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ABSTRACT

For vertices © and v in a connected graph G with vertex set V,
the distance d(u,v) is the length of a shortest u — v path in G.
A u — v path of length d(u,v) is called a u — v geodesic. The
closed interval I[u,v] consists of u, v, and all vertices that lie
in some u — v geodesic of G; while for S C V, I[S] is the union
of closed intervals I[u,v] for all u,v € S. A set S of vertices is
a geodetic set if I{S] = V, and the minimum cardinality of a
geodetic set is the geodetic number g(G). For vertices z and y
in G, the detour distance D(z,y) is the length of a longest z ~y
path in G. An = — y path of length D(z,y) is called an z — y
detour. The closed detour interval Ip[z, y] consists of x, y, and
all vertices in some x — y detour of G. For S C V, Ip[S] is the
union of Ip{z,y] for all z,y € S. A set S of vertices is a detour
set if Ip[S] = V, and the minimum cardinality of a detour set
is the detour number dn(G). We study relationships that can
exist between minimum detour sets and minimum geodetic sets
in a graph. A graph F is a minimum detour subgraph if there
exists a graph G containing F as an induced subgraph such that
V(F) is a minimum detour set in G. It is shown that K3 and P;
are minimum detour subgraphs. It is also shown that for every
pair a,b > 2 of integers, there exists a connected graph G with
dn(G) = a and ¢g(G) = b.
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1 Introduction

For vertices u and v in a connected graph G with vertex set V', the distance
d(u,v) is the length of a shortest u — v path in G. A u — v path of length
d(u,v) is called a u—v geodesic. A vertex w is said to lie in a u —v geodesic
P if w is an internal vertex of P, that is, if w is a vertex of P distinct from
u and v. The closed interval I[u,v] consists of u, v, and all vertices lying
in some u — v geodesic of G; while for SC V,

18)= | Iu,v).

u,v€S

A set S of vertices is a geodetic setif I[S] = V, and the minimum cardinality
of a geodetic set is the geodetic number g(G). A geodetic set of cardinality
9(G) is a minimum geodetic set of G. If G is a nontrivial connected graph
of order n, then every geodetic set of G contains at least two vertices and at
most n vertices. Thus 2 < g(G) < n for every nontrivial connected graph G
of order n. The geodetic number has been studied extensively (see [1, 2, 4],
for example).

For vertices £ and y in a nontrivial connected graph G of order n, the
detour distance D(z,y) is the length of a longest z—y path in G. The detour
diameter diamp G is max{D(z,y)}, where the maximum is taken over all
pairs z,y of vertices of G. Thus diampG < n — 1, and diampG =n -1 if
and only if G has a hamiltonian path. An z — y path of length D(z,y) is
called an z — y detour. The closed detour interval Ip[z,y] consists of =, y,
and all vertices lying in some z — y detour of G; while for SC V,

Ip[S1= | Iplz,l.
z,y€S

A set S of vertices is a detour setif Ip[S] = V, and the minimum cardinality
of a detour set is the detour number dn(G). A detour set of cardinality
dn(G) is called a minimum detour set. These concepts were introduced in
[3). If G is a nontrivial connected graph of order n > 3, then G contains a
path of order 3 or more. Thus every minimum detour set of G contains at
least two vertices and at most n — 1 vertices. Therefore 2 < dn(G) <n -1
for every nontrivial connected graph G of order n > 3.

To illustrate these concepts, consider the graph G of Figure 1. For
vertices © and v in G, d(u,v) = 1 and D(u,v) = 5, where the hamiltonian
path u, z,y,w,z,v is a u — v detour in G. Thus {u, v} is a minimum detour
set and so dn(G) = 2. On the other hand, {u,z,w} is a geodetic set of G
and since there is no 2-element geodetic set in G, it follows that g(G) = 3.

