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A k-cycle packing of a graph G is a set of edge—dlsjomt k-cycles in G. A
k-cycle packing C is mazimum if |C’| 2> for all other k-cycle packings .
C' of G. The leave L of a packing C is the subgraph mduced by the set .
of edges of G that does not occur in any k-cycle of the packing C. The
leave L.of a maximum packing is referred to as a minimum leave,
with minimum number of edges. A packing with empty leave is known as a
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In this paper, we completely solve the problem of finding a max-
imum packing of any balanced complete multlpaxtlte graph K,
.thh edge-disjoint 6-cycles, and minimum leaves are mcplxc:tly given.
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k-cycle system of G.(In terms of graph decomposition, we say Ci|G.) And
a k-cycle system of K, is referred to as a k-cycle system of order v.

Clearly, if Cx|K, then v is odd and k|(3). To determine whether the
above necessary condition is also sufficient is commonly referred to as the
existence problem of k-cycle systems.

The existence problem for k-cycle systems of order v has been studied
for more than 35 years. Recently, it has been completely solved by Alspach
et al., see [1,2,11]. But, the packing of K, with k-cycles is not that lucky:
only partial results have been obtained so far; see [9). Mainly, k € {3,4,5,6}
is considered.

If we turn to the packing of G where G is a complete multipartite
graph, then the problem is getting more difficult. Even in the case k = 3,
the existence problem is still unsolved; see [8]. Recently, Billington, Fu and
Rodger completely solved the case k = 4, see [3,4]. And the cases other
than k = 4 remain unsettled.

In this paper, we consider the packing and covering of a balanced
complete multipartite graph Kn(n) (m parts of size n) with hexagons and
we are able to obtain a maximum packing and minimum covering of K (n)-

The result of Sotteau deserves mention first.

Theorem 1.1. [12] The complete bipartite graph K n can be decomposed
into 2k-cycles if and only if (i) m, n > k, (i) m and n are even, and (isi)
2k|mn.

Now, consider the packing of K, with hexagons. The following result
was obtained by Kennedy.

Theorem 1.2. [8] The minimum leaves of the mazimum packings of K,
with hezagons are as follows: v is considered to be the number modulo 12.
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F is a 1-factor, C; is a cycle of length i, F 4s any odd graph with
v/2 +4 edges and E; is any simple even graph with 7 edges.

The following terminology was introduced by Billington and Cave-
nagh. A graph G is said to be k-sufficient if (i) each vertex in G has even
degree and (ii) k||E(G)|. Then they proved:

Theorem 1.8. [6] All 6-sufficient complete maultipartite graphs are decom-
posable into 6-cycles.

A packing C of G is called maximal if G — E(C) contains no 6-
cycles; here E(C) denotes the set of edges in the 6-cycles of C. Note that a
maximal packing C' may not have a minimum leave. And by Theorem 1.3,
we shall consider only the balanced complete multipartite graphs which are
not 6-sufficient in the next section.

2 The maximum packing of Kn(n)

First, we consider the packing of K, . The following lemmas are essential
for the proof of the main theorem. If the proofs are direct, we omit the
details.

Lemma 2.1. Letn=1o0r3 (mod 6) andn > 3. Then Kyn —F can be
decomposed into 6-cycles where F is a 1-factor of Ky .

Proof. Let (S,t) be a Steiner triple system (3-cycle system) of order n de-
fined on Z,. Let the two partite sets of Ky, , be Z,, x {0} and Z, x {1}. v
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Now, for each triple {i,J, k} € ¢, let ((3,0),(G, 1),(k, 0),(3,1),(4,0),(k, 1)) be
a 6-cycle in the packing of Ky, », then F is exactly the set {{(i,0),(i,1)}| i
€Zn}). O

Note that the above construction is well-known, we include it here

for completeness.
Lemma 2.2. K, 4 can be packed with two 6-cycles with leave a 4-cycle.

Lemma 2.3. K5 can be packed with three 6-cycles with leave a disjoint

union of K 3, K1 s and an edge.

For convenience, we denote an odd graph of order v with v/2 + 2

edges by Fy. Therefore, the leave obtained in K is in fact an F.

Lemma 2.4. Kgg can be packed with ten 6-cycles with leave a 4-cycle.

