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Abstract

A strongly regular vertex with parameters (), x) in a graph is a
vertex z such that the number of neighbors any other vertex y has
in common with z is ) if y is adjacent to z, and is p if y is not
adjacent to z. In this note, we will prove some basic properties of
these vertices and the graphs that contain them, as well as provide
some simple constructions of regular graphs that are not necessarily
strongly regular, but do contain (many) strongly regular vertices. We
also make several conjectures and find all regular graphs on at most
ten vertices with at least one strongly regular vertex.

1 Introduction

All graphs considered will be finite and simple (no loops or parallel edges).
The vertex and edge sets of a graph G will be denoted by V(G) and E(G),
respectively (edges will be regarded as 2-subsets of V(G)). The complement
of G will be denoted by G. Given two vertices x and y in a graph, we use
the notation z ~ y to denote that z and y are adjacent, and z » y to
denote that z and y are not adjacent. If we wish to emphasize that z and
y are adjacent (non-adjacent) in a particular graph G, we use the notation
z ~g ¥y (z »g y). If z ~ y, then the edge between z and y will be denoted
by 2y or yz, and y is called a neighbor of z (2 is also a neighbor of y). The
set of all neighbors of z is called the neighborhood of z, and is denoted by
N(G;z), or just N(z) if there is no danger of confusion. The size of the
neighborhood of z is the degree of z, and will be denoted by dg(z) or just
d(z). If z ~ y, then the number of vertices adjacent to both z and y, or
the number of common neighbors of = and y, will be denoted by Ag(z,y)
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or just A(z,y). If z » y, x # y, then the number of common neighbors of
z and y will be denoted by pg(z,y) or u(z,y).

A strongly regular graph with parameters v, k¥ (1 < k < v —2), ), and
&, or a srg(v, k, A, u), is a k-regular graph G on v vertices such that for all
z,y € V(G),z#y, Mz,y) =Aifz ~y, and u(z,y) = pif £ » y. For a
good introduction to the theory of these graphs, see [2] or [4]. For a good
survey of strongly regular graphs, see [1] or [7].

In this note, we treat the concept of strong regularity as a property of
vertices rather than as a property of graphs as a whole. Accordingly, we
make the following definition.

Definition 1.1 Given a graph G on v vertices, a strongly regular vertez
in G with parameters A and pu, or a srv(\, p) (srvg(), p) if we wish to
make G explicit) is a vertex z € V(G) with 1 < d(z) < v — 2, and such
that A(z,y) = A for all y ~ z, and p(z,y) = p for all y = z,y # z. Two
strongly regular vertices in G will be said to have the same parameters
if their parameter tuples are equal regarded as ordered pairs in Ny x Ny,
where Np is the set of non-negative integers.

Clearly, a graph is strongly regular if and only if it is regular and all of its
vertices are strongly regular with the same parameters.

In the forthcoming sections, we will prove some of the basic properties
of these vertices and the graphs that contain them, as well as provide some
constructions of regular graphs that are not necessarily strongly regular,
but do nonetheless possess, in some cases many, strongly regular vertices.
We also make some conjectures and find all regular graphs on at most ten
vertices with at least one strongly regular vertex.

2 Basic Properties

In this section, we will prove some simple properties of strongly regular
vertices and the graphs that contain them. We will see that several re-
sults concerning strongly regular graphs have analogues in the context of a
regular graph with a strongly regular vertex.

A graph G is a srg(v,k, \, ) if and only if G is a srg(v,v—k —1,v —
2k +p —2,v — 2k + )). The following proposition and its corollary show
that a similiar result holds for strongly regular vertices in regular graphs.

