis it has a total
dominating set D, such that

|D1| £ Z5IV\(PUQUM URUR).

On the other hand, since ' =  whenever Q@ = 9, D, = {z,y}UQUTUR is a total
dominating set of H{[PUQUMURUR']. Since the sets P,Q,T,T",{z,y}, X", R, R’
are mutually disjoint, it follows from (1), (2) and (3) that
|D| = {z, 9} +|QUT| +|R|

< #l{z 9} UX'UQUTUT' URUR|

=:7IMUQURUR/|

<+HIPUQUMURUR].
Therefore D; U D; is a total dominating set of H of order at most 2%. This
completes the proof by induction.

A consequence of Theorems 6 and B is that Property P,(r) is true forr =3

and 4.

Theorem 7 For r = 3 and 4, every K,-covered graph G of order n and with

no K,-component satisfies 1(G) < -fT"l-

We have already seen that disjoint unions of K41 — e satisfy %(G) = 2%.
The following class gives an example of arbitrarily large connected graphs sat-
isfying the equality in Theorem 7. For any integer p > r, let Gy be the
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graph obtained from one clique K isomorphic to K, and p diques K!, K?2,..,
K? isomorphic to K, by adding p edges uv; of a matching with u; € K and
v; € K for 1 < i < p. Then Gy, is K,-covered, n(Gp,) = p(r + 1) and
%(Gpr) =2p = 2.

For claw-free graphs, we obtain the following corollary to the case r = 3 of
Theorem 7.

Corollary 8 Every claw-free graph of order n and minimum degree at least 3
satisfies %(G) < 1.

5 Some results on Conjecture 4

Theorem 9 below states that Conjecture 4 is at least as strong as Conjecture D.
As for the converse, we only prove in Theorem 10 that Property D(3), which is
true by Theorem D, implies Property P,(3).

Theorem 9 For any r > 3, Property Py(r) implies Property D(r).

The proof of Theorem 9 is exactly the same as the proof of the first part of
Theorem 6 and is not repeated.

Theorem 10 Every K3-covered graph G of order n and with no K3-component
satisfies 7(G) +7(G) < .

Proof. We proceed by induction on n. The beginning of the proof is similar
to the proof of the second part of Theorem 6. We recall it briefly for the sake
of completeness. If n = 4, then G is isomorphic to K or K; — e and satisfies
7(G) +%(G) = 3 < 2. Suppose the property true for graphs of order less
than n and let G be a K3-covered graph with no K3-component and of order
n 2 5. Let F = (V, E;) be a minimally K3-covered spanning subgraph of G.
All the components of F are Ks-connected. If no component of F is isomorphic
to K3, then we can apply Theorem D to each of them and add the resulting
inequalities. Hence ¥(G) +%(G) < 7x:(G) + 7k, (G) < 1, (F) + 7, (F) < 2.

Suppose now F has K3-components and let H = (V, Ez) be a spanning sub-
graph of G obtained by joining each K3-component of F to another component
by one edge of G. Since 7(G) +%(G) < ¥(H) +v(H), we can suppose without
loss of generality that H is connected, and prove y(H) + v(H) < 7Tn/9. Let
v be any vertex incident to cut-edges of H. We define X, X', L, P, Q, T, T,
M, R, R’ (some possibly empty), as in Theorem 6. (Note that now |X| > 1 is
possible, although it can be shown that | X| < 2, and in this case {z} is replaced
by X in the definition of M.) Then |T| > |Q|, T =0 if Q =@ and

IXuX'|=31X|, [TUT|=3|T|, |RUR|=3|R 4)
Moreover, L # @ since y belongs to a triangle. We state the following result as

a lemma for reference.

299



Lemma 10.1 Let ¢t € L be a good vertex of F. If t is good in H, then t € P;
otherwise t € Q.

Proof of Lemma 10.1. If t is good in H, then ¢ is contained in exactly one
clique and this clique contains y, hence ¢t € P. If ¢ is not good in H, then all
the edges of H incident to ¢ and not in H[L] are in E;\E; and thus cut-edges
of H, therefore t € Q. 0

Let S= PUQUMURUR'. If it exists, the graph H[V\S] is K3-covered
without Kj3-components and, by the induction hypothesis, has a total domina-
ting set Dy and a dominating set D} such that |Dy|+|Dj}| < 7(n—|S|)/9. Note
that

D;={y}UXUQUTUR
is a total dominating set of H[S]. We first consider the case P = §.
Lemma 10.2 If P =0, then v(H) + v(H) < Tn/9.
Proof of Lemma 10.2. If P =0, then

Dy =XUTUR
is a dominating set of H[S]. By (4),
IS =1+|QI+3(IX| +|T|+|R]),

therefore

7|S| - 9(|1D2| + | D3l) = =2 - 2|Q| +3(IX| + T} + | R])
>2(IT| - |QI) +2(1X] - 1)
20 (since |T} 2 |Q] and |X| > 0).