A vertex v in a graph G is a detour vertez if v belongs to every minimum
detour set of G. Thus if G has a unique minimum detour set S, then every
vertex in S is a detour vertex. The following result appeared in [3].
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Figure 1: A graph G with dn(G) =2 and ¢g(G) =3

Theorem A Every end-vertez of a nontrivial connected graph G is a
detour vertez of G. Moreover, if the set S of all end-vertices of G is a
detour set, then S is the unique minimum detour set for G.

A vertex in a graph G is a complete verter if the subgraph induced by its
neighborhood is a complete subgraph of G. In particular, every end-vertex
is a complete vertex. The following two results appeared in [2] and [3],
respectively.

Theorem B Let G be a nontrivial connected graph. Then every minimum

geodetic set of G contains every complete vertex of G but no cut-vertez of
G.

Theorem C Let G be a nontrivial connected graph. Then every minimum
detour set of G contains no cut-vertez of G.

Combining results from both [2] and [3] gives us the following result.
Theorem D If T is a tree with a end-vertices, then g(T) = dn(T) = a.

2 Minimum Detour Sets and Minimum Geode-
tic Sets

In this section, we explore relationships that can exist between minimum
detour sets and minimum geodetic sets in a graph. First, we show the
existence of a graph G and sets of vertices of G that can be both of these
kinds of sets or exactly one of them.

Proposition 2.1  There ezists a connected graph G containing
(1) a minimum geodetic set that is also a minimum detour set,
(2) a minimum geodetic set that is not ¢ minimum detour set, and

(3) a minimum detour set that is not a minimum geodetic set.



Proof. Consider the graph G in Figure 2, where g(G) = dn(G) = 2.
Since {z,,z4} is a minimum geodetic set that is also a minimum detour
set, {2, 25} is a minimum geodetic set that is not a minimum detour set,
and {z2,z¢} is a minimum detour set that is not a minimum geodetic set,
this graph has the desired properties. n

Figure 2: The graph G in Proposition 2.1

For an even integer n > 4, every minimum geodetic set of C, consists
of two antipodal vertices of C,,. On the other hand, a minimum detour
set consists either of two antipodal vertices or two adjacent vertices of Cj.
This establishes the following.

Proposition 2.2 There ezists a connected graph G such that every mini-
mum geodetic set is a minimum detour set but some minimum detour set
is not a minimum geodetic set.

Question: Does there exist a connected graph in which every minimum
detour set is a minimum geodetic set but some minimum geodetic set is not
a minimum detour set?

Next, we illustrate the existence of two graphs, where in the first every
minimum geodetic set is a proper subset of some minimum detour set, and
in the second, the reverse property holds.

Proposition 2.3  For each integer k > 2, there ezists a connected graph
G with g(G) = k and dn(G) = k+1 such that the unique minimum geodetic
set of G is a proper subset of every minimum detour set.



Proof. Let F = (KUK))+ K3, where V(K>) = {z,y}, V(K2) = {u,v},
and V(K,) = {w}. Then the graph G is obtained from F' by adding the &
new vertices vy, v, ..., v and joining (1) v, to z and (2) each of v; (2 < i <
k) toy. The graph G is shown in Figure 3. Since the set S = {vy,vs, ..., v}
of end-vertices of G is a geodetic set of G, it follows that S is the minimum
geodetic set of G by Theorem B. Therefore, g(G) = |S| =

0N

(%)
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Figure 3: The graph G in Proposition 2.3

By Theorem A, the minimum geodetic set S belongs to every minimum
detour set of G. Since Ip[S] = V(G) — {w} # V(G), it follows that S
is not a detour set of G. Thus dn(G) > |S|+1 = k+ 1. On the other
hand, SU {w} is a detour set of G and so dn(G) < |S|+1 =k + 1. Thus
dn(G) = k + 1. The minimum geodetic set S of G is a proper subset of
every minimum detour set of G and so G has the desired properties. ]

Proposition 2.4  For each pair a,b of integers with 2 < a < b, there
erists a connected graph G with dn(G) = a and g(G) = b such that the
unique minimum detour set is a proper subset of every minimum geodetic
set.

