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Abstract

For a vertex v of a connected graph G and a subset S of V(Q),
the distance between v and § is d(v, §) = min{d(v,z) : = € S},
where d(v,z) is the distance between v and z. For an or-
dered k-partition II = {Si, S2,...,Sk} of V(G), the code of
v with respect to II is the k-vector e (v) = (d(v,S)), d(v,S2),
..., d(v,Sk)). The k-partition I is a resolving partition if the
codes cni(v), v € V(G), are distinct. A resolving partition IT =
{81, S2, ..., Sk} is acyclic if each subgraph (S;) induced by
S; (1 £ i < k) is acyclic in G. The minimum k for which
there is a resolving acyclic k-partition of V'(G) is the resolv-
ing acyclic number a.(G) of G. We study connected graphs
with prescribed order, diameter, vertex-arboricity, and resolv-
ing acyclic number. It is shown that, for each triple d, k,n of
integers with2 <d <n-2and3 < (n—d+1)/2 < k < n—d+1,
there exists a connected graph of order n having diameter d and
resolving acyclic number k. Also, for each pair a,b of integers
with 2 < a < b—1, there exists a connected graph with resolving
acyclic number a and vertex-arboricity b. We present a sharp
lower bound for the resolving acyclic number of a connected
graph in terms of its clique number. The resolving acyclic num-
ber of the Cartesian product H x K, of nontrivial connected
graph H and K is studied.
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1 Introduction

Let G be a nontrivial connected graph. For a set S of vertices of G and a
vertex v of G, the distance d(v, S) between v and S is defined as

d(v,S) = min{d(v,z) : z € S},

where d(v, z) is the distance between v and z. For an ordered k-partition
1= {51,52,...,5} of V(G) and a vertex v of G, the code of v with respect
to II is defined as the k-vector

C[[(‘U) = (d(v7 Sl)s d(”: Sz), LR d(‘U, Sk)) .

The partition II is defined in [4] as a resolving partition for G if the distinct
vertices of G have distinct codes with respect to II. The minimum k for
which there is a resolving k-partition of V(G) is the partition dimension
pd(G) of G. A resolving partition of V(G) containing pd(G) elements is
called a minimum resolving partition. Resolving partitions in graphs were
first introduced and studied in [4]. Resolving partitions that satisfy some
additional prescribed properties have been studied [5, 6, 10]

A resolving partition IT = {S1, 52, ..., S} of V(G) is independent if each
subgraph (S;) induced by S; (1 < i < k) is independent in G. This topic
was first introduced from the point of view of graph coloring in [5, 6]. If II
is an independent partition of V(G), then, by coloring the vertices in S; by
i (1 < i < k), we obtain a proper coloring with k colors that distinguishes
all vertices of G in terms of their distances from the color classes. Thus,
such a coloring of a graph G is called a resolving-coloring (or locating-
coloring). A minimum resolving-coloring uses a minimum number of colors
and this number is the resolving-chromatic number x(G) of G. Since every
resolving-coloring is a coloring, x(G) < x-(G) for each connected graph G,
where x(G) is the chromatic number of G.

A resolving partition I = {51, S, ..., Sk} of V(G) is defined in [10] to
be acyclic if each subgraph (S;) induced by S; (1 < i < k) is acyclic in
G. The minimum k for which G contains a resolving acyclic k-partition
is the resolving acyclic number a,(G) of G. The vertez-arboricity a(G) of
G is defined in [1, 2] as the minimum k such that V(G) has an acyclic
k-partition. Since every resolving acyclic partition is an acyclic partition,
a(G) < a.(G) for each connected graph G.

It was observed in {10] that

2 < pd(G) < ar(G) < x+(G) <1

for every nontrivial connected graph G of order n.
To illustrate these concepts, consider the graph G of Figure 1. Let
II = {S1, S2,S3}, where S; = {z}, S2 = {u}, and S5 = {v,y,2}. Then the
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corresponding codes of the vertices of G are

en(u) = (1,0,1)  en(v) =(1,2,0)  en(z) = (0,1,1)
en(y) =(1,1,0)  en(2) =(2,1,0).

