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Abstract

For a vertex v of a graph G = (V, E), the domination number
7(G) of G relative to v is the minimum cardinality of a dominat-
ing set in G that contains v. The average domination number of
G is 744(G) = |—‘1,-| Y vev V(G). The independent domination num-
ber i, (G) of G relative to v is the minimum cardinality of a maximal
independent set in G that contains v. The average independent dom-
ination number of G is iav(G) = [P1 2, cv i(G). In this paper, we
show that a tree T satisfies Yao(T") = i0y(T) if and only if A(T) =0
or each vertex of A(T) has degree 2 in T, where A(T) is the set of
vertices of T that are contained in all its minimum dominating sets.
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1 Introduction

Domination and its variations in graphs are now well studied. The literature
on this subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [7, 8]. In this paper, we introduce and study the
concept of average domination and independence in graphs.
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For notation and graph theory terminology we in general follow [7].
Specifically, let G = (V, E) be a graph with vertex set V of order n and
edge set E of size ¢, and let v be a vertex in V. The open neighbor-
hood of v is N(v) = {u € V|uv € E} and the closed neighborhood
of v is N[v] = {v} UN(v). For a set S C V, its open neighborhood
N(S) = UyesN(v) and its closed neighborhood N[(S] = N(S)uU S. The
private neighborhood pn(v,S) of v € S is defined by

pn(v,S) = N[v] - N[S — {v}].

If pn(v,S) # @, then every vertex of pn(v,S) is called a private neighbor
of v with respect to S. A leaf is a vertex of degree one and its neighbor is
called a support vertex. A strong support vertex is adjacent to at least two
leaves. A cycle on n vertices is denoted by C,, and a path on n vertices by
P,. We let z =4 y mean z = y (mod £).

A set S is a dominating set of G if N[S] = V, or equivalently, every vertex
in V — S is adjacent to a vertex of S. The domination number v(G) is the
minimum cardinality of a dominating set of G. The independence number
B(G) of G is the maximum cardinality of an independent set in G, while
the independent domination number (also called the lower independence
number) i(G) of G is the minimum cardinality of a maximal independent
set of G. A dominating set of cardinality v(G) is called a v(G)-set, while a
maximal independent set of cardinality i(G) is called an i(G)-set.

For any two graph theoretical parameters A and u, we define a graph
G to be a (A, p)-graph if AM(G) = u(G). It is well-known that v(G) <
i(G) for all graphs G, and that the class of (7,i)-graphs is very difficult
to characterize. Several classes of (v,¢)-graphs have been found-see, for
example, [1, 2, 4, 5, 13].

The class of (v,i)-trees was first characterized in [6] but this character-
ization, which involves reducing transformations and forbidden configura-
tions, is rather difficult to use. Recently, Cockayne, Favaron, Mynhardt,
and Puech [3] provided a more elegant characterization of (-y, 7)-trees which
is relatively easy to use. Their characterization is in terms of the set of
vertices of the tree which are contained in all its y-sets and i-sets. These
sets were characterized by Mynhardt [9] who used an ingenius tree pruning
procedure.

In this paper, we investigate a subclass of (vy,%)-trees. For this purpose,
we introduce the concept of average domination and average independence
in graphs. Thereafter we characterize trees with equal average domination
and average independent domination numbers in terms of the set of vertices
of the tree which are contained in all its «y-sets. Using the tree pruning
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procedure of Mynhardt [9], this set can be found in complexity bounded
by O(n?), where n is the order of the tree. Hence, our characterization of
trees with equal average domination and average independent domination
numbers is relatively easy to use. We also show that the average domination
number of a nontrivial tree is at most half its order, while the average
independent domination number of a tree of order n > 2 is at most n — 2+
2/n.

2 The Average Domination Number

For a vertex v of G, we define the domination number of G relative to v,
denoted 7,(G), as the minimum cardinality of a dominating set in G that
contains v. The average domination number of G, denoted 7,,(G), is de-
fined as T‘ITI 2 vev W(G). A dominating set of cardinality -, (G) containing
v we call a v, (G)-set.

In this section, we establish bounds on the average domination number
of a graph in terms of its domination number. Clearly, for a vertex v in a
graph G, 7(G) < (@) with equality if and only if v belongs to a v(G)-set.
Thus for any graph G, 7(G) < 7.v(G) with equality if and only if every
vertex of G belongs to a y(G)-set. Consequently, 7,,(Ky) = 1, while for a
cycle Cp on n > 3 vertices, ¥y (Cn) = ¥(Cr) = [n/3].