Proof. Let a,b be integers with 2 < a < b and let

Pop—ay+1 1 U1,U2, "+, U(b—q)+1

be a path of order 2(b —a) + 1 > 3. Then the graph G is obtained from
Py(b—ay+1 by (1) adding the edges u;uii2 for each odd integer i with 1 <
i< 2(b~a) -1 and (2) adding a new vertices v,,v2,...,v, and joining v,



Figure 4: The graph G in Proposition 2.4

to u; and each of v; (2 < @ < a) to Ugp—_g)+1- The graph G is shown in
Figure 4 for 2(b—a) +1=9.

Observe that S = {v1,v2,...,v,} is the set of end-vertices of G, and
S' = {ua, u4, ..., Upp—q) } U S is the set of all complete vertices of G.
Since Ip[S] = V(G), it follows that S is a detour set of G. Thus S is the
unique minimum detour set of G and so dn(G) = a. On the other hand,
by Theorem B, S’ belongs to every minimum geodetic set of G. Since
I[S'] = V(G), it follows that S’ is the minimum geodetic set of G and so
9(G) =|S'| = (b—a) + a = b. Furthermore, S is a proper subset of S’ and
the graph G has the desired properties. =

Let G be a connected graph and let S and T be two subsets of V(G).
The distance between S and T is defined as

d(S,T) = min{d(s,t): s € S,t € T}.

Proposition 2.5  For every pair a,b of integers with 2 < a < b, there
ezists a connected graph G with dn(G) = a and g(G) = b. Moreover, every
minimum geodetic set of G is arbitrarily far apart from every minimum
detour set of G.

Proof. Let N > 2 be an integer. For each ¢ with 1 <i < a, let

Fi: vig, vi2, - ViaN, Vi

be a copy of the cycle Caon of order 2N, and let F' be the graph obtained
from the graphs F; (1 < i < a) by identifying the a vertices v;; (1 <i < a)
and labeling the identified vertex by v. Then the graph G is obtained from
F by (1) replacing the vertex vy n4+1 of F by the complete graph Kj_q41
such that every vertex of Ky—_,+1 is adjacent to v; v and vy y42 and (2)
adding the edge v;, nv1,N+2. The graph G is shown in Figure 5 for a = 3,
b=>5,and N = 3. Then V(K}p_,41) is the set of complete vertices of G.
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Figure 5: The graph G in Proposition 2.5 fora =3,b=5,and N = 3

Observe that, in general, every minimum detour set and every minimum
geodetic set of a graph G must contain at least one vertex (that is not a
cut-vertex) from each end-block of G. Since S = {v;2 : 1 < i < a} is
a minimum detour set of G, it follows that dn(G) = |S| = a. On the
other hand, S’ = V(Kp—q+1) U{vi,n+1 : 2 < i < a} is the unique minimum
geodetic set of G and so g(G) = |S’| = (a—1)+(b—a+1) = b. Furthermore,
it can be verified that every minimum detour set of G consists of exactly
one vertex from each set {v;2,v;2n} for all ¢ with 1 < i < a. Moreover,
d(vi2, Vi N+1) = d(vian,viN+1) = N — 1 for all i with 2 < i < a. Thus
if §* is a minimum detour set of G, then d(S*,8') = d(S,S8') = N — 1, as
desired. u

3 Minimum Detour Subgraphs

A graph F is called a minimum geodetic subgraph if there exists a graph G
containing F as an induced subgraph such that V(F) is a minimum geode-
tic set in G. It was shown in [2] that a nontrivial graph F is a minimum
geodetic subgraph if and only if every vertex of F has eccentricity 1 or no
vertex of F has eccentricity 1. Similarly, we define a graph F as a minimum
detour subgraph if there exists a graph G containing F' as an induced sub-
graph such that V(F') is a minimum detour set in G. Determining graphs
that are minimum detour subgraphs appears to be far more complicated.
The largest connected minimum detour subgraph that we have seen has
order 2. We now show that order 3 is also possible.