Proposition 2.1 Let G be a graph on v vertices with a srvg(\,p), z,
such that every neighbor of z in G has degree ky in G, and every non-
neighbor of z in G, except possibly x itself, has degree ko in G. Then x is
a srvg(v —dg(z) — ko + p — 2,9 — dg(z) — k1 + A).
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Proof. If y ~z z, then y »g z,y # 2, and so \g(z,y) = [N(G;z) N
N(G;y)l = IN(G;z) n N(G;y)| -2 = |N(G,z)UN(G;y)| —2 = v —
IN(G;2)UN(G; )| -2 = v—(IN(G; z)| +|N(G; )| - IN(G; 2)NN(G; y)|) —
2 =v —dg(z) — k2 + p — 2. Similarly, if y =z z, y # =, then y ~g =, and
so uz(2,9) = IN(G;z) N N(G;y)| = v —|N(G;z)| - [N(G; )| + N (Gi z)n
N(G;y)|=v—dg(z) — k1 + A u

Corollary 2.2 A vertex z in a k-regular graph G with v vertices is a
srvg(A, 1) if and only if z is a srvg(v — 2k + p — 2,9 — 2k + X).

Corollary 2.3 Let G be a k-regular graph on v vertices with a srv(A, p).
Thenv—2k+p—2,v—2k+12>0.

Proposition 2.4 Let G be a graph on v vertices with a srv(\, p), . Then
d(z)[d(z) — X — 1] = [v — d(z) - 1]p.

Proof. We will count pairs (y,2) € V(G) X V(G) such that t ~y ~ z
2,z # z, in two different ways. We can first choose y in d(z) ways, and
then choose z in d(z) — 1 — A ways, for a total of d(z)[d(z) — A — 1] such
pairs. Or, we can first choose z in v — 1 — d(z) ways, and then choose y in
p ways, for a total of (v — d(z) — 1]u pairs. m]

Applying Proposition 2.4 to a regular graph with a strongly regular vertex,
we obtain the following familiar equation for strongly regular graphs.

Corollary 2.5 Let G be a k-regular graph on v vertices with a srv(\, p).
Thenk(k—A—1)=(v—k—1)p.

Proposition 2.6 Two strongly regqular vertices in a graph G have the same
degree if and only if they have the same parameters.

Proof. Let 2 be a srug()z, iz), and let y # z be a srvg(Ay, pty). Then,
by Proposition 2.4, we have the two equations

d(z)[d(z) - Az — 1] = [v - d(z) — 1]ps (1)

and
dy)d(y) — Ay — 1] = [v = d(y) — 1]py. (2

Suppose that d(z) = d(y) = d. Then the two equations (1) and (2)
become

dd—As—1)=(@w—-d—-1)p, and dd- Iy —1)=(v—d—1)u,. (3)

If z ~ y, then clearly A; = Ay = A, so the equations (3) become
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dd—A—1)=(v—d—1u; and dd—A—1)=(w—-d—1p,. (@)

Since v —d — 1 > 0, we can solve the equations (4) for y,; and 1, to obtain
pg = d(d—Xr-1)/(v—d-1) = py, and so 2 and y have the same parameters.
If z » y, then clearly p. = p, = p, so the equations (3) become

dd—)Is—1)=(@w—-d-1)p and dd-Ay-1)=(w—-d—-1)p. (5)

Since d > 0, we can solve the equations (5) to obtain A\, =d — (v —d —
1)p/d — 1 = )y, and again z and y have the same parameters.

Next, suppose that Ay = Ay = A and p, = py, = p. Then the two
equations (1) and (2) become

d(z)ld(z) - A - 1] =[v —d(z) - 1]p (6)
and

d(y)d(y) — A —1] = [v - d(y) - 1]p. (™
Now, if u = 0, then d(z)—A—1 = d(y)—A—1 =0, since d(z), d(y) > 0. This
implies that d(x) = d(y), so we can assume that u > 0. Solving equations

(6) and (7) for d(z) and d(y) gives us the following four possible solution
sets:

d(z),d(y) € {)‘-”‘"‘li \/()\—2u+ 1)2+4u(v—1)}.

Since 4 > 0, we have (A —p+1— /(A — p+1)2 +4u(v — 1))/2 < 0. This
eliminates all but one of the above solution sets. Thus, d(z) = (A — u +

14+ /(A —p+1)2+4u(v—1))/2 = d(y), and so z and y have the same
degree. (]

Applying Proposition 2.6 to a regular graph gives us the following results.

Corollary 2.7 All strongly regular vertices in a regular graph have the
same parameters.