Lemma 2.5. Letn = 2 or 4 (mod 6) andn > 4. Then Kpn — Ca can be

decomposed into 6-cycles.

Proof. Let n = 6k + 2 or 6k + 4, k > 1. It is not difficult to see that
Kegr+2,65+2 can be decomposed into the edge disjoint union of K3 3, K3 6x-6
and Kgi—¢,6k—6; also Kgk4,6x+4 Can be decomposed into the edge disjoint
union of Ky 4, Ky6r and Kegrex- Therefore, the proof follows by Lemma

2.4, 2.2, and using Sotteau’s Theorem. )

Lemma 2.8. Let n = 5 (mod 6), then Ky, , — Fa can be decomposed into
6-cycles.

Proof. Since n = 5(mod 6), there exists a pairwise balanced design (PBD) of
order n with one block of size 5 and the rest all of size 3 [10]. In fact, we can
use the one with exactly one block of size 5. For convenience, let the PBD be
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defined on Z,, and the two partite sets of K, , be Z, x{0} and Z,, x {1}. Let
{1,2,3,4,5} = B be the only block of size 5. Then the induced subgraph of
Ky, with vertex set § = {(1,0),(2,0),(3,0),(4,0),(5,0),(1,1),(2,1),(3,1),
(4,1),(5,1)} is isomorphic to K5s. By Lemma 2.3, K5 can be packed
with 6-cycles with leave an F; and for each triple {¢,j,k}€ B;, i # 1, let
((3,0),(4,1),(k,0),(3, 1),(4,0),(k, 1)) be a 6-cycle in the packing of Knan \
Ki,5. Then the proof follows. a

Lemma 2.7. [6] Let Cg(n) denote the graph with vertex set Z, x Zg and
with edge set E(Ce(n)) where {(i1,41), (i2,42)} € E(Cé(n)) if and only if
J2 = j1+1 (mod 6). Then Ce(n) has a decomposition into 6-cycles with

empty leave.

Lemma 2.8. Ifn =1 (mod 2) andn > 3, Kpnn — Cs can be decomposed
into 6-cycles.

Proof. First, consider the maximum packing of Ks33,3. Let the three par-
tite sets of K333 be (22 U {00}) x {i}, i € Zs. Then K333 — Cs
can be decomposed into 6-cycles by ((0,0),(0,1),(1,2), (1,1),(1,0),(0, 2)),
((0,0),(1,1),(0,2),(0,1),(1,0),(1,2)), ((00, 0), (1, 1),(00, 2),(1,0),(00, 1),(1, 2)),
((00,0),(0,1),(00, 2),(0, 0),(c0, 1), (0, 2)). Now, let n = 2¢+1. Let the three
partite sets of Knnn be (Z2¢ U {00}) x {3}, i € Z5. Let M = [m; ;] be
an idempotent Latin square of order ¢. If i # 7, for all 1 < i, i<t
K3,2,2 with vertex set {(2i - 1,0),(24,0)} U {(25 —1,1),(2,1)} U {(2m.; -
1,2),(2m;,;,2)} is decomposable into 6-cycle system (by Theorem 1.3). If
i =j,forall 1 i<t Kygs with vertex set {(c0,0), (2i — 1,0), (2i,0)}
U {(00,1),(2i - 1,1),(2i,1)} U {(00,2),(2m;; — 1,2),(2m; ;,2)} can be de-
composed into 6-cycles with leave {(00,0),(c0,1),(c0,2)}. So, if n = 2t +1,
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Ky n,n can be packed with 6-cycles having leave a Cj. O

Lemma 2.9. Ifn is odd, then Ky(n) can be packed with 6-cycles with leave
(i)F, if n = 3 (mod 6) and (i)Fy, if n =1 or 5 (mod 6).