Proposition 3.1  The graph K3 is a minimum detour subgraph.

Proof. Let F = K3 with vertex set V(F) = {v1,v2,v3}. For each j with
1 <j <3, let Q; be a copy of Ky, let R; be a copy of K3, and let Sj
be a copy of K. The graph G is obtained from the graphs F, Q;, R;, S;
(1 € j < 3) by (1) joining every vertex in Q; to v; and v2, (2) joining every
vertex in R; to v; and v3, and (3) joining every vertex in S; to v2 and v;.
The graph G is shown in Figure 6.

Figure 6: The graph G containing K3 as a minimum detour subgraph

We first show that dn(G) = 3. Observe that

(@) D(vi,v2) =7 and Ip[vr,v2] = V(G) — (V(Q1) UV(Q2) U V(Qs)),

(b) D(vi,v3) =8 and Ip[v1,vs] = V(G) = (V(R1) UV (R2) UV(R3)),

(¢) D(va,v3) =9 and ID[’Uz,'Us] =V(G) - (V(S1) UV (S2) UV (Ss)).
Thus V(F) is a detour set in G and so dn(G) < 3. To show that dn(G) > 2,
assume, to the contrary, that dn(G) = 2. Let {z,y} be a detour set of G.
It follows by (a)-(c) that at least one of z and y does not belong to V(F).

Assume, without loss of generality, that y ¢ V(F). We consider two cases,
according to whether z € V(F) or x ¢ V(F).

Case 1. = € V(F), say 2 = v;. There are three subcases.

Subcase 1.1. y € V(Q1). Then D(z,y) = 11. Since every = — y path
containing vertices of @, has length at most 9, it follows that V(Q2) N
Ip[z,y] = 0, a contradiction.

10



Subcase 1.2. y € V(Ry). Then D(z,y) = 11. Since every z — y path
containing vertices of Ry has length at most 7, it follows that V(R2) N
Ip(z,y] = 0, a contradiction.

Subcase 1.3. y € V(S;). Then D(z,y) = 10. Since every = — y path
containing vertices of R; has length at most 9, it follows that V(R;) N
Ip[z,y) = 0, a contradiction.

Case 2. z,y ¢ V(F). There are six subcases.

Subcase 2.1. {z,y} C V(Q1) U V(Q2) UV(Q3). Suppose first that
{z,y} C V(Q;) for some j (1 < j < 3),say z,y € V(Q:). Then D(z,y) =
11. Since every z — y path containing vertices of Q; has length at most
9, it follows that V(Q2) N Ip[z,y] = O, a contradiction. Suppose next
that z € V(Q,) and y € V(Q,), where 1 < p < ¢ < 3,say z € V(Q,)
and y € V(Q2). Then D(z,y) = 15. Since every = — y path containing
vertices of @3 has length at most 13, it follows that V(Q3) N Ip[z,y] = 0,
a contradiction.

Subcase 2.2. {z,y} C V(R1) UV(R2) UV(R3). Suppose first that
{z,y} C V(R;) for some j (1 < j < 3), say z,y € V(R,). Then D(z,y) =
11. Since every = — y path containing vertices of R, has length at most
7, it follows that V(R2) N Ip[z,y] = 0, a contradiction. Suppose next
that z € V(R,) and y € V(R,), where 1 < p < ¢ < 3, say z € V(R,)
and y € V(Ry). Then D(z,y) = 14. Since every z — y path containing
vertices of R3 has length at most 10, it follows that V(R3) N Ip[z,y] = 6,
a contradiction.