Corollary 2.8 A graph is strongly regular if and only if it is reqular and
all of its vertices are strongly regular.

Corollary 2.9 A graph is strongly regular if and only if all of its vertices
are strongly regular with the same parameters.
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The graph obtained by pasting together n > 2 copies of K3 at a common
vertex T appears at first to be a counter-example to Corollary 2.9, since
every pair of distinct vertices has exactly one common neighbor, but the
graph is not regular since d(z) = 2n while the other vertices have degree
two. However, z is not considered to be a srv(1,1) since it is adjacent to
every other vertex.

In view of Corollary 2.7, the following definition makes sense.

Definition 2.10 A partially strongly regular graph with parameters v, k
(1<k<v-2), ), and y, or a psrg(v, k, A, ), is a k-regular graph G on v
vertices with at least one srug (), ). We will sometimes call such a graph
s-partially strongly regular and use the notation s-psrg(v, k, A, 1) if G has
exactly s sru(\,p). If s < v, then we say the graph is strictly partially
strongly regular.

Thus, partially strongly regular graphs are a generalization of strongly reg-
ular graphs. Clearly, a srg(v, k, A, i) is just a v-psrg(v, k, A, ). Other such
generalizations of strongly regular graphs have also been studied. For in-
stance, in (3], the authors study what they call Deza graphs. These are
regular graphs in which the number of common neighbors of two distinct
vertices takes on one of only two values, not necessarily depending on the
adjacency of the two vertices.

The following well-known theorem says that the strongly regular graphs
can be completely characterized in terms of two matrix equations. In what
follows, A denotes a (0,1)-adjacency matrix of a graph, and I, J, and 0
denote an identity matrix, a square matrix of all 1’s, and a square matrix
of all 0’s, respectively.

Theorem 2.11 A graph, not complete or edgeless, is a srg(v,k,\, p) if
and only if AJ =kJ and A2 = AA—u(J—-T1—-A)-kI=0.

The following similar results provide a way to identify strongly regular
vertices and partially strongly regular graphs.

Proposition 2.12 A vertez z with 1 < d(z) < v —2 in a graph on v
vertices is a srv(A, p) if and only if the row corresponding to = consists of
all 0’s in the matriz A2 — AA — u(J = I — A) —d(z)I.

Corollary 2.13 If G is a s-psrg(v,k, A\, ), then s is equal to the number
of rows of all 0’s in the matriz A2 — ANA — u(J — I — A) — k.

3 Constructions

In this section, we provide some constructions of partially strongly regular
graphs.
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Construction 3.1 Let m > 1 and n > 3 be integers, and let {R;}}_,
be any non-empty collection of non-complete (n — 1)-regular graphs with
v1,. .., vertices, respectively. Let G = mK,U(U}_, R;). Then G is clearly
(n —1)-regular with mn+ 22:1 v; vertices, and the mn vertices that reside
in the m copies of K, are all srvg(n—2,0). The remaining vertices are not
strongly regular in G. Thus, G is a mn-psrg(mn + Z:=1 v, n—1,n—2,0).

Construction 3.2 Let H be a srg(v, k, A, u) with u > 0, which is the case
as long as H is not a disjoint union of complete graphs, and with w, z,y,2 €
V(H) such that wz,yz € E(H), but wy,wz,zy,zz ¢ E(H). Let G be
the graph with V(G) = V(H) and E(G) = (E(H) \ {wz,yz}) U {wy, zz}.
Then G is k-regular on v vertices, and the vertices in Uy tw,z,y,2}V (H; u)U
(N(H; w)NN(H; z))U(N(H;z)NN(H;y)) will be srvg(\, 1). The remain-
ing vertices will not be strongly regular in G.

It is quite possible that Uye (w,z,y,-3 VN (H; ) = 0 in Construction 3.2. How-
ever, since 2 > 0, (N(H;w)NN(H;2))U(N(H;z) N N(H;y)) # 0. Thus,
this construction always provides at least one strongly regular vertex, and
so G is a psrg(v, k, A, p).

