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Abstract

Let F be a family of k-graphs. A k-graph G is called F-saturated
if it a maximal graph not containing any member of F as a subgraph.
We investigate the smallest number of edges that an F-saturated
graph on n vertices can have. We present new results and open
problems for different instances of F.

1 Introduction

A k-hypergraph H is, as usual, a pair (V(H), E(H)) (vertices and edges)
where V(H
E(H) C ( (k )) ={ACV(H):|A|l =k}

‘We sometimes call H a k-graph or even simply a graph when k is under-
stood. The size of H is e(H) := |E(H)| and the orderis v(H) := |V (H)|.

Given a family F of k-graphs (which are typically called forbidden), we
say that a k-graph H is F-free if no F € F is a subgraph of H. Next, H is
F-saturated if it is maximal F-free (that is, H is F-free but the addition
of any extra edge to H violates this property). Let

SAT(n,F) := {H : H is F-saturated, v(H) = n}

*This research was conducted when the author was supported by a Research Fellow-
ship of St. John’s College, Cambridge, UK.
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consist of all F-saturated graph of order n. We are interested in the smallest
size of a such graph, that is, in

sat(n, F) := min{e(H) : H € SAT(n, F)}. (1)

If 7 has only a single member F, we write sat(n, F) instead of sat(n, {F}),
etc.

The first sat-type results were obtained by Erdés, Hajnal and Moon [11]
and by Bollobas [4] (see (2)); the current notation comes from Bollobas’
book [6].

Készonyi and Tuza [16] showed that sat(n,F) = O(n) for any (possi-
bly infinite) family F of 2-graphs. The author [19] proved the estimate
sat(n, F) = O(n*~1) for any finite family F of k-graphs.

Problem 1 Does sat(n,F) = O(n*~!) for any infinite family F of k-
graphs?

The sat-function lacks many natural regularity properties as it is ob-
served by Kdaszonyi and Tuza [16]. In Section 2 we present a few further
results of this type. We demonstrate a pair of connected graphs F; C F
on the same vertex set such that sat(n, F}) > sat(n, F3) for all n > v(F}).
Also, for any constant d, we build a 2-graph F = F(d) such that

sat(n, F) < min (sat(n — 1, F),sat(n + 1, F)) — d,

for a periodic series of values of n.
Tuza [25] made the following conjecture.

Conjecture 2 For any 2-graph F, the limit lim,_, sat(n, F)/n ezists.

The author [19] demonstrated an example of an infinite family F of
graphs such that sat(n,F)/n does not tend to a limit. Here we improve
on this by demonstrating a finite ‘irregular’ family F. But Tuza’s conjec-
ture remains open as a smallest family that we can construct consists of 4
forbidden graphs.

A number of results have been obtained for special families F (see
e.g. (11, 4, 8, 18, 16, 26, 24, 10, 3, 28, 19, 20, 21)). Here we present a
few more.

Bollobds [4] computed the sat-function for the complete k-graph of order

sat(n, K*) = (Z) - (n - T: + k). (2)

This extends the result of Erdés, Hajnal and Moon [11] who had previously
proved (2) for £ = 2. Minimum K?-saturated graphs of given minimum
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degree were studied by Duffus and Hanson [9] and by Alon, Erdés, Holzman
and Krivelevich [2]. A result from the latter paper is improved here in
Section 3.

In Section 4 we compute sat(n, K} + K2,) for all n > no(l,m).

In Section 5 we forbid three k-cdges such that the symmetric difference
of two is contained in the third one and show that the corresponding sat-
function equals n—O(log n). For £ = 3 we compute the sat-function exactly.
(The case k = 2 is trivial.)

The paper contains some other results and open problems that are scat-
tered throughout the text.

2 Irregularities

Here we demonstrate some irregularities of the sat-function in the compar-
ison to the Turdn function

ex(n,F) = max{e(G):G € SAT(n,F)}
max{e(G) : v(G) = n, G is F-free}.

Clearly, ex(n, F1) < ex(n, F3) whenever F) is a subgraph of F;. Készonyi
and Tuza [16] demonstrated an example of Fy C F, with sat(n, Fy) >
sat(n, F) for all large n. Tuza [27, p. 401] asked if there exists a connected
trregular pair F; C F»; this is answered in the affirmative by the following
simple example.