The next result establishes an upper bound on the average domination
of a graph in terms of its domination number. The proof is straightforward
and therefore omitted.

Proposition 1 For any graph G of order n with domination number v,
')'av(G) <7r+1- %;

with equality if and only if G has a unique v(G)-set.

For n > 3, by Proposition 1, Y,y (K1,n-1) = 2 — 1/n. Next we establish
the average domination number of a path.

Proposition 2 For a path P, on n vertices,

n+2 2
3 3, ifn=32
7av(Pn) = +2
n 3 otherwise



Proof. Suppose n =3 0. Then there is a unique y(P,)-set, and so, by
Proposition 1, Y4y (Pr) = Y(Pp) +1—7(Pr)/n =n/3+1-1/3 = (n+2)/3.
Suppose n =3 1. Then every vertex of P, belongs to a y(P,)-set, and
S0 Yav(Pn) = v(Pn) = (n + 2)/3. Suppose n =3 2. Let P, be given by
V1,V2,...,Un. Then, v, (Pn) =y(Pr)+1=(n+4)/3ifi =3k 1<k<
(n - 2)/3 and 4y, (Pn) = v(Pn) = (n + 1)/3 otherwise. Hence,

> (P = (";2) : (";4)+ (2"’;2) . (n;-l) _ n2+§n—2,

vEV(Pn)

and so, Yoy (Pr) = (n +2)/3-2/3n. 0

Note that v,,(P3) = 5/3 > 3/2. We show next that P; is the only
nontrivial tree whose average domination exceeds half its order. Recall
that the corona H o K of a graph H is the graph constructed from H by
adding for each vertex v of H, a new vertex v’ and a pendant edge vv'.

For any forest H, let S(H) denote the set of trees, each of which can be
formed from H o K; by adding a new vertex z and edges joining z to one
or more vertices of H. Then define

T={Js&)
H

where the union is taken over all forests H. As a consequence of a char-
acterization of connected graphs G of order n with 7v(G) = (n — 1)/2 (see
Theorem 2.6 in [7] or [12]), we have the following result.

Corollary 3 ([7, 12]) A tree T of order n > 3 satisfies ¥y(T) = (n — 1)/2
ifend only if TET.

Theorem 4 IfT is a tree of order n > 4, then v7,,(T) < n/2 with equality
if and only if T is the corona of a tree.

Proof. The sufficiency follow immediately from the observation that if T
is the corona of a tree, then v(T') = n/2 and every vertex of T belongs to
a (T)-set. To prove the necessity, we recall (see Theorem 2.1 in [7]) that
Y(T) < n/2. I y(T) < (n — 2)/2, then by Proposition 1, 7,,(T) < n/2. If
Y(T) = (n—=1)/2, then, by Corollary 3, T € T, and 50 74,(T) < (n—1)/2+
2/n < n/2 (since here n > 5). Finally, if 7(T) = n/2, then T is the corona
H o K, of a tree H (see Payan and Xuong [10]), and 50 7,,(T) =n/2. O
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3 The Average Independent Domination Num-
ber

In this section, we consider the concept of average independence in graphs,
a concept closely related to the problem of finding large independent sets
in graphs. The independent domination number i(G) of a graph G can be
viewed as a worst case bound on the performance of the ‘naive’ greedy-
algorithm for approximating a maximum independent set of G: choose a
vertex v, let S = {v}, and add vertices to S, one at a time, which are
not adjacent to any vertex already in S. The algorithm stops when S is a
maximal independent set. The class of those graphs for which this ‘naive’
greedy-algorithm always yields a maximum independent set is exactly the
class of well-covered graphs. A graph is well-covered if every maximal in-
dependent set of vertices is also a maximum independent set. The study of
well-covered graphs was proposed by Plummer [11].

The lower bound #(G) on the cardinality of an independent set obtained
by the ‘naive’ greedy-algorithm can be improved if one takes into account
that the first vertex is chosen randomly. For a vertex v of G, we define
the independent domination number of G relative to v, denoted i,(G), as
the minimum cardinality of a maximal independent set in G that contains
v. Then, i,(G) is a worst case bound on the cardinality of an independent
set obtained by the ’naive’ greedy-algorithm if we use v as a start vertex.
A maximal independent set of cardinality i,(G) containing v we call an
iv(G)-set. We define the average independent domination number io,(G)
of G, or the lower average independence number of G, by ]—‘17[ Yvev i(G).
Then, i44(G) is a lower bound on the expected value of the cardinality of
the independent set obtained by the ‘naive’ greedy-algorithm if the first
vertex is chosen randomly.