Construction 3.3 Let £ > 3 be an integer and choose k distinguished
vertices from the graph K = kK}, one from each copy of K. Call this set
D. Create a new vertex z and join it to every vertex in D by an edge. Call
the resulting graph H. Now, partition the set V/(K)\ D into 2-subsets such
that each 2-subset consists of two vertices residing in different copies of K
(this can always be done in many ways). Call this partition P. Finally,
define the graph G by V(G) = V(H) and E(G) = E(H) U P. Clearly,
G is k-regular and has k% + 1 vertices. In addition, the vertex z is an
sTv(0,1). The remaining vertices are not strongly regular in G. Thus, G
is a 1-psrg(k? + 1,k,0,1).

Construction 3.4 Let k > 4 be an even integer and let K = Ki11 . Let
C) and C; be the color classes of K of sizes k+1 and k, respectively. Let z be
any vertex of C;. Now, let C; \ {z} = {1,...,k} and C> = {V’,...,k'}, and
let P be a partition of C; \ {z} into 2-subsets. Finally, let G be the graph
defined by V(G) = V(K) and E(G) = (E(H)\{i#’ : 1 < i < k})UP. Then
G is k-regular with 2k +1 vertices, and z is a srvg(0, k—1). The remaining
vertices are not strongly regular in G. Thus, G is a 1-psrg(2k+1,%,0,k—1).

Construction 3.5 Let v, k, A > 0, and g > 0 be integers such that
k-=A—1>0,kand X arenot bothodd, v—k—-1>k—-u>0,v—-k—-1
and k — p are not both odd, and k(k—A—1) = (v—k —1)u. Let H
be a A-regular graph on k vertices, and let K be a (k — p)-regular graph
on v — k — 1 vertices. Create a new vertex = and join it to every vertex
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of H by an edge. Now, draw a bipartite point-block incidence graph of a
1-(k, p,k — A — 1) design between H and K. Call the resulting graph G.
Then G is a k-regular graph with v vertices, and z is a srvg(),p). The
other vertices may or may not be strongly regular in G. Therefore, G is a

psrg(v,k, X, p).

Combining Construction 3.5 with Corollary 2.5, we obtain the following
result.

Corollary 3.6 Letv, k, A >0, and u > 0 be integers such that k—\—1 >
0, k and X are not both odd, v—k—-1>k—-pu >0, andv—k—-1 and
k — p are not both odd. Then there exists a psrg(v,k, A, 1) if and only if
k(k—-A-1)=@w—-k—-1)u.

Of course, by Corollary 2.2, we can complement any of the above construc-
tions to obtain more examples of partially strongly regular graphs.

4 Eigenvalues

In this section, we briefly explore the eigenvalues of partially strongly reg-
ular graphs.

The eigenvalues of a graph contain much information about the graph.
In particular, graphs with a great deal of regularity tend to have few distinct
eigenvalues. Conversely, graphs with few distinct eigenvalues quite often
exhibit much regularity and symmetry.

The following well-known theorem says that we can recognize if a reg-
ular graph is strongly regular simply by examining its number of distinct
eigenvalues.

Theorem 4.1 A regular graph, not complete or edgeless, is strongly regular
if and only if it has at most three distinct eigenvalues.

The eigenvalues of a strongly regular graph are completely determined
by its parameters v, k, A, and yu. However, the parameters v, k, A, and u,
together with the number s, do not determine the eigenvalues of a partially
strongly regular graph. For instance, there are two 2-psrg(10,3,0,1) with
different eigenvalues.

Although a strictly psrg(v, k, A, #), G, must have more than three dis-
tinct eigenvalues by Theorem 4.1, we will see that the eigenvalues of a
srg(v, k, A\, p) are also eigenvalues of G. So, although the eigenvalues of a
partially strongly regular graph are not determined by its parameters, the
parameters do determine three of the eigenvalues. First, we need a lemma

(5], (6]-
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Lemma 4.2 Let A be a real symmetric matriz partitioned as follows:

A . Aim
A= E .. E )
Am,l v Am,m
where A;; s square for alli=1,...,m. Let b; ; be the average row sum of

A; j, and let B = (b; ;). If A j has constant row sums for alli,j =1,...,m,
then every eigenvalue of B is also an eigenvalue of A.