Example 3 There is a pair of connected graphs F\ C F» on the same
vertez set such that sat(n, F1) > sat(n, F2) for all n > v(F).

Proof. Let m > 4. Let F} be the star K n, that is, V(F;) = [m + 1] and
E(Fy) = {{1,i} : i € [2,m + 1]}, and let F, be obtained from F, by adding
the edge {2,3}. Clearly, sat(n,F2) <n—1,n>m+1, as K, ,_1 is an
example of an Fy-saturated graph.

On the other hand, in any F)-saturated graph G, any two vertices of
degree at most m — 2 must be connected. (Otherwise the addition of this
edge cannot create a forbidden subgraph.) If we have v € [0,m — 1] such
vertices, then e(G) > () + 252 (n — v), which is easily seen to exceed n—1
foralln>m+1. 1

Clearly, for every n > v(F), we have ex(n, F) < ex(n + 1, F). On the
other hand, Készonyi and Tuza [16] observed that, for any odd n = 2k — 1,
we have sat(n, P3) = k+ 1 > sat(n + 1, P3) = k, where P; is the path with
three edges. Our next example amplifies this irregularity.
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Example 4 For every constant d, there is a 2-graph F = F(d) such that
sat(n, F') < min (sat(n — 1, F),sat(n + 1, F)) — d,
for a periodic series of values of n.

Proof. Let m = 2d + 3 and let F' = By, ,,, be the dumb-bell

E(Bpm) = ([T;]) U ([m +21’2m]) U {{1,m+1}},

that is, By,m is the disjoint union of two copies of K2, plus one edge
connecting them.

Let us show that the claim is true for any n = Im if [ € N is large.
Clearly, sat(lm,F) < Im(m — 1)/2 (in fact, this is sharp) as IK? €
SAT(Im, F), where [F denotes the union of / disjoint copies of F. On
the other hand, let n = Im — 1 and suppose that G € sat(n, F') has at most
g =Im(m - 1)/2 + d edges.

Clearly, 6(G), the minimal degree of G, is at least §(Bp,m)—1=m—2.
Suppose that for some z € V(G) we have d(z) = m — 2. Then for every y
non-incident to z the edge {z,y} € E(G) cannot be the bridge in a created
B, m-subgraph as the degree of z is too small; that is, z and y fall into
the same K72 -half. Therefore, y must be connected to all m — 2 neighbours
of z and e(G) > (m — 2)n + O(1) which is a contradiction.

Hence 6(G) > m—1. Theinequality A(G)+(m—1)(n—1) < 2¢(G) < 2g
implies that A(G) < 2(d+ m — 1). If some z € V(G) does not belong to
an m-clique then any missing edge {z,y} must create a K2-subgraph and
we arrive at a contradiction again, as d(z) < A(G) is bounded. Thus the
whole of V(G) is covered by m-cliques.

We want to find a set X C V(G) with the surplus s(X) = e(G[X]) -
m=11X] at least m — 1 as then we would obtain a contradiction:

m-—1 m-—1

e(G) 2 e(GIX) + o= (n - |X]) 2

n+m-—1>g.

As m does not divide n, there are two distinct cliques A, B € (V,(f ))
with i = |[AN B| > 0. It is straightforward to verify that

s(AUB) 22@”‘) - (;) —mT_l(2m—-i)2 m2"1.

No m-clique C # A, B can intersect some other clique or AU B. (Oth-
erwise we gain another surplus of at least (m — 1)/2.) By the divisibility
argument, i = 1. As a (2m — 1)-clique has surplus at least m — 1, there
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exists some E € E(G) lying within AU B. It is easy to see that G + E
must contain a K72 -subgraph on some m-set C # A, B intersecting AU B
in at least two vertices, which implies s(AU BUC) > m — 1 as required.

Let n =ml+1and G € SAT(n, By m). If 6(G) = m — 2, then we argue
as above that e(G) > (m —2)n+ O(1); otherwise e(G) > 251 n > g, which
completes the proof. i

Next, we present an example of a finite family J of 2-graphs such that
the ratio sat(n,F)/n does not tend to a limit. The fewest number of
elements in F that our proof gives is four (take m = 4). It may be possible
that working harder one can further reduce this number but the ultimate
aim, a counterexample to Conjecture 2, seems out of reach to our method.