Since the codes of the vertices of G with respect to II are distinct, ITI is
a resolving partition of G. Because no 2-partition is a resolving parti-
tion of G, it follows that IT is a minimum resolving partition of G and so
pd(G) = 3. However, II is not acyclic since (S3) = K3. On the other hand,
let I' = {51,53,55,5;}, where §] = {2}, S = {u}, S§ = {v,y}, and

2 = {z}. It can be verified that II' is a resolving acyclic partition of G
and no 3-partition is a resolving acyclic partition of G. Thus a,(G) = 4.
Furthermore, x-(G) = 5 (see [6]). Therefore, pd(G) < a,(G) < x-(G)
for the graph G of Figure 1. The example just described also illustrates
an important point. When determining whether a given partition II is a
resolving partition of a connected graph G, we need only verify that ver-
tices of G belonging to the same subset of V(@) in II have distinct codes
since the codes of two vertices in different subsets in II have 0 in different
coordinates.

v z

Figure 1: A graph G with pd(G) < a,(G) < x+(G)

The concept of resolvability in graphs has appeared in the literature.
Slater introduced and studied these ideas with different terminology in
[11, 12]. Slater described the usefulness of these ideas when working with
U.S. sonar and coast guard Loran (Long range aids to navigation) stations.
Harary and Melter [7] discovered these concepts independently. Recently,
these concepts were rediscovered by Johnson [8, 9] of the Pharmacia Com-
pany while attempting to develop a capability of large datasets of chemical
graphs. We refer to the book [3] for graph theory notation and terminology
not described here.

The resolving acyclic numbers of some familiar classes of graphs have
been determined in [10].

Theorem A Letn > 2 and let G be a connected graph of order n. Then
(@) a.(G) =2 if and only if G = Py;
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(b) ar(G) =n if and only if G = Ky;
(¢) ar(G) =n -1 if and only if
Ge{Ci+ K1, Kin-1,Kn— €, K1 + (K1 UK, _2)}

forn > 5.

Theorem B  Let r,s be positive integers. If G is a connected bipartite
graph with partite sets of cardinalities r and s, then

+1 ifr=s
ar(G) < { ;ax{r,s} ifr #s.

Moreover, equality holds if G is a complete bipartite graph.

2 Graphs with Prescribed Resolving Acyclic
Number and Other Parameters

In this section, we study connected graphs with prescribed resolving acyclic

number and other parameters, such as diameter, order, vertex-arboricity,

clique number, and etc. We begin with the connected graphs with pre-

scribed resolving acyclic number, order, and diameter. The diameter of

a connected graph G is the largest distance between two vertices in G.

Bounds for the resolving acyclic number of a connected graph was estab-
lished in terms of its order and diameter in [10].

Theorem C If G is a connected graph of order n > 3 and diameter
d > 2, then

The lower bound in Theorem C is not sharp. In order to show this, we
present a result that gives an upper bound for the order of a connected
graph in terms of its diameter and resolving acyclic number.

Proposition 2.1  IfG is a nontrivial connected graph of order n, diam-
eter d, and resolving acyclic number k, then n < kd*~!.

Proof. Ifd =1, then G = K,,. By Theorem A, a,(G) = n =k, and so
the result holds for d = 1. Thus we may assume that d > 2 and so n > 3.
Let I be a resolving acyclic k-partition of V(G). Since (1) exactly one
coordinate of the code of a vertex in G with respect to Il is 0 and there are
k choices for the zero coordinates in the code of a vertex, (2) each of the
k — 1 nonzero coordinate of the code of a vertex is a positive integer not
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exceeding d, and (3) all codes of the n vertices of G are distinct, it follows
that kd*~! > n. n

Certainly, for each pair d,k of positive integers, (d + 1)* > kdF—!.
Thus, if G is a nontrivial connected graph of order n, diameter d, and
resolving acyclic number k, then, by Proposition 2.1, (d+1)* > kd*~1 > n,
and so a,(G) > logy,; n. Thus, the following corollary is an immediate
consequence of Proposition 2.1.