Lemma 4.3 Let G be a psrg(v,k, A\, u). Then

e LR ()
2

are both eigenvalues of G.

Proof. Let = be a srvg(), 1). Now, partition V(G) into three subsets,
{z}, N(z), and N(z) \ {z}. This induces a partition of the adjacency
matrix A of G, the average row sums of which are given by

0 k 0
B=|1 X k=-X-1].
0 p k-p

The eigenvalues of B are k and (A—p=£ /(A — p)? + 4(k — p))/2. Since z is
strongly regular, the block matrices in this partitioning of A have constant
row sums. Therefore, by Lemma 4.2, these are also eigenvalues of A. O

Theorem 4.4 There does not exist a connected partially strongly regular
graph with exactly four distinct eigenvalues.

Proof. Let G be a connected psrg(v,k, A, u) with exactly four distinct
eigenvalues. Since G is connected and regular, G has an eigenvalue k with
multiplicity one. Also, by Lemma 4.3, we know that

_A-nx VO —p)?+4(k—p)
2
are eigenvalues of G. Clearly, r # t, so let u be the one remaining eigenvalue
of G, and let f, g, and h be the multiplicities of 7, ¢, and u, respectively.
Now we obtain the following three equations by counting eigenvalue
multiplicities and by taking the traces of A and AZ2.

i

1+ f+g+h=v, ®)
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k+fr+gt+hu=0, 9)

and

k? + fr? + gt + hu® = vk. (10)

Since u? + (u — ANu+pu—k =0 if and only if w = r or ¢, and ,t, and u
are all distinct, we can solve equations (8), (9), and (10) for f, g, and h to
obtain

_(v—k-=Lp—k(k—-A=-1)
T oW+ (p-MNutp—k

(we do not give the ugly expressions for f and g). However, (v—k—1)p —
k(k — X — 1) = 0 by Corollary 2.5. Therefore, h = 0, a contradiction. O

Corollary 4.5 A connected graph is strongly regular if and only if it is
partially strongly regular and has at most four distinct eigenvalues.

Corollary 4.6 A connected strictly partially strongly regular groph has at
least five disinct eigenvalues.

Applying Construction 3.1 with m = 1, n = 4, and R = {K33}, one
obtains a 4-psrg(10,3,2,0) with exactly four distinct eigenvalues. Thus,
the assumption of connectedness is necessary in Theorem 4.4. Applying
Construction 3.1 with m = 2, n = 3, and R = {C,}, where Cy is the
cycle on four vertices, and taking the complement, we obtain a connected
6-psrg(10, 7,4, 7) with exactly five distinct eigenvalues, all of which happen
to be integers. It would be interesting to try to obtain some sort of com-
binatorial characterization of connected partially strongly regular graphs
with five eigenvalues.

5 Another Result

In this section, we will prove a slight strengthening of Corollary 2.8.

Theorem 5.1 A graph on v vertices is strongly regular if and only if it is
s-partially strongly reguler with s > v — 3.

Proof. Let G be a s-psrg(v, k, A\, u) with s > v—3. Let S be a set of v—3
srvg(A, 1), and let V(G) \ S = {z,y, 2} be the remaining three vertices.
We must show that z, y, and 2 are also srvg(A, 1). By Proposition 2.2, it
suffices to consider the following two cases.
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Case 1. Suppose that £ ~ y ~ 2 ~ 2. We must show that A(z,y) =
Mz, 2) = My, 2) = A

We will count the number of pairs (u,w) € V(G) x V(G) such that
T ~u~wWeZ,WF T, in two different ways. There are (k — 2)(k — 1 — X)
such pairs with u # y, z. There are also k¥ — 1 — \(z,y) pairs with v = y,
and k — 1 — A(z, 2) pairs with © = 2. This gives us a total of (k — 2)(k —
A—1)+2(k — 1) = Mz,y) — Mz, 2) such pairs. Or, we can just choose w
in ¥ — k — 1 ways, and then choose u in p ways, for a total of (v —k — 1)u
pairs. This gives us the equation

k=2k=A=1)+2(k—-1) = Mz,y) = Mz,2) =(v—Fk—1)p. (11)