Proof. Let A, B, C, D be the vertex sets of four partite sets of Ky(n) i.e.
|A| = |B| = |C| = |D| = n. Then |[V(AU B)| = |V(C U D)| = 2n. First,
we consider the bipartite graph Kan 2, with two partite sets as (AU B)
and (C U D). Second we consider the two bipartite graphs Ky », with two
partite sets A, B and C, D respectively.
(i) If n = 1 (mod 6), Kan2n = Ki2t42,12t4+2 can be packed with 6-cycles
with leave a 4-cycle (by Lemma 2.5). K, can be packed with 6-cycles
with leave a 1-factor F (by Lemma 2.1). Combining C; and F gives the
graph Fy, so we have packed the complete multipartite graph Ky(g¢ 1) with
6-cycles, having leave Fj.
(ii) ¥ n = 3 (mod 6), Kap 2n = K12t+6,12¢+6 i8 a 6-cycle system (by Theorem
1.1). Keris,er+s can be packed with 6-cycles with leave 1-factor F (by
Lemma 2.1). So we have packed the complete multipartite graph Kjyg¢+.3)
with 6-cycles with leave F.
(iii) If n = 5 (mod 6), Kan 2n = Ki12¢+10,12¢+10 can be packed with 6-cycles
with leave a 4-cycle (by Lemma 2.5). K, can be packed with 6-cycles
with leave F> (by Lemma 2.6). Combining C; and 2F; as the following
graphs, we conclude that the complete multipartite graph Kyg:+5) can be
packed with 6-cycles with leave Fs.

]

Definition 2.1. Let {a1,a2,a3} be the vertex set of 3-cycle C§, and {b1,b2,b3}
be the vertex set of 3-cycle C3. If (a1,b3,83,b3,a3,1) is a 6-cycle, we define



Figure 1: Combination of Cy : (a,b,c,d) and two F,

a product: 6-cycle product for C¢ U C? as the following action : pack the
two 6-cycles from C$UCS as (a1,b3,b2,02,a3,b1) and (a1,a,b3,b1,b2,a3). (We
denote it as C$ A C}.)

For convenience in packing, we denote the induced subgraph of G as
G[V], where V is subset of vertex set V(G) of G, and we also denote the
edge set between A and B as G[A, B], where A and B are subsets of V(G).

Lemma 2.10. Kg(2t41) — F 13 a 6-cycle system.

Proof. Let Z, x Zg be the vertex set of Kg(n). We decompose the graph
Kg(n) into complete bipartite graphs with vertex sets B, and By; let the
vertex set of By be Zg x I, and the vertex set of B, be Zg x I, where
5h ={0,1,2}, I = {3,4,5}. Then G[B), G[By) are isomorphic to Konn
and G[B, B,] is isomorphic to Ky 5. Because n = 2¢ + 1, by Theorem
1.1 and Lemma 2.8, G[B], G[B.) have leave two Css. By 6-cycle product,
then Kg(z;11) can be packed with 6-cycles with leave F. a

Lemma 2.7 provides us with a good idea. In the following discussion,
we view each part of Ky,(n) as a point, and denote the new graph as K,

and the leave as L' of K.

55



Lemma 2.11. Kyy(n) — F can be decomposed into 6-cycles whenm =0 or
2 (mod 6) and n =1 or 3 (mod 6).

Proof. The lemma follows because K}, can be packed with 6-cycles which
has a leave F’ when m = 6k or 6k + 2. For each edge in F' corresponds
to a complete bipartite graph Ky in Kp(q). By Lemma 2.1, Ky has a
leave F when n = 6t + 1 or 6t + 3. So Kp(n) — F can be decomposed into
6-cycles when whenm =6korm=6k+2andn=6t+1or6t+3. O

Lemma 2.12. If m = 3 or 7 (mod 12), then Kyy(n) i3 a G-cycle system

when n is even, Kpy(n) — Cs is @ 6-cycle system when n is odd.

Proof. If m = 3 or 7 (mod 12), K}, — C3 is a 6-cycle system. Here Cj
means Cy(n) in Kp(n). By Theorem 1.3, C(y) i8 a 6-cycle system when n
is even; by Lemma, 2.8 Cj(y) can be packed with 6-cycles with leave a Cs

when n is odd. a

Lemma 2.13. If m = 4 (mod 6), then Ky (n) can be packed with 6-cycles
with the following leaves. (i)0, when n is even; (4)Fy, whenn = 1 (mod 6);
(i5)F, when n =3 (mod 6), and(iv)F>, when n =5 (mod 6).