Corollary 2.2 If G is a connected graph of order n > 3 and diameter
d> 2, then
ar(G) > 1+ loggy, n.

Notice that if G = P, then d = n — 1 and log;,, n = 1. By Theo-
rem A, the equality in Corollary 2.2 holds for G = P,. The upper bound in
Theorem C is sharp. In fact, more can be said, as we will see later. First,
we present a useful lemma, whose proof is straightforward and is therefore
omitted.

Lemma 2.3  Let Il be a resolving partition in a connected graph G. If
u and v are distinct vertices of G such that d(u,w) = d(v,w) for all w €
V(G) — {u,v}, then u and v belong to distinct elements of I. In particular,
if G is a connected graph containing a vertez that is adjacent to k end-
vertices of G, then a,.(G) > k.

We now study those triples of positive integers that are realizable as the
diameter, resolving acyclic number, and order of some connected graph.

Theorem 2.4 For each triple d, k,n of integers with2 < d <n—2 and
3<(n-d+1)/2<k<n-—d+1, there ezists a connected graph of order
n having diameter d and resolving acyclic number k.

Proof. First, assume that k = n—d+1. Let G be the graph obtained from
Kn_q41 and the path Py_; : vy,vs,...,04-1 by Jjoining v; to a vertex u in
Kp—a+1. Then the order of G is n and the diameter of G is d. We show that
ar(G) = n—d+ 1. Since every element of any resolving acyclic partition of
V(G) contains at most one vertex of V(Kp—_44+1) — {u} by Lemma 2.3, it
follows that a,(G) > n — d. Assume, to the contrary, that a.(G) = n — d.
Let V(Kn—a+1) — {u} = {u1,u2,...,un_q} and let IT = {S}, Sy, ... ySn—d}
be a resolving acyclic partition of V(G). Assume, without loss of generality,
that u; € S; and u € S;. However, then, cn(v) = (0,1,1,...,1) = en(u),
which is a contradiction. Thus, ¢,(G) > n—d+1 = k. On the other
hand, IT* = {S},53,...,5,_4,1}, where S} = {w;} (1 <i < n—d)and

n—a+1 = {u} UV (P4_1), is a resolving acyclic partition of V(G) and so
a,(G) < |II*| =n — d + 1. Therefore, a,(G) =n—d+1=k.
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Next, assume that (n —d +1)/2 < k < n — d. We consider two cases.

Casel. d=2. Then (n—-1)/2<k<n-2.f(n+1)/2<k<n-2,
then k > n — k and G = K} o~k has the desired property by Theorem B.
f(n—1)/2<k<(n+1)/2 then k=n/2if nis even and k = (n — 1)/2
if n is odd. We consider these two subcases.

Subcase 1.1. k = n/2. Let G = (Kg—1 UkK,)+ K;. Let V(K1) = {uw1},
V(Kg-1) = {uz2,us,...,ux}, and V(kK;) = {v1,v2,...,v¢}. Since v, is
adjacent to k end-vertices, a-(G) > k by Lemma 2.3. On the other hand,
Il = {S,S2,...,5k}, where S; = {u;,v;} (1 < i < k), is a resolving acyclic
partition of V(G) and so a,(G) = k.

Subcase 1.2. k= (n —1)/2. Let G = (P UkK;) + K;. Let V(K,) =
{w}, V(P) = {w1,us,...,us}, and V(kK1) = {v1,v2,...,v¢}. Since w is
adjacent to k end-vertices, a,(G) 2 k by Lemma 2.3. On the other hand,
I = {S1,85,...,Sk}, where S1 = {u3,v1,w} and S; = {us,v:} (2L i < k),
is a resolving acyclic partition of V(G) and so a.(G) = k.

Case 2. 3 < d < n— 2. Again, we consider two subcases.