Similarly, counting pairs (u,w) such that y ~ u ~ w » y,w # y, in two
ways gives us the equation

(k=2)(k-A-1)+2(k-1) - AMz,9) - Ay, 2) =(v—k—-1)p. (12)

Finally, counting pairs (u,w) such that z ~ 4 ~ w = 2,w # 2, gives us the
equation

(k=2)(k=A=-1)+2(k-1) - Mz,2) - A, 2) =(v—k—1)p. (13)

Solving equations (11), (12), and (13) for A(z,y), Mz, 2), and A(y, 2) gives
us

(v—k—1)p—k(k—1) + Ak —2)
> .

Using Corollary 2.5, we can replace (v — k — 1)p with k(k — XA — 1) in the
above expression. This gives us A(z,y), Mz, 2), A(y,2) = A, and so G is
strongly regular.

Case 2. Suppose that £ ~ y = z « 2. We must show that A(z,y) = X and
u(z, 2) = u(y, z) = p. We will count in two different ways the number of
pairs (u,w) € V(G) x V(G) such that z ~ u ~ w » z,w # 2. The number
of pairs with u # y is (k—1)(k—1— ), and the number of pairs with u = y
is k—1— A(z,y). This gives us a total of (k—1)(k—A—-1)+k—A(z,y)—1
pairs. Also, the number of pairs with w # z is (v —2—k)u, and the number
of pairs with w = 2 is u(z,2). This gives us (v — k — 2)u(z, 2) such pairs.
Therefore, we have the equation

)\(m1 y)1 )\(27, Z), A(y’ Z) =

(k=1)k—-A=-1)+k—Az,y) — 1= (v—Fk—2u(z,2). (14)
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Similarly, counting pairs (u,w) such that y ~ u ~ w = y,w # y, gives us
the equation

(k=Dk-A-1)+k-XNz,y) -1=(v-k-2uy,2). (1)

Finally, we will count the number of pairs (u,w) such that 2 ~ u ~ w »
z,w # z, in two ways. The number of pairs with w # z,y is (v — 3 - k)p,
the number of pairs with w = z is p(z, z), and the number of pairs with
w = y is p(y, z). This gives us a total of (v—k —3)u+ p(z, z) + p(y, 2) such
pairs. Or, we could just choose u in k ways, and then choose win k—1—A
ways, for a total of k(k — X — 1) such pairs. This gives us the equation

(v—k—=3)u+p(z,2) +p(y,2) =k(k—r-1). (16)

Solving equations (14), (15), and (16) for A(z,y), u(z, z), and u(y, 2) gives
us

Az,y) = (v—k—l)u—k(zk—1)+)\(k—-2)

and

u(e, )y, ) = KEZAZD =0 k=8

Using Corollary 2.5, we can substitute k(k — A = 1) for (v —k - 1)p in
the above expression for A(z,y), and we can substitute (v — k — 1)u for
k(k — XA — 1) in the above expression for u(z, 2) and u(y, z). This gives us
A(z,y) = A and p(z, 2) = p(y, 2) = p, and again G is strongly regular. O

Applying Construction 3.1 with n = 3 and R = {C4}, we can obtain
(v —4)-partially strongly regular graphs on v vertices for arbitrarily large v.
Thus, Theorem 5.1, as weak as it is, is best possible. By Corollary 2.2, the
assumption of connectedness would not change the situation. One wonders
if the assumption that both G and G are connected would allow a stronger
theorem to be proved.

6 Conjectures

In this section, we make several conjectures concerning partially strongly
regular graphs. The first three conjectures are very similar to Theorem 5.1.

First, we conjecture the existence of a subtractive term, larger than the
three in Theorem 5.1, for connected partially strongly regular graphs with
connected complement.
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Conjecture 6.1 There exists an integer ¢ > 4, independent of v, such that
a connected s-partially strongly regular graph on v vertices with connected
complement is strongly regular if and only if s > v —ec.

The next conjecture is a stronger multiplicative version of Conjecture 6.1.