Proof. We partition K, into k+ 1 partite sets {4;}52, such that |4;| = 6
fori=1,2,--- k, |Ax41| = 4. Then G[A;] is isomorphic to Kg(n) for i= 1,
2, -+ k, and G[Ag41] is isomorphic to Ky(n). By Theorem 1.1, G[4;, 4;] is
a 6-cycle system. We only consider Kg(,) and Ky(y). By Lemmas 2.9 and

2.10, we have proved this lemma. ()

Definition 2.2. Let Z3 x Z4 be the vertex sets of three disjoint 4-cycles. If
there exists a 6-cycle Cq:((0,0),(1,2),(2,0),(0,2),(1,0), (2,2)), we define a
product for these three 4-cycles and Cy as the following action: pick three 6-
cycles as ((0, 0),(0, 1),(0, 2),(1, 2),(1, 3),(1,0)), ((1,0),(1, 1),(1, 2),(2, 2),(2, 1),
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(2,0)), ((2,0),(2,3),(2,2),(0,0),(0,3),(0,2)). (Denote the product by 3C,
A Cs.)

Lemma 2.14. Ifm = 2 (mod 6), Kum(ny can be packed with 6-cycles which
has leave (3)Cy, if n = 2 or 4 (mod 6); and (ii)Fy, ifn = 5 (mod 6).

Proof. Let m = 6k + 2. We decompose Kpn(n) into k partite sets such
that k — 1 partite sets are isomorphic to Kg(n), and the k-th partite set is
isomorphic to Kgy).

())If »n = 2 or 4(mod 6), then Kg(n) is a 6-cycle system, and K’ can be
packed with 6-cycles with leave F'. To each edge of F, there corresponds
a complete bipartite graph K, in Kg(n). By Lemma 2.5, K,,, can be
packed with 6-cycles with leave a C,;. So Ky can be packed with 6-
cycles which with four C;. We pack Kun(n) — 4C4 with 6-cycles and using
3Cy A Cg, we see that Km(n) can be packed with 6-cycles with leave a
4-cycle.

(ii) If n = 5 (mod 6), then Kg(n) can be packed with 6-cycles with leave a
1-factor F. We just consider Kgy(n). Let the eight partite sets of Kg(n) be
{P:},- Then G[P,,P,,P,P;] = G| Ps,Ps,P;,Ps) = Ky(n) can be packed
with 6-cycles with leave F;. G[P, UP;, U P;U Pu,PsUP,UPR UPis
isomorphic to Kg(4s43)42,6(4t+3)+2. By Lemma 2.5, Ko(at+3)+2,6(4t4+3)+2
can be packed with 6-cycles with leave a C,. Combining 2F, and C; as
Figure 1 then Ky, has a packing with leave F. So when n = 5 (mod 6),
m = 2 (mod 6), Ky can be packed with 6-cycles with leave F, a

Lemma 2.15. Ifm=5 (mod 6), n=2 or 4 (mod 6), then Kpn) can be
packed with 6-cycles with leave a Cy.

Proof. f m = 5 (mod 6), n = 2 (mod 6), decompose Kyn(n) into a bipartite
graph G with two partite sets A, B such that A = K (n) and B = Kuma(n)s
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where m; = 2, and mg = 6k + 3. Then |V (4)| = 2(6t + 2) = 6(2t) + 4
and |V (B)| = (6k + 3)(6t + 2) = 6(6kt + 3t + 2k + 1). The bipartite graph
G is isomorphic to Ker,+4,6r,, Where r; = 2¢, and rp = 6kt + 3t + 2k + 1.
By Theorem 1.1, G is a 6-cycle system. We consider the sets A and B.
The graph induced by A, G[A] is isomorphic to K{gt42),(e¢+2) Which can be
packed with 6-cycles with leave a 4-cycle. Similarly G[B] is isomorphic to
Kpny(n) where mg = 6k + 3 and n = 6t + 2 which is a 6-cycle system.(By
Lemma 2.5, 2.15 and 2.16). So, when m =5 (mod 6) and n = 2 (mod 6),
K n(n) can be packed with 6-cycles having leave a 4-cycle. The proof of the
case n = 4 (mod 6) is similar. O

Lemma 2.16. Ifn = 3 (mod 6), then Ky(n) can be packed with 6-cycles
with leave a C3 when m = 5 (mod 12) or a 6-cycle system when m = 11
(mod 12). Ifn =1 or 5 (mod 6), then Ky, can be packed with 6-cycles
having leave a Cy when m =5 (mod 12) or having leave E; when m =11
(mod 12).