Example 5 There ezists a finite family F of 2-graphs such that, for some
¢ > 0 and for infinitely many n,

sat(n, F) < min (sat(n — 1, F),sat(n + 1, F)) — cn.

In particular, the ratio sat(n,F)/n does not tend to a limit.

Proof. Fix m > 4 and consider the family F consisting of the dumb-bell
Bm,m and Fm.l; ey Fm,m—l) where

E(Fpn;) = ([T;]) U (lm_i+;’2m_i]), i€m-1),

that is, Fin ; is the union of two K72 -graphs sharing i common vertices.

Clearly, the disjoint union of K?Z-graphs is F-saturated as any miss-
ing edge connects two different copies and thus creates a By, m-subgraph.
Hence, if m divides n then sat(n, F) < Z(7).

On the other hand, suppose that m does not divide n and let G be any
F-saturated graph on [n]. By the definition of F, no vertex can belong to
two different K2 -subgraphs of G; suppose that the sets 4; = [m(i — 1) +
1,mi], ¢ € [s], are all m-sets spanning complete subgraphs in G. Denote
Ar=UerAy, IC [S]

Note the following two properties of G. Property A: G[A[,)) = sK2,.
(Because By, is forbidden.) Property B: any missing edge E intersect-
ing B = [n] \ A}, creates a K2 -subgraph. (Because it is impossible that
Bm,m C G + E with E being the bridge.)

We claim that these two properties and the fact that B # @ (as m is
not a divisor of n) imply that

e(G) > % ((’;‘) +m~2) - m2. (3)
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We use induction on n. If some E € (3) is not a G-edge then it is easy to
check that the graph G’ obtained from G by contracting the edge E has the
properties in question. The endvertices of E have at least . — 2 common
neighbours in G (because E creates a K2 -subgraph) so ¢(G) > e(G')+m—2
and (3) follows by induction. (Here we need the inequality m > 4.)
Suppose that B spans the complete graph in G. If some E € E(G)
intersects both 4; and B then a K2 -subgraph created by E lies within
A; U B and so at least m — 2 G-edges intersect both A; and B. Therefore,

m-—1 b n-—>b
e(G) 2 (1) = (n-H)" = + (2) + 2l (m )
where b = |B|. (We correspondingly count the edges within Ay, within B
and in between.) The minimum of f is achieved for b = 2 + ©=2 and our
estimate (3) follows rather crudely.
Hence, if we increase/decrease n = ml by one, then sat(n, F) increases
at least by n2=2 + O(1). I

For k-graphs, k > 3, we are able to prove only the following.

Example 6 For any k > 3, there is a finite family F,. of k-graphs such that
sat(n, Fi) = O(n) but sat(n, Fi)/n does not tend to any limit as n — co.

Proof. Let I ; be the finite family consisting of all (up to isomorphism)
k-graphs with at most k — ¢ + 2 edges whose common intersection has fewer
than ¢ vertices.

Note that any 7y ;-free k-graph H is i-intersecting, that is, | Ngep(m)
E| > i. Indeed, let I be any edge of H and then, as long as possible, if
there is E € E(H) with I ¢ E, replace I by I N E; if eventually |I]| < ¢
then there must be at most £ — 7 + 2 edges whose intersection has size at
most ¢ — 1, which is forbidden.

Given a 2-graph G, we fix a (k—2)-set X disjoint from V(G) and define
Cr—2(G) by E(Cr—2(G)) = {EU X : E € E(G)}.

Now, let Fir = {Cy—2(F) : F € F} U I -2, where F is the family
constructed in Example 5. It is easy to see that sat(n, ) = sat(n—k+2, F)
and the claim follows. 1

Problem 7 Is there a finite family F of k-graphs, k > 3, for which the
ratio sat(n, F)/n*~! does not tend to any limit?
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3 Complete Graphs

Duffus and Hanson [9] consider sat(n, K2,,1) which is the minimum size of
a graph in

SAT(n, K2,,1) := {G € SAT(n, K2) : §(G) > I}.