It follows that D = D; U D, (respectively D' = Dj U Dj) is a total dominating
set (respectively a dominating set) of H such that |D| + |D’| < Tn/9. o

We now suppose that P # (. Then
Di={y}UXUTUR
is a dominating set of H[S]. By (4),
IS|=1+|P| +|Q| + 3(1X| + |T| + |R]).
Therefore

75| = 9(|D2| +|D2]) = =11 + 7|P| = 21Q| + 3(|X| +T| + |RY)
= -1+ 7(|P| - 1) +3(1X| - 1) + 3|T| - 2|Q| + 3| R,
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with [P > 1, |X]| > 1,|T| > |Q|and T = 0if Q = 0. If [P| > 1, |X| > 1,]Q| > 0
or |R| > 0, then | Dy| +|Dj| < 7|S]|/9, in which case D = D, U D, (respectively
D' = Dy U D3) is a total dominating set (respectively a dominating set) of H
such that |D| + |D'| < 7Tn/9.

It remains to consider the case where, for each vertex y incident to a cut-edge
of H,

|P|=|X]=1, Q=0 and R=0. (5)

Lemma 10.3 Degy(y) = 3.

Proof of Lemma 10.3. Note that degy(y) > 3 since |X| = 1 and y is contained
in a good triangle C, where C contains the unique good vertex ¥’ in H adjacent
to y. If degy(y) > 3, let v € L\V(C). Then yv is contained in a good triangle
C' # C of F and hence y is adjacent to a good vertex y” of F, where y" #
y'. Since y” is not good in H, it follows from Lemma 10.1 that ¥ €Q, a
contradiction since Q = 9. a

Let L = {u, z} with u good and z not. If z is incident to a cut-edge of H, then

exchanging the roles of y and 2 shows that H consists of three triangles joined by
two edges (see the graph Gj in Figure 2) and verifies y(H) +v(H) = 7 = Tn/9.

VAV

Figure 2

Otherwise, we consider the following decomposition of N(z) (which is similar
to the decomposition of N(y) used above). Define L;, P, @y, Th, Ty, My, By
and S, similar to L, P, Q, T, T', M, R and S. Then |T{ UT}| = 3|Ty|. Also, if
we define X similar to X, then X; = @ since z is not incident to a cut-edge of
H. Note that y € Q, and u € P,.

Lemma 104 |P}| > 2.

Proof of Lemma 10.4. Since z has degree at least 3 and X; = 0, it follows
(similar to the proof of Lemma 10.3) that z is adjacent to a good vertex y' of
F with y' ¢ {u,y}. Since degy(y) = 3 and degy (u) = 2 and all the neighbours
of y and u are already accounted for, z and ' have another common neighbour
u' ¢ {u,y}. If ' is good in H, we are done. Otherwise, by Lemma 10.1, 3’
is incident to a cut-vertex of H, and so by (5), with 3’ instead of y and with
the sets defined in the obvious way, |P'| = |X'| =1, Q' =0 and R’ = . Thus
degy(u’) = 2, degy(y') = 3 and P’ = {u'}. But then 2’ is good in H, that is,
u’ € P, and the result follows. O

301



The graph H[V'\S,), if it exists, has a total dominating set D3 and a dominat-
ing set Dj such that | D3| +|Dj| < 7(n —|S1])/9. Define Dy, a total dominating
set, and Dj, a dominating set, of H[S] similar to D, and Dj3; note that

[Ds| =1+ |1 + |Th| + |Ra|

and
|Dal =1+ |Ti| + Ry
Since
111 = 1+ |P| +1Q1| + 3(|T1] + |Ral)
and |T1] > |Qu|, we get

7181] = 9(|D4| + | DY) = =11+ 7|P1| — 2|@Q1| + 3(IT1| + |Ral)
2 3+4+|Q:| + 3|R:]
> 0.

Hence the sets D = D3 U Dy and D' = D3 U D} are respectively a dominating
set and a total dominating set of H satisfying | D|+|D’| < Tn/9. This completes
the proof by induction. ||

Disjoint unions of the graph of Figure 2 show that the bound in Theorem
10 is sharp.

Corollary 11 Every claw-free graph G of order n and minimum degree at least
3 satisfies v(G) + %(G) < ™ /9.
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