Subcase 2.3. {z,y} C V(51)UV(S2)UV(S3). Suppose first that {z,y} C
V(S;) for some j (1 < j < 3), say z,y € V(S1). Then D(z,y) = 11. Since
every T — y path containing vertices of S, has length at most 5, it follows
that V(S2) N Ip[z,y] = O, a contradiction. Suppose next that z € V(S,)
and y € V(S,), where 1 < p< ¢ <3,say z € V(5,) and y € V(S2). Then
D(z,y) = 13. Since every x — y path containing vertices of S3 has length
at most 7, it follows that V(S3) N Ip[z,y] = @, a contradiction.

Subcase 2.4. = € V(Q1) and y € V(R;). Then D(z,y) = 16. Since
every ¢ — y path containing vertices of S; has length at most 15, it follows
that V(S1) N Ip[z,y] = 0, a contradiction.

Subcase 2.5. ¢ € V(@) and y € V(S;). Then D(z,y) = 15. Since
every = — y path containing vertices of S; has length at most 14, it follows
that V(S2) N Ip[z,y] = 0, a contradiction.

Subcase 2.6. z € V(Ry) and y € V(S:1). Then D(z,y) = 14. Since
every x — y path containing vertices of S, has length at most 13, it follows
that V(S2) N Ip[z,y] = 9, a contradiction.

11



Since G does not contain any detour set of cardinality 2, it follows that
dn(G) = 3. Therefore, V(F') is a minimum detour set. =

In the proof of Theorem 3.1, none of the edges of F' occur in any longest
path considered. Consequently, it follows that P; is also a minimum detour
subgraph. Whether there exist graphs having a connected minimum detour
subgraph of arbitrarily large order is not known.

4 Graphs With Prescribed Detour Number
and Geodetic Number

In this section, we show that the geodetic number and detour number are
independent parameters, that is, knowing the value of one of these param-
eters provides no information about the value of the other.

Theorem 4.1  For every pair a,b > 2 of integers, there exists a con-
nected graph G with dn(G) = a and g(G) = b.

Proof. If 2 < a < b, then the result follows by Proposition 2.5. Thus we
may assume that 2 < b < a. There are three cases.

Casel. b=2. Let F =3K;UaK, with
V(3K2) = {uhu?auSa wl9w2aw3}a

where u; is adjacent to w; for 1 < i < 3, and V(aKy) = {v1,vs, -+, 0.}
The graph G is obtained from F' by adding two new vertices  and y and
joining each of z and y to every vertex in F, that is, G = K3 + F. The
graph G is shown in Figure 7. Since {z,y} is a geodetic set of G, it follows
that ¢(G) = 2.

We now show that dn(G) = a. Let U = {u1,u2,u3}, V = {v1,v2, -, v,}
and W = {w;,ws,ws}. First, we show that every vertex in V is a detour
vertex of G. Assume, to the contrary, that this is not the case. We may
assume then that v; is not a detour vertex of G. Then v; lies in some
8 — t detour P in G, where s and ¢ belong to a minimum detour set,
say P : s = 2z9,21,..-,%,U1,Y,...,2k = t. Necessarily, there is some
(1 <€ i < 3) such that both u; and w; do not belong to P, say i = 1. If we
replace z,v;,y in P by z,u;,w;,y, then we obtain an s — ¢t path P’, whose
length exceeds that of P, contradicting the fact that P is an s — ¢ detour.
Therefore, every vertex in V is a detour vertex of G, as claimed. Since V' is
a subset of every minimum detour set of G, it follows that dn(G) > |V| = a.
On the other hand, V is a detour set of G. Therefore, dn(G) = |V| = a.

Case 2. b =3. Let F; = Ky and H; = K, for i = 1,2, where
V(F;) = {w;,w}} and V(H;) = {ui, uj}. Also, let

12
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Figure 7: The graph G in Case 1

V= V('—K-’a—l) = {vl,UZs .. ~1Ua—l}-

Let F = Ky + (FiU Fo UK,_1), where V(K,) = {z),z5}. The graph G
is obtained from H,, H;, and F by adding the vertex z3 and (1) joining z,
and 3 to the vertices of H; and (2) joining x5 and z3 to the vertices of
Hj,. The graph G is shown in Figure 8. Since {z;,z2,z3} is a geodetic set
and G contains no 2-element geodetic set, it follows that g(G) = 3.