Subcase 2.1. k = n —d. Let G be the graph obtained from the path
Py :u1,us,...,uq by adding the n — d pendant edges uyv; (1 <i < n—d).
Then the order of G is n and the diameter of G is d. Since u, is adjacent
to n — d end-vertices, it then follows by Lemma 2.3 that a,.(G) > n —d.
On the other hand, let II = {S1,52,...,Sn-4} be a partition of V(G)
where §; = {us,n1}, S2 = {v2} U (V(Pr—g — {us}), and S; = {v;} for
3 < i< n—d. Since II is a resolving acyclic partition of G, it follows that
a-(G) < 1] =n - d. Thus a,(G) =n —d.

Subcase 2.2. k < n—d—1. Since k < n—d -1, it follows that n —d—k+
1> 2. Let G be the graph obtained from the path FPy_; : u1,u2,...,%d-1
by adding the n — d + 1 pendant edges u,v; (1 < i < k), ugw, and uq— w;
(2<j<n-—-d-k+1). Then the order of G is n and the diameter of G
is d. We show that a,.(G) = k. Since k > (n —d + 1)/2, it follows that
k>n—d-—k+1>n—d—k. Thuse,(G) > k by Lemma 2.3. On the other
hand, let II = {51,52,...,Sk}, where §; = {vl,wl}, Se = {’u.z,’vz,'wz},
S3 = (V(Py-1) - {U2}) U] {v:;,ws}, S = {vg,w.-} fora<i<n-d-k+1,
and S; = {v;} forn—d—k+2 < i < k. Since G is a tree, it suffices to show
that II is a resolving partition of G. Observe that (1) en(v1) = (0,2,...)
and en(w;) = (0,1,...), (2) en(u2) = (1,0,1,...), en(v2) = (2,0,1,...),
and cn(ws) = (2,0,2,...) if d = 3 and en(wz) = (d—1,0,1,...) if d > 4,
(3) en(vs) = (2,2,0,...), and en(ws) = (2,1,0,...) if d = 3 and cn(ws) =
(d-1,2,0,...) if d >4, en(wa) = (1,%,0,...) and en(w;) = (i — 1,%,0,...)
for3<i<d-1, (4) en(v) = (2,%,1,...), cn(w;) = (2,+,2,...)ifd=3
and en(w;) = (d — 1,%,1,...) if d > 4, where * represents an irrelevant
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coordinate. Thus all codes of the vertices of G are distinct, and so II is
resolving, implying that a.(G) < |lI| = k. Therefore, a.(G) = k. n

We have seen that if G is a connected graph with a(G) = a and a,(G) =
b, then 1 < @ < band b > 2. Next we study those pairs a,b of integers
with 1 < a < b and b > 2 that are realizable as vertex-arboricity and
resolving acyclic number of some connected graph. Since trees are the only
connected graphs having vertex-arboricity 1, it follows that a(T) # a.(T)
for all trees T. Thus we may assume that a > 2. It is known that if G is
a connected graph of order n, then a(G) < [n/2]. Thus if a.(G) > [n/2],
then a(G) # a,(G). On the other hand, we show next that each pair a, b of
integers with 2 < a < b — 1 is realizable as vertex-arboricity and resolving
acyclic number of some connected graph.

Theorem 2.5  For each pair a,b of integers with 2 < a < b — 1, there
erists a connected graph G with a(G) = a and a,(G) = b.

Proof. For a = 2, let G = K,yp. It is known that a(G) = 2. Since
a < b, it follows by Theorem B that a.(G) = b and so G has the desired
properties. For a > 3, let G be the graph obtained from K, with V(K3,) =
{u1,uz,...,uz,} by adding the b + a — 1 new vertices v;,v,...,v, and
Wy, Wy, ..., Ws—1, joining each vertex v; to u; (1 < i < a) and joining each
vertex w; (1 < j <b—1) to u,. Thus a(G) =a.