Since i(G) < iy(G) < B(G) for every vertex v in a graph G, we observe
that i(G) < 744(G) < B(G) for any graph. Furthermore, equality holds in
the lower bound if and only if every vertex of G belongs to an i(G)-set,
while equality holds in the upper bound if and only if G is well-covered. If
G is not a well-covered graph, then the upper bound can be improved.

Theorem 5 For any graph G of order n with independent domination
number ¢ and independence number B,

, i-(B—1)
zav(G) Sﬂ“_T
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with equality if and only if G is well-covered or G has a unique i(G)-set
and for each vertez not in the i(G)-set, every mazimal independent set
containing it has cardinality 5(G).

Proof. Let S be an i(G)-set of G. If v ¢ S, then, clearly, i,(G) < 5. On
the other hand, for each vertex v € S, i,(G) = i. Hence,

ia@) < = (@ + (0 =) B) = f— = (i (B-4).

This establishes the upper bound. Furthermore, if S is not the unique
minimum independent dominating set of G, then there exists a vertex w ¢ S
such that i,,(G) =4, and so

iw(G) < L((i+1)-i+(n—-i-1)-5)
= B-L((E+1)-(B-1)
< B-%i(G-(B-1).

Moreover, if some vertex not in the S belongs to a maximal independent
set of cardinality less than 8(G), then

iaw(G) £ L(@+B-1+(n-i-1)-p)
= B-LG-(B-i)+1)
< B-1(G-(B-1i)).

Hence, if ,4(G) = B — (i - (B — 7)) /n, then G must have a unique #(G)-set
and each vertex not in the ¢(G)-set is such that every maximal independent
set containing it has cardinality 8(G). On the other hand, if G has a unique
7(G)-set and for each vertex not in the i(G)-set, every maximal independent
set containing it has cardinality 8(G), then it is straightforward to verify
that iy(G) =B - (i- (B —1))/n. D

As an immediate consequence of Theorem 5, we can establish an upper
bound on the average independent domination number of a tree in terms
of its order.
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Corollary 6 IfT is a tree of order n > 2, then

ia‘v(T) <n-2+ %

Proof. Let T have independence number 8. If § < n — 2, then by The-
orem 5, i5,(T) < B < n—2 < n—2+2/n. On the other hand, sup-
pose 8 >n—2 Then, T 2 Kypyand 8 =n—-1. If n = 2, then
iev(T) =1=n—2+2/n. Suppose that n > 3. Theni(T) =1and T has a
unique #(T")-set which consist of the central vertex. Every leaf of T belongs
to a unique maximal independent set consisting of the 8 = n — 1 leaves of
T. Hence, by Theorem 5, i, (T) = 8 — (i- (8 —i))/n =n — 2+ 2/n. Thus,
if 8> n—2, then i4y(T) = i (K1n—1) =n—2+2/n. 0

4 A Characterization of (v, %.,)-Trees

Since 7,(G) < i,(G) for every vertex v in a graph G, we observe that
Yav(G) £ i4y(G) for any graph G and this bound is sharp. For example,
if G is a path or a cycle, then v,(G) = 1,(G) for every v € V(G), and so
Yav (G) = 7:cw(G')-

We observe next that every (7su,%av)~tree is also a (y,%)-tree. For sup-
pose T is a tree satisfying o, (T") = %au(T). Then, v, (T) = 1,(T') for every
vertex v of T. Let v belong to a y(T)-set. Then, v,(T) = v(T") < i(T) <
i(T) = 7,(T). Hence we must have equality throughout this inequality
chain. In particular, y(T") = i(T).

Our aim is to provide a characterization of trees T satisfying ,,(T) =
i4y(T) in terms of the set of vertices of the tree which are contained in
all its y-sets. For this purpose, we define the vertex subsets A(G), A:(G),
N(G) and N;(G) of a graph G by

A(G) = {veV(G)|wvisinevery v(G)-set},
Ai(G) = {veV(G)]|wvisin every i(G)-set},
N(G) = {veV(G)]|visinno v(G)-set},
Ni(G) = {veV(G)|visin no i(G)-set}.