Of course, any K?2 -saturated graph G has minimum degree at least m ~ 2,
so we assume [ > m — 1.

Duffus and Hanson [9] proved that, for n > 5, sat(n,K3,2) = 2n -5
and, for n > 10, sat(n,K2,3) = 3n — 15. However, their general lower
bound [9, Theorem 2], which states that sat(n, K2,,{) > “2=2n + O(1),
is far from the actual value. Trying to improve this bound, I showed that
sat(n, K2,,1) = In + O("'"}—‘Eﬁ—"-) for any fixed I > m — 1. Later, I learned
that Alon, Erdés, Holzman and Krivelevich [2, Theorem 2] had showed
that any G € SAT(n,K?2) with O(n) edges has an independent set of
size n — O(gzieg5)» which implies that sat(n, K2,l) = In + O(rogiegn)-
However, I decnded to present my proof because it improves all these bounds
and I think that the general Theorem 8 is of independent interest.

However, the question of Bollobds (7, p. 1271] whether sat(n, K2,1) =
In + O(1) for any fixed ! > 4, remains open.

Let us give a construction of G € SAT(n, K2,,1) with In + O(1) edges:
take G = K2,_;+ K| n+3,n—t which has minimum degree { for n > 2l—-m+
3. The complete bipartite graph Kj_;m+3,,—1 does not contain a triangle
but the addition of any new edge violates this; hence, G is K?2,-saturated.

To prove our lower bound we need some preliminaries. Given any d,

define a4—m+2 = 2 and, consecutively for j =d-m+1,d-m,...,1,0,
¢ir1 = (m—2)(aj1—1)+1
bjiri = (m-2)(cjy1 —1)+1
i = (50w -1 +1,
a; = (d—J— )(b_,7+l ) + 2.

Finally, let a = (1 + 2(d — 1) + 2(d — 1)?)ao.
Given a K2 -saturated graph G, let A denote the set of G-edges con-
necting two vertices of degree at most d in G:

A= {{z,y} € E(G) : d(z) < d, d(y) <d}.

The following theorem states that the size of A is bounded by a = a(d, m)
which does not depend on n. Note that we do not impose any restriction
on the minimal degree of G.
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Theorem 8 For any G € SAT(n, K2), m > 3, we have |A| < a.

Proof. Suppose, on the contrary, that |A| > a.

We prove, by induction on j =0,1,...,d — m + 2, that we can find the
following configuration in G: aj-sets X; and Y; and j-sets U; and V; (all
disjoint) such that (i) X; UY; induces in G exactly a; edges which form a
perfect matching between X and Y and belong to 4; (ii) Ty,uv, (z) = U
for any z € X; and I'y,;uy;(y) = V; for any y € ¥j.

For j = 0 (when Uy and V} are empty), we take, one by one, edges from
A. Once we have selected an edge E € A, cross out all incident to E edges
(at most 2(d — 1) edges) and their neighbouring edges (of which at most
2(d — 1)? can belong to A). Hence, we can build an induced matching of
size at least |A|/(1+ 2(d — 1) + 2(d — 1)?) > ay as required.

Suppose that j € [0,d — m + 1] and we have X, etc., constructed.
Choose z € Xj; it has already got j + 1 neighbours in G: the neighbour
y € Y; plus all j vertices of U;. Let N; denote the remaining neighbours
of z; thus |[N;| < d—j — 1. For any z € Yj; distinct from y, the addition of
the edge {z,z} must create a copy of K2,, say on a set D, U {z,z}. Now,
D, cI(z)NnI[(2) C N;.

Thus some set D., z € Y; \ {y}, appears at least b, = [(a; —
1)/(*350 tlmes suppose it is D € (,V=,) which equals D, for z € B' C
Y\ {y} |B'| = In a similar manner, we try to connect y to the

X j-matches of B’-vertlces and find a set E € (,*,) spanning the complete
graph and connected to every z from a set B C X; matched into B’ of
cardinality bjy; = [}, / (4-3500.