Next, we show that a.(G) = b. Since u, is adjacent to b end-vertices,
namely, v, and w; (1 < j < b— 1), it then follows by Lemma 2.3 that
ar(G) > b. On the other hand, let Il = {S},S,,...,S;} be a partition of
V(G), where S; = {u;,Uasi,wi}, 1 <i<a, S = {wi},a+1<i<b-1,
and S = {v1,v2,...,v,}. Thus II is acyclic. Notice that (1) d(u;, S;) =1
for1<i#j<aandd(u,S) =1, (2) dusti,S;)=1for1<i#j<a
and d(ug+i, Sp) = 2, and (3) d(w;, S;) =2for 1 <i# j<aand j#aand
d(w;,S;) = 1for 1 <i < a. Since a > 3, it follows that crl(ui), en(uati),
and cni(w;) are distinct for 1 < ¢ < a. Furthermore, the ith coordinate of
cri(v;) is 1, the bth coordinate of err(v;) is 0, and the remaining coordinates
of cri(v;) are 2 or 3, implying that the codes er(v;), 1 < i < a, are distinct.
Hence II is a resolving acyclic partition of V(G) and so a.(G) < |II| = b.
Therefore, a,(G) = b. [

The cligue number of a graph is the maximum order among the complete
subgraphs of the graph. We state a lower bound for the resolving acyclic
number of a connected graph in terms of its clique number.

Proposition 2.6  If the cliqgue number of a connected graph G is w, then

ar(G) > [“5’] +1.
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Moreover, for each integer w > 2, there ezists a connected graph G, having
cligue number w such that a,(G,) = [w/2] + 1.

3 Cartesian Products

We show next that the resolving acyclic number of the Cartesian product of
K, and a nontrivial connected graph H is bounded above by o, (H)+a(H).

Theorem 3.1  For every nontrivial connected graph H,
a-(H x K2) < a,(H) + a(H)

Proof. Let G = H x K,, where H; and H; are the two copies of H
in the construction of G. Suppose that a,.(H) = k and a(H) = a. Let
I = {S1,85:,...,Sk} be a resolving acyclic partition of V(H;), and let
{Wy,Wa,...,W,} be an acyclic partition of V' (Hz). Then

Im = {31,52,...,Sk,Wl,Wz,...Wa}

is an acyclic partition of V(G). We show that II* is a resolving partition of
V(G). Let z and y be vertices of G such that cn-(z) = cni-(y). We show
that z = y. Assume, to the contrary, that = # y. We consider three cases.

Case 1. Both z and y belong to Hy. Then dg(z, S;) = du,(z,S;) and
de(y,S;) = du,(y,S:) (1 < i < k). Since dg(z,S;) = de(y,S;) for all
1 < i < k, it follows that dp, (z,S;) = du,(y,S;) for 1 < i < k and so
cn(z) = en(y), contradicting the fact that II is a resolving acyclic partition
of H1 .

Case 2. Both x and y belong to H,. Let z' and y' be the vertices
of H, that correspond to z and y in Ha, respectively. Since z # y, we
have ' # y'. Notice that dg(z,S;) = dg(z',Si) +1 = dy,(z',S:) + 1
and dg(y,Si) = dg(¥',Si) +1 = du, (', Si) + 1 for 1 < i < k. Thus
dy, (2',S;) = dg(z,S;) — 1 and di, (¥, S;) = dg(y,Si)) —1for1 <i < k.
Since dg(z,S;) = dg(y,S;) for 1 < i < k, it follows that dg, (2/,S;) =
dy, (y',Si) for 1 < i < k and so en(z’) = en(y'), a contradiction.

Case 3. Either z € V(H;) and y € V(Hy), or x € V(Hz) and y €
V(H,), say the former. Suppose that y € W;, where 1 < 7 < a and so
dg(y,W;) = 0. However, z ¢ V(H2) and so z ¢ W;, which implies that
dg(z,W;) > 0. Thus cn-(x) # cn- (y), contradicting the assumption.

Therefore, I1* is a resolving acyclic partition of V(G) and so a.(G) <
|1*| = a.(H) + a(H), as desired. 8

Equality in Theorem 3.1 can hold. For example, if H = P,, wheren > 2,
then a,(P,) = 2 and a(P,) = 1. By Theorem A, a,(P, x K3) > 3. On the
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other hand, let H, : uj,u,...,u, and Hy : v1,vs,...,v, be two copies of
P, in P, x K3. Since II = {S;, S2, 53}, where S; = V(H:), S2 = {v:1}, and
S3 = V(H3) — {1}, is a resolving acyclic partition of V(P, x K3), it follows
that a,(Pn x K3) = 3. Therefore, a,(P, x K3) = 3 = a,(P,) + a(P,) for
n> 2.