Conjecture 6.2 There exists a constant ¢ < 1, independent of v, such that
a connected s-partially strongly regular graph on v vertices with connected
complement is strongly regular if and only if s > cv.

Specializing Conjecture 6.2, we obtain the next conjecture, which the au-
thor’s intuition tells him must be true (so it probably is not).

Conjecture 6.3 A connected s-partially strongly regular graph on v ver-
tices with connected complement is strongly regular if and only if s > v/2.

By Theorem 5.1, a strictly s-partially strongly regular graph on v ver-
tices must have s < v — 4. Our next conjecture concerns the structure of
such graphs that are extremal with respect to this inequality.

Conjecture 6.4 Let G be a (v — 4)-partially strongly regular graph on v
vertices. Then G = mK3 U Cy or G = mK3 U Cj for some integer m > 1.

Corollary 4.6 states that a connected strictly partially strongly regular
graph has at least five distinct eigenvalues. Our final conjecture is an upper
bound on the number of disinct eigenvalues of a partially strongly regular
graph.

Conjecture 6.5 An s-partially strongly regular graph on v vertices has at
most 2[v/s] + 1 distinct eigenvalues.

Of course, Conjecture 6.5 says nothing when s = 1 or 2. However, it is
probably not possible to say much about graphs with such a small s-value
anyway. For instance, there is a 1-psrg(9,4,1,2) with all nine eigenvalues
distinct.

7 Small Graphs

In this final section, we list all strictly partially strongly regular graphs
on at most ten vertices. The following table lists, for each of the 31 such
graphs, the parameters (v, k, A, 1), the number s, and the number of distinct
eigenvalues (L(G) denotes the line graph of a graph G, and C is the unique
cubic graph with six vertices and girth three).

108



no. | v [ k] (\u) | 8| distinct eigenvalues comments

1. 1 712)]@0)]3 4 integer K3UCy

2. |74 (1,493 5 integer KsUC,

3. | 8 (2] (03 4 (2 integer) K3UCs

4. | 8 | 5] (2,5 |3 5 (3 integer) K3z UCs
51912103 4 integer KsUCs

6. 19 4] @03 ]1 7 (1 integer) Construction 3.4, 3.5
7. 19[4 (1,2) |1 7 integer Construction 3.5
8. |9 4| (12)1}1 7 (5 integer) Construction 3.5
9. | 9 14| (1,2) |1 7 (6 integer) complement of #8
10.] 91412 }1 7 (5 integer) Construction 3.5
1. ] 9 4] (1,2) |1 9 (5 integer) Construction 3.5
12. | 9 [ 4] (,2) | 3 5 integer Const. 3.2 (H = L(K3,3))
13. 1 9 (4] (1,2) |3 5 integer complement of #12
4.1 9 (4| (1) |1 7 (1 integer) complement of #6
5.1 9 | 6| (3,6) | 3 5 integer K3 UCs

16. {10 2] (1,0) |3 5 (2 integer) KsUCy
17.110]21} (1,0) |6 4 integer 2K3UC,

18. 11013 (,1) |1 6 (3 integer) Construction 3.3, 3.5
19. | 103} (0,1) { 2 7 (5 integer) Construction 3.5
20. {103 (0,1) | 2 7 (5 integer) Construction 3.5
21. |10 [ 3| (0,1) { 4 5 integer Const. 3.2 (H = L(Ks))
22. {10 | 3| (2,0) | 4 4 integer KisUKsgs
23.|10]| 3] (2,0) |4 5 integer KsuC

24. 10| 6] (2,6) | 4 5 integer KiUKss

25. [ 1016] (2,6) {4 6 integer KsuC

2. 110(61} (3,4) |1 6 (3 integer) complement of #18
27. 1101 6| (3,4) | 2 7 (5 integer) complement of #19
28. |10 6] (3,4) | 2 7 (5 integer) complement of #20
2. (10161 (3,4) | 4 5 integer complement of #21
30. {10747 |3 6 (3 integer) K3z UCr

31. |10 | 7| (4,7) | 6 5 integer 2K3U Cy
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