Clearly, no z € B can be connected to every vertex of D; otherwise
D, z and the match of z in B’ span K2, Therefore, some v € D is not
connected to at least cj4; = [—-'*—‘] vertlces of B; let C C B consist of
all such vertices. Similarly, we can find » € E, not connected to an a;;-
set Y;41 matched into C. Of course, u # v. Now, let Uj;, = U; U {u},
Vit1 =V; U {v}, and let X;4; C X; consist of the matches of Y41, which
completes our induction.

At the end, we try to apply our argument again, for j = d — m + 2.
We obtain that £ € X; has at least 1 + j + (m — 2) > d neighbours, which
contradicts the fact that {z,y} € A, where y is the Yj-match of z. 1l

Now we are ready to improve the result of Alon et al [2, Theorem 2]
mentioned above. Let a(G) denote the maximum size of independent Y C

V(G).
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Lemma 9 For any G € SAT(n, K2,) with O(n) edges, we have

a(G) =n-0(?’M) .
logn

Proof. Suppose e(G) < Cn. Let d = E—]"El- for some fixed € > 0 and let
X = {z € V(G) : d(z) > d}. Now, le|72 < e(G) < Cn implies that

2Cnloglogn

<
Xl < elogn

By Theorem 8, Y = V(G) \ X spans at most a < n2(m=2)+o(1) edges. Re-
moving at most a vertices we can make Y independent,; it has the required
size if E< m l

Clearly, e(G) > a(G)d(G). Therefore, Lemma 9 implies the following
result.

Theorem 10 For any fized | > m —1, sat(n, K2,,1) = In+ O(ZleElen) g

logn

4 (Generalised Stars

The graph Si, = K? + K2 can be viewed as a generalisation of a star
K1, m, so we call it a generalised star.

The sat-function for S;,, = Ki,m was computed by Készonyi and
Tuza [16):

M5, ifm+1<n<(3m-1)/2
Sat(Tl,Kl,m) = { g(% - 1)n/2 m2/8'|, n > 3m/2
(4)

Clearly, G + K}_, is Si,m-saturated for any K n-saturated graph G.
This shows that

sat(n,Si;m) <sat(n — 1+ 1, K ) + (l ; 1) +(-1(n-1+1). (5)

We can show that this bound is sharp for all sufficiently large n. (This
may be true for all n > m + [ but the author was not able to work this
out.)

Theorem 11 There is ng = ng(l,m) such that we have equality in (5) for
alln > nyp.
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Proof. We use induction on [. There is nothing to do in the case I = 1.
Let | > 2, n be large and G be a minimum S; ,,,-saturated graph of order
n. Observe that

m-—1

e(G) < (z “14 ) n+ O(1). (6)

If G has a vertex z of degree n — 1, then we are done by induction as
G —z € SAT(n — 1,5,-1,m). Thus we assume that A(G) <n — 2 and try
to derive a contradiction. Let the vertices of G be 2;,...,z, of degrees
dy > -+ > d, respectively.

Let p be the number of induced paths of length two in G. Observe that
every pair of adjacent points of S, can be connected by at least I — 1
edge-disjoint paths of length two. Hence, each edge from G contributes at
least [ — 1 to p, that is, p > (I — 1)e(G). On the other hand, p < 3", (%).

Any two vertices of degree at most [ + m — 3 must be connected in
G (otherwise the addition of this edge to G cannot create S;.,). Hence,
we have at most | + m — 2 such vertices and the degrees of G satisfy the
following inequalities.

n=2>d; > >dutomiz >l +m—2. )

For any z > y the expression (3) + (¥) gets larger if we increase z

by 1 while decreasing y by 1. Hence, we can find a sequence (d})ic[n)
such that 7 di = S0, d, S0, (4) < 1, (%) and, for some j €
(l,n =1 —m+ 2], we have

d;, iell-1Un-1l-m+3,n],
d; =< di-1, i€l,j-1],
l+m-2, iej+l,n—-Il-m+2).

(We do not know anything about d; except that dj—1 > d; > 1+m —2.)
Thus we obtain

!