Strict inequality in Theorem 3.1 can also hold. As an example, we study
ar(K, x K3) for n > 3, beginning with n = 3, 4.

Proposition 3.2  a,(K3 x K3) =3 and a.(K,; x K,)=4.

Proof. For n = 3,4, let H; and H, be two copies of K, in G, where
V(H) = {u1,u,...,u,}, V(Hs) = {v1,v2,...,v,}, and wv; € E(G) for
1<i<n Forn =3 let I ={S5,S,,5S5;)}, where §; = {u1,uz,01},
Sz = {v2,vs}, and S3 = {u3}. Since I is a resolving acyclic partition, it
follows by Theorem A that a,(K3 x K3) = 3.

For n = 4, let " = {5},53,53,5;}, be a partition of V(G), where
ST = {u1,us}, S5 = {uz,v2,v3}, S5 = {v1,v4}, and S} = {wy}. Since I*
is a resolving acyclic partition, a,(G) < |II*| = 4. Assume, to the contrary,
that a,(G) = 3. Let II = {5),8,,53} be a minimum resolving partition
of G. Since (S;), 1 < i < 3, is acyclic, S; contains at most two vertices
of Hy. Thus at least two of S;, Sz, and S; contain vertices of H,. If
each of 51, Sy, and S3 contains some vertex of Hj, then assume, without
loss of generality, that u; € S; for 1 < i < 3. Since Il is a partition of
V(G), it follows that us € S; for some 7 with 1 < § < 3, say ug € 5.
Then cn(u1) = en(ug) = (0,1,1), a contradiction. Thus exactly two of
51, Sz, and S3 contains vertices of H,, say S; and S, contain vertices of
H,. Moreover, each of S; and S, contains exactly two vertices of H;. We
may assume that uj,u; € S; and u3,uq € S,. Similarly, exactly two of
S1, S2, and S5 contains vertices of H», each of which contains exactly two
vertices of Hy. Since S3 # @) and SsNV(H;) = 0, it follows that S3 consists
of exactly two vertices of H,. This implies that exactly one of $; and S,
contains the two vertices in V(Hz) — S3, say V(H,) — S35 C S; and so
S2 = {us,uq}. Since (Si) is acyclic and u;,us € S1, it follows that S;
contains at most one of v; and v,. We consider two cases.

Case 1. S contains ezactly one of v, and v2, say v; € S;. Thus
S1 = {u1,u2,v1,v;}, where j = 3orj =4. If S, = {u1,u2,v1,v3},
then S; = {u3,u4}, and S3 = {v2,v4}. Thus cn(uz) = en(vs) = (0,1,1),
a contradiction. If S; = {ui,u2,v1,v4}, then S, = {us,u4}, and S3 =
{v2,v3}. Thus en(u2) = en(vs) = (0,1,1), a contradiction.

Case 2. S) contains neither v; nor v,. Thus §, = {u1, u2,v3,v4},
Sz = {us,us}, and S3 = {v1,v2}. Then cn(u;) = cn(ue) = (0,1,1), a
contradiction. a
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Thus a, (K, x K2) = a.(K,) = n for n = 3,4. However, a,(Kn x K3) <
n for n > 5. We present an upper bound for a,(K, X K3) in terms of n
without a proof.

Proposition 3.3 Ifn > 5, then
3n - if n =0 (mod 4)

ﬂ"_;il+2 ifn=1 (mod 4)
<
a-(Kn x K2) < 1("4_"224.2 fn=2 (mod 4)

¥n3) 13 ifn=3 (mod 4).

Since a(K,) = [n/2] for n > 3, it follows by Proposition 3.3 that strict
inequality in Theorem 3.1 can hold.