Using an ingenius tree pruning technique of Mynhardt [9], the set A(T')
of a tree T' can be found in complexity bounded by O(n?).

Let V2(T) = {v € V(T) | degv = 2}. We shall prove:
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Theorem 7 A tree T satisfies You(T) = iay(T) if and only if A(T) C
Vo (T).

4.1 Proof of Theorem 7

For ease of presentation, we mostly consider rooted trees. For a vertex v
in a (rooted) tree T, we let C(v) and D(v) denote the set of children and
descendants, respectively, of v, and we define D[v] = D{(v) U {v}. The
maximal subtree at v is the subtree of T induced by D[v], and is denoted
by T,. We define a branch vertez as a vertex of degree at least 3. The set
of branch vertices of T is denoted by B(T). A path P in T is said to be a
u-L path, if P joins a vertex u to a leaf of T. The length of P is denoted
by #(P), and for j =0, 1,2, we define

Ci(v) = {u € C(v) | Ty contains a u~L path P with £{(P) =3 j}.

We sometime write C%(v) to emphasize the tree (or subtree) concerned.
We next describe a technique, introduced by Mynhardt in [9], called tree
pruning. For any vertex u of a rooted tree T, denote the set of all u-L
paths in T, by II(u) (or IIt, (u) if necessary). For j=0,1,2, define

I (u) = {P € TI(uw) | &(P) = ).

The pruning of T is performed with respect to the root. Hence suppose
T is rooted at v, i.e., T = T,. Let u be a branch vertex at maximum
distance from v; note that |C(u)| > 2 and degz < 2 for each z € D(u).
For each w € C(u), allocate a priority to w or, equivalently, to the unique
path P € I(w), where w® € C°u) and P® € II°(u) have higher priority
than w! € C'(u) and P! € II'(u), which again have higher priority than
w? € C%(u) and P? € I1%(u). Let z be a child of u of highest priority.
For each w € C(u) — {2z}, delete D[w]. This step of the pruning process,
where all but one child of u together with their descendants are deleted to
give a tree in which u has degree 2, is called a pruning of T, at u. Repeat
the above process until a tree T, is obtained with degu < 2 for each
u € V(T,) — {v}. Then T, is called a pruning (here used as a noun) of T,.

The tree T, need not be unique; however, if T, and T are two prunings of
Ty, then C;, (w) = CJT’ (v) for each j = 0,1,2. Thus, to simplify notation,

we write C° (v) instead of C’?’r'- (v).

Using the technique of tree pruning, the following characterization of
A(T) and N(T) were obtained by Mynhardt [9].
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Theorem 8 (Mynhardt [9]) For any tree T and any vertez v of T, v €
A(T) if and only if [C°(v)| > 2, and v € N(T) if and only if T (v) = 0
and T (v) # 0.

Mynhardt [9] also showed that if a tree T' has no vertices which appear in
all y(T')-sets, then it also has no vertices which appear in all i(T)-sets. How-
ever, in this case A(T') and N;(T'), although also equal, may be nonempty.

Theorem 9 (Mynhardt [9]) If A(T) = 0, then A;(T) = 0 and N(T) =
Ni(T).

The proof of the following result is identical to the proofs used in [9] to
prove Theorem 8 and 9, and is therefore omitted.

Theorem 10 If A(T) = @ or if each vertez of A(T) has degree 2 in T,
then N(T) = Ni(T).

In order to prove Theorem 7, we shall also need some results of Cockayne
et al. in [3]. Let v be a vertex in a rooted tree T, and let z € N(v).
For notational convenience, we may assume x € C(v). Cockayne et al. [3]
defined z to be v-noble if there exists a (T )-set S such that pn(s,S) = {x}
for some s € S, and they defined z to be v-grand if there exists an i(T})-
set I such that z € I and pn(x,I) = {x}. Cockayne et al. [3] provided the
following characterizations of v—noble vertices and v—grand vertices.

Theorem 11 (Cockayne et al. [3]) Let v be a vertez of a rooted tree T and
let z € C(v). Then
(1) = is v-noble if and only if for each y € N(z) — {v}, y € N(T}), and
(2) z is v—grand if and only if for each y € N(z) — {v}, y € Ni(T}).

Cockayne et al. [3] also characterized the set A(T) in terms of v-noble
vertices.

Theorem 12 (Cockayne et al. [3]) A vertez v of a tree T is in A(T) if and
if N(v) contains at least two v—-noble vertices.