0-0(3)-0m sp<3 () < 5 S dir Bt -m+om. @
i=1 i=1

Observe that d}_, = dj_; = Q(n) (otherwise 3o, (%) < (1 -2)(3) +
o(n?)). From (6) we conclude that j = O(1).

fn—d-; =Qn), thend; +---+d; > (I — 1)n + Q(n) by (8). Also,
iy di 2 (L+m —2)n+ O(1). But then we obtain the contradiction

m—1

e(G):%id§2(1—1+ )n+n(n).
i=1
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Hence, each of dy,...,d;—1 isn+o(n). Let X = {z,,...,21-1}. Choose
somey € V(G)\T(z1). Let H=G~X -yand A =Tx(y) C V(H).
For any z € V(H) \ A, the addition of the edge {y, 2} to G creates a copy
of S;,m which contains a set B of at least [ — 1 vertices connected to both
y and z. Of course, z; ¢ B; hence, B ¢ X. Let v € B\ X C A4; we
have {v,z} € E(H). As z € V(H) \ A was arbitrary, we conclude that
A C V(H) is a dominating set in H.

We know that we have at most ! + m — 2 vertices of G-degree less than
l +m — 2. For any other vertex z € V(H) we clearly have: dg(z) >m -1
ifzre V(H)\ Aand dy(z) >m—-2if z € A. Let a = |A|]. Note that

Z di(z) > max (a(m — 2),n — a) + O(1)
T€EA

because A is a dominating set. Hence,

at+e(H) > a+ %((n —a)(m — 1) + max(a(m — 2),n — a)) + O(1)

(m2— ! + 2(m1— 1)> n+0(1),

where the latter inequality is obtained by the straightforward minimisation
with respect to a (the minimum occurs when a = 24 + O(1)). We have

1
m—1)

v

e(G’—X)2|A|+e(H)2(m2—1+2( )n-l—O(l).
This gives at least (I — 1+ 25 + -ﬂmlTl))n + o(n) edges in G, which is
the desired contradiction. i

The above construction generalises to the following settings. Let S,’fm
have | + m vertices and consist of all edges intersecting some fixed l-set of
vertices called the centre. Thus, S;;m = S,Z_m; also, for example, e(S,‘:m) =

(™) = (7). The value of sat(n,S} ) was asymptotically computed by
Erdés, Fiiredi and Tuza [10] and sat(n, Sf,,) by the author [20]. What is
sat(n, Sf,,) in general?

We have the following construction. Givenn >l +m, let A= [l — 1],
u=m-—k+2and n = [(n—1+1)/u]. Partition [n] \ A into blocks
By,...,Bp of size u each except possibly the last one. Our k-graph G
consists of the edges intersecting A plus those edges intersecting the first
block they meet in at least 2 vertices. It is easy to see that S,’f,m is not a
subgraph of G but the addition of any new edge E creates an Sﬁm-subgraph
on EU AU Bj centred at AU {v}, where Bj; is the first block meeting E
and {v} = B;NE. Thus, G is S} ,-saturated and we have an upper bound

which we conjecture to be asymptotically sharp.
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Conjecture 12 For any fized positive integers k,l,m with m > k, we have

m+2l—k"'1 k—1

T + o(n*F71).

sat(n, Sf,,) =

5 Triangular Families

The notion of a triangle-free 2-graph can be extended to hypergraphs in
the following way suggested by Katona [17]: a k-graph is triangle-free if the
symmetric difference of any two distinct edges is not contained in a third
edge. Clearly, this is the same as forbidding the triangular family T, which
consists of all k-graphs with three edges E,, E», E3 such that E;AE, C E;3.

We have the following obvious example of a Ti-saturated graph: the
pyramid P¥ which consists of all k-subsets of [n] containing the set [k — 1].
Indeed, any missing edge E intersects [k,n] in at least 2 points and creates
a forbidden subgraph on the set EU [k ~ 1]). Thus

sat(n, k) <n—-k+1, n>k+1.

and this might be sharp.
In the general case we are able to prove only the following.

Theorem 13 Let k > 3 be fized. Then
n— O(logn) < sat(n,Tx) <n—k+1.

Proof. We have to prove the lower bound. Let G be a minimum 7-
saturated graph on [n]; e(G) < n—k+1. Consecutively choose Gy,Ga,... C
G as follows: let ej4; be the largest integer such that the k-graph Hj,

E(HJ) = E(G) \ (E(Gl) U... UE(GJ')),

€
terminate the procedure when b; = n —ef;) — j(k ~ 1) is less than max(j, k).