Figure 8: The graph G in Case 2

Next, we show that dn(G) = a. By an argument that is similar to that
used in Case 1, one can show every vertex in V = {v;,vs,...,U5-1} is a
detour vertex of G. Thus V is a subset of every minimum detour set of G.
Since

13



Ip[V]=V - {V(R)UVV(F)} # V(G),

it follows that V' is not a detour set of G and so dn(G) > |[V|+1 = a. Since
there is a v; — z3 detour containing each vertex of V(G) — (V - {v1}), it
follows that S = V U {z3} is a detour set of G and so dn(G) < |S| = a.
Therefore, dn(G) = a.

Case 3. b > 4. Let Cyo : v1,v2,---,V12,v; be a cycle of order 12 and
P, : uj,us be a path of order 2. Then the graph G is obtained from Cj,

and P, by (1) adding a — b + 2 new vertices z;,22, -, Za—p+2 and joining
each vertex z; (1 < i < a—b+2) to both v; and v7, (2) adding the two new
edges u;v; and ugv7, and (3) adding b — 3 new vertices wy,ws, -, wp—3

and joining each of these vertices to vo. The graph G is shown in Figure 9.
Let V = {U],'U2,° v ,1)12}, U= {ulvuZ}) W = {’U)l,’ll)2, e awb—3}a and
X = {z1,22, -, Ta—b+2}- We show that g(G) = b and dn(G) = a.

w2
wy Wp—-3
V12 (1
(I 31 U3
V10 I1 ] Y, Vyq
Vg u2 Vs
Ug U7 Vg

Figure 9: The graph G in Case 3

We first show that g(G) = b. Since W U {u2,vg,v9} is a geodetic set of
G, it follows that g(G) < |[W| + 3 = b. To see that there is no geodetic set
in G of cardinality b — 1, let Sp be any subset of V(G) with |Sp| = b ~ 1.
Then S; = W U {s,t}, where s,t € V(G) — W. If s,t € V(C12) U X, then
uy,ug € I[So]. If s € V(C12) and t € {u;,uz}, then (1) X € I[Sp] if s = v;
(1 <i<5), (2 {vs,v9,...,012} € I|Sq] if 8 = vg or s = vr, and (3)
{vs,v4,...,v6} € I[So) if s = v; (8 < i <12). If s,¢t € X U {uy,uz}, then
v10 & I[So]. Thus Sp is not a geodetic set of G. This implies that g(G) > b.
Therefore, g(G) = b.

Next we show that dn(G) = a. By an argument that is similar to that
used in Case 1, one can show that every vertex in X is a detour vertex of G
and so X is a subset of every minimum detour set of G. Also, every detour

14



set of G contains W by Theorem A. Since Ip[W U X] = V(G) — {u1,uz},
it follows that W U X is not a detour set and so dn(G) > |W|+ |X|+ 1=
(b—3)+(a—b+2)+1=a. On the other hand, let S = WU X U {vs}.

Observe that D(vg,w;) = 14 and the path vs, vy, - - -, v12, V1, U1, U2, V7,
vg, Us, **°, V2, W) iS a vg — wy detour in G. Thus S is a detour set of and
so dn(G) < |S| = [W]| + |X| + 1 = a. Therefore, dn(G) = a. .

Using the structure of the graph G of Figure 9, namely, deleting all
end-vertices of G, we can construct for each integer n > 17, a 2-connected
graph G, of order n such that dn(G,) = n — 10. This observation yields
the following.

Proposition 4.2  There is an infinite sequence {G,} of 2-connected graphs
G, of order n such that

n—oco n
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