This characterization of A(T) corresponds with the characterization in
Theorem 8. Cockayne et al. [3] also showed that if A(T) = @ and if T
contains both a v-noble vertex and a v-grand vertex, then every v-grand
vertex is also a v-noble vertex. In order to extend this result, we shall need
the following result of Cockayne et al. [3].
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Lemma 13 (Cockayne et al. [3]) Let v be a vertex of a rooted tree T such
that C(v) contains a v—noble vertez x and a v—grand verter z. Then

(a) For y € C(2), if y ¢ N(T) and A(T,) € A(T), theny € Iog (2).

o) If c° (2) = 0, then A(T,) C A(T) for each y € C(z) such that
y ¢ N(T,).

Lemma 14 Let v be a vertez of a rooted tree T such that C(v) contains
a v-noble vertez and a v-grand verter z. If A(T') = 0 or if each vertez of
A(T) has degree 2 in T, then z is also a v—noble vertexz.

Proof. Suppose A(T) = @ or each vertex of A(T’) has degree 2in T. Let
y € C(z2). If y € N(Ty), then by Theorem 8 applied to T}, [ox (y) = (0 and

(y) #0. Hencein T,y € C’(z). Suppose that y ¢ N(T,). Ify € C°(2)u

(z), then, by Lemma 13(a), A(Ty) C A(T). Hence, A(Ty) = 0 or each
vertex of A(Ty) has degree 2 in Ty,. Thus, by Theorem 10, N (T,,) Ni(Ty),
and so y ¢ Ni(Ty)- Thrs however contradicts Theorem 11 since z is v-
grand. Hence, y € lof (2). In particular, we notice that c° (z) = 0. Thus
applying Lemma 13(b), A(Ty) C A(T). Hence, A(Ty) = @ or each vertex of
A(T,) has degree 2 in T,. By Theorem 10, N(T}) = N;(T}) and we again
contradict the fact that z is v-grand. We deduce, therefore, that y € N (Ty)
for each y € C(z). Thus, by Theorem 11, z is v—noble. O

We are now in a position to prove Theorem 7.

4.1.1 Proof of Necessity

Lemma 15 Let T be a tree rooted at a vertex v where v € A(T) and
degrv > 3. Then, Yoo(T) < tau(T)-

Proof. By Theorem 12, N(v) contains at least two v—noble vertices. Let
v, and vy be two v-noble vertices. Let £ € N(v) — {v1,v2} (note that the
vertex z exists since degv > 3). Let T/ = T — V(T3); that is, T' is the
component of T — vz containing v. Then, by Theorem 11, each of v; and
v, is a v-noble vertex in 7. Thus, by Theorem 12, v € A(T"). Let X' be
a y(T")-set (and so, v € X') and let X be a v (T)-set. Let X; = X N D[z].

Claim1 ve X.

Proof. Suppose, to the contrary, that v ¢ X. Since v € A(T'), X — X,
cannot be a (T")-set. Thus, if X — X, is a dominating set of T, then
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(X'l = ¥(T') < |X — X;|. But then X' U X, is a dominating set of T'
containing z with | X' U X;| < |X| = 7.(T), which is impossible. Hence,
X — X cannot be a dominating set of 7. However, X is a dominating set
of T, and so X — X, must be a dominating set of T'—v. Let X; = XND[v,].
Since v ¢ X, X, is a dominating set of T,,. Since v, is a v-noble vertex,
there exists a y(Ty,)-set S such that pn(s,S) = {v,} for some s € S.
Without loss of generality, we may assume that s = v;, for otherwise we
consider (S — {s}) U {v1}. Since S is a ¥(T},)-set, |S| < |X1]. Thus,
X* = (X - X; — X;)US is a dominating set of 7' that does not contain
v. Since v ¢ X*, X* cannot be a y(T")-set. Hence, |X'| = v(T") < | X*| =
|X| = |Xz] — |X1] +|S] < |X| — | Xz|. But then X’'U X, is a dominating
set of T containing = with | X' U X;| < |X| = 4,(T), which is impossible.
Hence,v € X. 0O

By Claim 1, every 7, (T)-set must contain both v and z and is therefore
not independent. Consequently, ¥z(T") < i,(T"). This implies that v,,(T) <
teu(T). O

Note that, by Theorem 12, no leaf of a tree T belongs to A(T'). As an
immediate consequence of Lemma, 15, we have that if T is a tree satisfying
Yeu(T) = 144(T), then A(T) = 0 or each vertex of A(T') has degree 2 in T.
This establishes the necessity.