(We denote ej) = 3_;¢(; € etc.)

Let j > 0 and suppose we have chosen G,,...,G;. Let B; consist
of some b; vertices not covered by an edge of G;, i € [j]; B; exists as
v(Gi) = e; + k— 1. (We let bp = n.) Label all (k — 1)-subsets of [n] by
Ap,..., A L= (")) Let d; be the number of edges of H; containing A;,
i € []. Clearly,

dy = ke(H;) < k(n—k +1—ep;) = k(b; + (j — 1)(k — 1)) < k¥%b;. (9)

contains a P";, " +k—1-subgraph and let Gj41 be any such subgraph. We

The number of ways to add an element of (%) creating a forbidden
subgraph with any given Ei, E; € (1)) is at most (%-2)+0(1) if |E\NE;| =
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k—1and it is O(b5~*) otherwise. As the addition of any E € (B)\ E(H;)
to Hj creates a forbldden subgraph (because E is disjoint from any edge
of Gy, i € [j]), we conclude that

(bk 4)<C(H )) + (k 22) IGZ[;I (‘;‘) > (IZ) — e(H;), (10)

which implies by (9) that

> (%) 2 gy - 000 ()

i€(l]

We have €41 = max;ep) d;. The convexity of the (3)-function implies
that the left-hand side of (11) does not exceed -‘fm-(e’;‘) < zk?bjejyr.
Therefore, we obtain that
2
Bk-1)
From this inequality (and from the fact that e;4y > 1if b; > k) we deduce
the following inequality

bisr < min ((1- gy ) b5+ O(1), b — k). (12)

It is clear that, starting with by = n, we stop after j = O(logn) steps.
Now,

-0(Q1).

€j41 >

e(G) > ey =n—b; — j(k — 1) = n — O(logn).
The theorem is proved. I
Let us consider the case k¥ = 3; note that 73 contains only 2 non-
isomorphic graphs, S} ; and Ts:
E(S{;) = {{1,2,3}, {1,2,4}, {1,3,4} },
E(T3) = {{1,2,3}, {1,2,4}, {3,4,5} }.
Theorem 14 For any n > 4, sat(n,T3) =n — 2.
Proof. Let G be any Tz-saturated graph on [n]. Make a list of all edges of
G and, consecutively and as long as possible, merge together any two sets
in the list sharing at least 2 vertices (that is, replace then by their union.)

Call the resulting sets C),...,Ci C [n] components. Let v; = |C;|]. Define
the 2-graph H on [n] by

E(H) = {{z,3} € () : {z.4} = ELAE; for some By, s € E(G) }.
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Consider any component C. It is easy to see by induction on |C| that
C' is composed of at least |C| — 2 edges of G. :

Note that if E € E(H[C]) then any E,, E; € E(G) with E,AE, = E
share two vertices and so belong to the same component C’; but E ¢ C'NC
so necessarily C' = C.

Claim 1 For every component C, A(H[C]) < e(G[C]) — 1.

Proof of Claim. Let z € C be arbitrary. For each {z,y} € E(H[C]), choose
Dy, E, € E(G) with DyAE, = {z,y} and E, 3 y. If {z, z} is another edge
of H[C] then E, # E.: indeed, otherwise D.AE, = {z,z} C D, and G
contains a forbidden subgraph. Hence, d(z) < e(G[C]) — 1 (we must have
at least one G-edge incident to z) and the claim is proved. |

Claim 2 If e(G[C]) < |C| -1 then for any z € [n]\C there is a component
C' 5 z intersecting C.

Proof of Claim. By Claim 1, there exists {a,b} € E(H[C]). Asz ¢ C,E =
{a,b,z} € E(G). Consider a forbidden subgraph F created by E. We are
home if {a,z} or {b,z} is covered by F; or E, where E(F) = {E, Ey, E,}.
If {a,b,y} € E(F) then y € C and the remaining edge of F' contains both
z and y. Finally, if E\AE, C E then, as {a,b} ¢ E(H), = belongs to the
component containing £, and Fy which is the required one. The claim is
proved. |

If every component C spans at least |C| edges, then we are done as the
components cover all but at most one vertex; so assume otherwise. Now,
Claim 2 implies that Cy) = [n).