Proof. First, K!, can be packed with 6-cycles, with leave a Cj whenm =5
(mod 12) and with leave E} when m = 11 (mod 12). ¥ m = 5 (mod 12),
the graph corresponding to Cf in Kp(n) i8 Cy(n)- Let A1, A2, As and A4
be the four partite sets of Cy(n); then G[A4;, Ai41] is a complete bipartite
graph K, ,. If n = 1 or 3 (mod 6), Ky, can be packed with 6-cycles,
with a 1-factor leave. By packing Cy(n) suitably with 6-cycles, then Cy(y)
can be packed with 6-cycles with n parallel C4s. For every three 4-cycles
(with Zg x Z4 be the vertex sets of three 4-cycles.), we pack Kn(n) = Ca(n)
with 6-cycles such that ((0,0),(1, 2),(2,0),(0,2),(1,0),(2,2)) is a 6-cycle C"
in this 6-cycle packing. Then by 3C3 A Cg, 3C4 U C” is a 6-cycle system.
So, when m = 5 (mod 12) and n = 6¢ + 1, then Kp,(n) can be packed with
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6-cycles with leave a 4-cycle. If n = 6¢ + 3, then K (n) i8 a 6-cycle system
when m = 5 (mod 12). If n = 6¢+5, G[A;, Aiy1] = Ketys,6¢+5- By Lemma
2.6, Kgt+5,6t+5 can be packed with 6-cycles, with leave Fs. By combining
four F; (see Figure 2), we know that Ca(er+5) can be packed with four
6-cycles and 6¢ + 1 parallel C;s.

Figure 2: Combine 4F; into 6-cycles.

For 6¢+1 parallel Cy, similar to the above discussion. Kn(n) can be
packed with 6-cycles with leave a Cj.

If m = 11 (mod 12) then Kp(n) can be packed with 6-cycles with
leave Ex(by definition of E;, we use Cs U Cy for E7). Then by the above
discussion and Lemma, 2.7, Kom(n) can be packed with 6-cycles with leave
E7 whenn =1 or 5 (mod 6) or Cs whenn =3 (mod 6) respectively. 0O

Combining the above lemmas, we are able to prove:

Theorem 2.17. The minimum leaves of the mazimum packings of Ky

with hezagons are the follows:
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min || 6¢ 6t+1 6t+2 6t+3 6t+4 6t+95

6k ] " F L) F ] F
6k+1] 8 | Cs(kisodd) ] Cs(k is odd) ) Cs(k is odd)
B(% is even) O(k is even) 8(k is even)

|6k+21 0 F Cs F Ce P
6k+3 | 0| Ofkisodd) ) O(k is odd) 8 | ofkisodd)
Cs (k is even) Cs(k is even) Cs(k is even)

6k+41 0 Fy 9 F 9 g2
-6k+5 || @ | By (kisodd) | Ci | Cs (kisodd) | Ci | Er(kis odd)
Cy (k is even) O(% is even) : Co(k is even)

3 Minimum Coverings

Let G denote a graph, and E(G) denote the collection of edges in the graph
G. fE and P are oollectionsofedga, then E + P denotes the union of the
two collections (so if e occurs in E and occurs y times in P, then it occurs
1+y times in E + P).

A covering of Ky With hexagons is a triple (S,C, P), where S
is the vertex set of Kpm(n), P C E(G) is called the padding, and C' is a
collection of hexagons that partition E(G) + P. The number mn is called
the order of the covering. So that there is no confusion: an edge {a,b}
belongs to exactly z + 1 hexagons of C, where z is the number of times
{a, b} belongs to the padding P. If | P| is.as small as possible, then (S, C, P)
is calledaminimum_coveringome(,,) with hexagons. So, a 6-cycle system
is a minimum covering with hexagons, with padding P = 0.

The following lemmas are essential to the main result.



Lemma 3.1.- Let L be a leave of a packing of G with hezagons. Then P is
a padding of the covering of G with hezagons if P U L can be decomposed

into hezxagons.

Lemma 3.2. Let P be a padding of the coven'hg of G with hezagons and
|P| < 6; then P s a minimum padding.

Lemma 3.3. Let G be an odd graph i.e. each vertex of G is of odd de-
gree. Then each padding P of the covering of G with hezagons has at least
[V(G)|/2 edges. Moreover, if the padding P has at most |V (G)|/2+5 edges,

then P is a minimum padding of the covering of G with hexagons.