4.1.2 Proof of Sufficiency

Before proceeding with a proof of the sufficiency of Theorem 7, we introduce
some additional notation. If X is a dominating set in T, then we write
X = Xy UXz, where Xz = {z € X | z is isolated in the subgraph induced
by X} and Xy = X — Zy. (Possibly, Xy = @, in which case X is an
independent dominating set of T.) We are now in a position to prove our
sufficient condition for a tree T' to satisfy v,,(T) = i4,(T").

Suppose that T is a tree such that A(T) = @ or each vertex of A(T)
has degree 2 in T but 7,4(T) < i4(T). Then there exists € V(T') such
that 7;(T") < iz(T). Among all v, (T')-sets, let X be one such that Xy is a
minimum. Since ;(T) < iz(T"), we know that Xy # 0, i.e, | Xy| > 2.

Claim 2 Each vertez of Xy — {z} has degree at least 3.

Proof. Suppose v € Xy — {z}. If v is a leaf, then X — {v} is a dominating
set of T containing z of cardinality ~;(T) — 1, which is impossible. Hence,
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degrv > 2. Suppose degpv = 2. Let u be the vertex of Xy adjacent to v
(possibly, u = z), and let N(v) = {u,w}. If pn(v,X) =0, then X - {v}isa
dominating set containing z, a contradiction. Hence, pn(v,X) = {w}, and
so X* = (X = {v}) U {w} is a 7, (T)-set with | X} | < |Xy]|, a contradiction.
Thus, degrv > 3. 0

We now return to the proof of the sufficiency. Consider T to be rooted
at z, and let v be a vertex of Xy furthest from z. Since |Xy| > 2, v # z.
By our choice of v, the parent of v (which may possibly be z) belongs to
X. By Claim 2, degyv > 3, and so, by hypothesis, v ¢ A(T). The proofs
of the following two claims are similar to those found in [3], but we include
them for completeness. For each vertex y of T, let X, = X N D[y].

Claim 3 There exists a v-noble vertez w € pn(v, X).

Proof. Suppose, to the contrary, that no vertex in pn(v,X) is v-noble.
Then, by Theorem 11, each 2z € pn(v,X) has a child 2’ that belongs to
some (T, )-set, say S,. Since z ¢ X, X,/ is a dominating set of T, and
5o | Xz > y(Tzr) = |S;). Let

X* = (X—{v}— U xz,) U ( U s,).
z€pn(v,X) z€pn(v,X)

Then, X* is a dominating set of T' containing the vertex z with |X*| <
|X] =1 = 4.(T) — 1, which is impossible. Hence, at least one vertex in
pn(v,X) is v-noble. O

Claim 4 There ezists a v-grand vertez z € pn(v,X) — {w}.

Proof. Suppose, to the contrary, that no vertex in pn(v,X) — {w} is v-
grand. Then, by Theorem 11, each z € pn(v, X) has a child 2’ that belongs
to some (T )-set, say I,. Since z ¢ X, X, is a dominating set of T,/. By
our choice of v, the set X,/ is independent and is therefore an independent
dominating set of T,». Thus, |X| > i{(Ty) = |I.|. Let

X"=(X—{'u}— U Xz:)u{w}u( U I,).

z€pn(v,X) 2€pn(v,X)
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Then, X* is a dominating set of T containing the vertex x with |X*| <
|X| = v:(T). Consequently, X* is a 7z (T)-set. However, since w € pn(v, X)
and v ¢ X*, the vertex w is isolated in X*. Hence, by construction of the
set X*, |X3| < |Xy|, which contradicts our choice of the «.(T)-set X.
Hence, at least one vertex in pn(v,X) — {w} is v-grand. O

By Claims 3 and 4, there exists a v-noble vertex w € pn(v,X) and a
v-grand vertex z € pn(v,X) — {w}. By Lemma 14, z is also a v-noble
vertex. But then v has two v-noble vertices, namely w and z, and so, by
Theorem 12, v € A(T'). This, however, contradicts the hypothesis that each
vertex of A(T') has degree 2 in T'. Hence if T is a tree such that A(T) = 0
or each vertex of A(T) has degree 2 in T, then 4,y(T) = %44(T). This
establishes the sufficiency.
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