If every component C spans at least |C| — 1 edges then we are home:
by Claim 2 relabel components C1,...,C; so that C;NCj;_y) # 0, ¢ € [2,1],
and it is easy to show by induction on i that C[; is made of at least |C(;| -1
edges, which gives e(G) > n — 1.

So, suppose that, for example, e(G[C1]) = |Ci| — 2. If for every z €
[r]\ C1, there are two distinct components containing z and intersecting
C: then are home:

eG) 2 Y (-2 =wu-I-1+3) (-1
i€(l] i€(2,]
> vy —Il-14+max(2l-2,2(n—v)) > n—-2. (13)

So let C, be the only component containing some vertex z ¢ C; and
intersecting C;. Let {y} = C; N C,.

Let z € [n] \ Cjg) be arbitrary. If {z,z} C C;, for some i € [3,1], then,
by the choice of z, C; N C; = @ and, by Claim 2, there exists another
component through z intersecting Cj.
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If no component contains both = and z then, for every y' € C1 \ {y},
E = {z,y',2} € E(G) and considering a forbidden subgraph created by
E we conclude that, for some i € [3,1], {¥,2} C C; (as {z,y’'} cannot lie
within a component by the definition of ). As |C;| > 3, we have at least
2 distinct components containing z and intersecting C;.

Now the argument similar to (13) shows that C{3, is made of at least
n — |Cy U C,| edges, which gives e(G) > n — 3. (The conclusion is true in
the case [ = 2 as well: then C; UC> = [n].)

Can we have e(G) = n — 3? If we have the equality then every C;, 7 €
[3,1], must intersect C; U C> in exactly one vertex and e(G[C;]) = |Cj| — 2,
j € [l]. By Claim 1, there exists y; € C; such that {y,y:} € E(H),i=1,2.
But then {y,y1,y2} € E(G) (e.g. because it intersects C; in two vertices)
and the consideration of a created forbidden graph yields a component
containing both y; and y,. Hence, e(G) > n - 3 as required. I

Remark. Our further analysis has not yet yielded any characterisation of
all extremal graphs: we have got stuck considering different cases and, even
if we had succeeded, the proof would have been rather long. The difficulty
is that an extremal graph may be not unique. For example, there is another
minimum 73-saturated graph of order 7: let V(G) = [7] and

EG) ={{1,2,5}, {1,3,6}, {1,4,7}, {2,3,4}, {5,6,7} }.

6 Some Other Open Problems

The following definition comes from the Ramsey theory. We say that
a graph F arrows a t-tuple (Fi,...,F;) of graphs, which is denoted as
F - (F,...,F), if any t-colouring of E(F) contains a monochromatic
F;-subgraph of colour 7 for some ¢ € [t].

Hanson and Toft [13] made the following conjecture (which we restate
here in the sat-type notation).

Conjecture 15 Givent > 2 and numbers m; > 3, i € [t], let
F={F:F—> (K,?,“,...,Kfm)}.

Letr =7(K2, ,...,K2,) be the classical Ramsey number, that is, the min-
imum order of a complete graph arrowing (Kg“,...,K,zm). Then

sat(n,F) = (r ; 2) +(r=2)(n—r+2).
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Obviously, they had the graph S = K2_, + K2__,, in mind. Observe
that this graph is F-saturated, that is, a maximal graph not arrowing
(KZ%,,...,K2,). Indeed, KZ_; C S can be properly coloured and this
colouring extends on the whole of S by ‘cloning’ some coloured vertex. On
the other hand, the addition of any edge to S creates K? € F.

Tuza [27] defines the local density d(F) of a k-graph F by

d(F)= min  max |ENE'|
EeE(F) E'Ee,ig)

and conjectures that
sat(n, F) = O(n49)). (14)

(Or, even more strongly, that sat(n,F) = cn®F) 4+ O(n#F)-1)) This
conjecture is motivated by his results on so-called monotonically saturated
graphs, see [27].

Also, there are many interesting results and open problems on the re-
lated notion of weak saturation which is studied in e.g. {5, 12, 14, 15, 1, 10,
27, 29, 22, 23].
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