Lemma 3.4. For m = 4 (mod 6) and n = 1 (mod 6), the minimum

padding of a minimum covering of Kp,(n) with hezagons is F.

Proof. Without loss of generality, let Fy = K; U F’, where F' is the 1-
factor with V(F') = V(G) \ {a1,62,as,64}, V(K4) = {a1,a2,a3,01}. Let
{b1,b2}, {c1,¢2} be two edges in F'. Then adding four edges {a;,c1},
{as,c2}, {a2,d1}, and {a3,dz}, we can get two 6-cycles (a,a2,a3,84,C2,C1)
and (dy,a2,04,01,63,d2). And for F', let {a},a3}, {b],b}}, and {c},c;} be
three edges in the leave F'. Then a 6-cycle can be obtained by combining
{a},b}}, {¥5,¢;}, and {c},a}}, with the above three edges. So, if m =
4 (mod 6) and n = 1 (mod 6), F is a minimum padding of a minimum

covering of Ky, (y) with hexagons. 0O

Lemma 3.5. For m = 2 or 4 (mod 6) and n = 5 (mod 6), the minimum

padding of a minimum covering of Kom(n) with hezagons is F.

Proof. Let a;, az be the vertices with degree 3 in F3, {a1,a2} be an edge
in F3, b1, by be adjacent to a;, and let b, by be adjacent to a;. Let
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¢1, ¢2 be two vertices with {c1,¢3} an edge in F3, and {c1,c3} not ad-
jacent to ay, bj for all 1 <4 <2,1<j <4 Add two edges {c1,b1}
and {cg,b3} in Fy; then we can get a 6-cycle (a1,a2,b3,c2,¢1,01). And B3
\ {{a1,b01},{e1,¢2},{as, bs},{a1,a2}} is isomorphic to F. Then, similar to
Lemma 3.5, the proof follows. O

Lemma 8.8. If G is packed with 6-cycles with leave F, then G has a cov-
ering ()F, if [F| = 0 (mod 3), (i) Fy, i |F| = 1 (mod 3) (ii) F, if
|F| =2 (mod 3).

Proof. By Lemma 3.4 and Lemma 3.5, this lemma is easy to see. a

Lemma 3.7. If K(n) §3 packed with 6-cycles with leave a Cs, then Kpn)
has a padding Cs.

Proof. By Lemmas 2.12, and 2.16, there exists a packing with 6-cycles for
K m(n) such that C§:(a1, a2, as) is the leave, and C}:(a1,b1,az, ba, a3, bs) is
a 6-cycle in the packing. Let P = (b1,b, bs), then by 6-cycle product,
Cg U C2 U P can be decomposed into two 6-cycles. o

Lemma 3.8. If K,(n) s packed with 6-cycles with leave a Cy, then Koy(y)
has a padding D, where D = {{v1,v2}, {v1,v2}}, w1, v2 € V(D).

Proof. By Lemmas 2.14, 2.15 and 2.16, there exists a packing with 6-cycles
for K n(n) such that C§:(a1,a2,as,64) is the leave, and C§ : (a1, b1, b2, 02, bs,
bs) is a 6-cycle in the packing. Let P = {{b1,b4}, {b1,bs}}; then C3UCSUP
can be decomposed into two 6-cycles:(a1, b1, ba, bs, as,as) and (@i, bs, bs, b,
ba, bg). o

Now, we are ready for the main result. It is obtained by combining.
Lemma 3.1 to 3.8.
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Theorem 8.9. The minimum covering of Ko(n) with hezagons are the

Jollowing:
m/n || 6 6t+1 6t+2 6t+3 | 6t+4 6t+5
6k F "9 F e F
6k+1 Cs(k is odd) ) Cs(k is odd) 0 Ca(k is odd)
8(k is cven) B(k is even) B(k is even)
6k + 2 Fe D F D F
6k+3 (% is odd) @ Ok i2 odd) 9 B(k is odd)
Cs (k is even) Cs(k is even) Cs(k is even)
€k+4 F ) F e Fo
6k+5 Cs (kisodd) | D |Cs (kisedd) | D | Csfkisodd)
D (k is even) 8(k is even) D(k is even)
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