4 Acyclic Partition Ratios

If H is an induced subgraph of a graph G, then it is known that a(H) <
a(G). Thus

a(H)

——<1

<@ =

for each induced subgraph H of a graph G. However, it is not true, in
general, for the resolving acyclic numbers. Let G be a nontrivial connected
graph and H a connected induced subgraph of G. We defined the acyclic
partition ratio of G and H, respectively, by

ar(H)
ar(G)

By Theorem B a,(K1,m) = m for all m > 2. Hence for G = Kj,m and
H = K,, we can make the ratio r,(H,G) as small as we wish by choosing
m arbitrarily large. Although this may not be surprising, it may be unex-
pected that, in fact, we can make 7,(H,G) as large as we wish. We now
establish the truth of this statement.

For n > 3, we label the vertices of the star K gn+1 with vo, v1, v2,
..., Van, U}, U}, ..., V4, Where vp is the central vertex. Then we add
two new vertices z and =’ and 2"*! edges zv; and z'v] for 1 < i < 2™,
Next, we add two sets W = {w,ws,...,wn} and W' = {w],w3,...,wy}
of vertices, together with the edges w;z and wiz' for 1 < ¢ < n. Fi-
nally, we add edges between W and {vo,v1,v2,...,v20 } so that each of
the 2" possible n-tuples of 1s and 2s appears exactly once such that the
representations (d(vi,w1),d(vi, w2),...,d(v;,wn)) are distinct for 1 < i <

ro(H,G) =
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2", Similarly, edges are added between W' and {v},v},...,v5.} so that
(d(v}, w}), (v}, wp),...,d(v},w})) are distinct for 1 < i < 2". Denote the
resulting graph by G. The graph G for n = 3 is shown in Figure 2.

Figure 2: The graph G for n = 3

Let I = {51,32, ceey Sg,—,+2} be the partition of V(G) where S; = {w,'}
(1 <i<n), Sntj = {wj} (1 <j<n),and Sppps = {2,2'} and Sppyz =
V(Kj2n+1). Since (S;) is acyclic for 1 < i < 2n + 2, it follows that II
is acyclic. Next we show that II is a resolving partition of V(G). By
construction, en(v;) = cn(v;) implies that i = j and en(v)) = en(vj)
implies that i = j. Moreover,

en(z) = (1,1,...,1,4,4,...,4,0,1),

Cn(’Ui) = (*a*7~-'a*’333s'"13;1)0)1 1<ig2,
cn(w) = (2,2,...,2,2,2,...,2,2,0),
en(v)) = (3,3,...,3,%,%,...,%,1,0), 1<ig2n,

(@) = (4,4,...,41,1,...,1,0,1),

where * represents an irrelevant coordinate. Thus II is a resolving acyclic
(2n + 2)-partition of V(G). Observe that G contains H = K. 1,2n+1 @S an
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induced subgraph and
ar(H) 2n+l
ar(G) = 2n+2°

Since
2n+ 1

nllbnéo 2n 4+ 2 = %
there exists a connected graph G and an induced subgraph H of G such
that ro(H,G) = a,(H)/a-(G) is arbitrary large.

5 Open Questions and Topics for Study

The lower and upper bounds for the resolving acyclic number of a connected
graph in terms of its resolving-chromatic number were established in (10],
which we state next.

Theorem D  For every nontrivial connected graph G,

%9 < 0,(6) < x:©)

Thus, if G is a connected graph G with a,(G) = a and x-(G) = b,
then a > 2 and b/2 < a < b. On the other hand, it is easy to show that,
for each pair a,b of integers with @ > 2 and b/2 < a < b, there exists a
connected graph G such that a,(G) = a and x+(G) = b. It was shown in [5]
that if G is a nontrivial complete graph or complete bipartite graph, then
xr(G) = n, where n is the order of G. Thus, if a = b > 2, then the graph
K, has the property that a,(G) = xr(G) = a by Theorem A.Ifa > 2 and
b/2 < a < b, then K, p_o has the property that a-(G) = a by Theorem B
and x,(G) = b. These observations yield the following.

Proposiﬁon 5.1 For every pair a,b of integers with a > 2 and b/2 <
a < b, there ezist a connected graph G with a,(G) = a and x+(G) =b.

However, the following question remains open.

Problem 5.2  Does there exist a connected graph G such that xr (G) =
2a,(G)?

We have seen in Theorem 2.4 that, for each triple d, k,n of integers with
2<d<n-2and3 < (n—-d+1)/2 < k < n—d+1, there exists a connected
graph of order n having diameter d and resolving acyclic number k. On
the other hand, for those triples d, k,n of integers with 2 < d <n -2 and
3 <k < (n—d-1)/2, the following question is open.
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Problem 5.3 For which triples d,k,n of integers with 2 < d <n-2
and 3 < k < (n—d—1)/2, does there exist a connected graph of order n
having diameter d and resolving acyclic number k?

Theorem 2.5 shows, for each pair a, b of integers with 2 < @ < b—1, that
there exists a connected graph G with a(G) = a and a-(G) = b. However,
we don’t know any connected graph G with a(G) = a,(G). This suggests
the following question.

Problem 5.4  Does there ezist a connected graph G such that a(G) =
a-(G)?

We have seen in Theorem 3.1 that if H is a nontrivial connected graph,
then a.(H x K>) < a,.(H) + a(H), which suggests the following question.

Problem 5.5  For which triples a, b, c of positive integers with a > 2 and
3 < c<a+b, does there exist a connected graph H such that a.(H) = a
and a(H) = b, and a,.(H x K;) = c?

We conclude this paper by describing some topics for further study. If
G is a connected graph with V(G) = {vy, s, ... »Un}, then the ordered par-
tition I = {S5,,5,,...,8,}, where S; = {;} for 1 < i < n, into singleton
subsets of V(G) is always a resolving partition of V(G). Since (S;) is triv-
ially acyclic for each i (1 < i < n), it follows that II is a resolving acyclic
partition of V(G) as well, and, consequently, a.(G) is defined. A similar
argument shows that x,(G) is defined for every connected graph G.

This suggests a variety of concepts to study. If P is any graphical
property possessed by a trivial subgraph of a connected graph G, then the
ordered partition II of V(G) described above is said to satisfy property P
and the P-partition number is defined. Among the various properties P,
in addition to the property of being independent or being acyclic, are (1)
the property of being a specified graph, say path, star, cycle, a linear forest
(every component is a path), or a galaxy (every component is a star), (2)
the property of being planar or hamiltonian, and (3) the property of having
maximum degree or girth at most k for a fixed nonnegative integer k.

6 Acknowledgments
We are grateful to Professor Gary Chartrand for suggesting the concept

of acyclic partition to us and kindly providing useful information on this
topic. Also, we thank Professor Peter Slater for the useful conversation.

77



References

[1] G. Chartrand, H. V. Kronk, and C. E. Wall The point-arboricity of a
graph. Israel J. Math. 6 (1968) 169-175.

[2] G. Chartrand and H. V. Kronk, The point-arboricity of a planar graph.
J. London Math. Soc. 44 (1969) 612-616.

[3] G. Chartrand and L. Lesniak, Graphs & Digraphs, third edition. Chap-
man & Hall, New York (1996).

[4] G. Chartrand, E. Salehi, and P. Zhang, The partition dimension of a
graph. Aequationes Math. 59 (2000) 45-54.

[5] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, P. Zhang, The
locating-chromatic number of a graph. Bull. Inst. Combin. Appl. To
appear.

[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, P. Zhang, On
the locating-chromatic number of a graph. Preprint.

[7) F. Harary and R. A. Melter, On the metric dimension of a graph. Ars
Combin. 2 (1976) 191-195.

(8] M.A. Johnson, Structure-activity maps for visualizing the graph vari-
ables arising in drug design. J. Biopharm. Statist. 3 (1993) 203-236.

[9] M. A. Johnson, Browsable structure-activity datasets. Preprint.

[10] V. Saenpholphat and P. Zhang, Resolving acyclic partitions of graphs.
Ars Combin. To appear.

[11] P.J. Slater, Leaves of trees. Congress. Numer. 14 (1975) 549-559.

[12] P.J. Slater, Dominating and reference sets in graphs. J. Math. Phys.
Sei. 22 (1988) 445-455.

78



