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Abstract

We denote by K(I*r) the complete r-partite graph with ! vertices
in each part, and denote K(I+7)+ K(m *38) + K(n*t)+ .- by
K(l*xr,mxsn=*t,---). Kierstead showed that the choice number
of K(3 %) is exactly [#51]. In this paper, we shall determine the
choice number of K(3 x r,1+t), and consider the choice number of
K(3+r,2x3,1xt).

1 Introduction

A k-coloring of a graph G is a mapping ¢: V(G) = {1,2,---,k} such that
adjacent vertices get different colors. The graph G is called k-colorable if
there is a k-coloring of G. The chromatic number, denoted by x(G), is the
smallest integer k such that G is k-colorable.

Now we define the list-coloring of a graph G. Suppose that each vertex
v of G is assigned a set of colors, called a color list L(v). An L-list coloring
of G (or simply an L-coloring) is a vertex-coloring ¢ such that:

o c(u) # ¢(v) for any wv € E(G),
e c(v) € L(v) for any v € V(G).

If there is an L-list coloring of G, then G is said to be L-list colorable
(or simply L-colorable). A list-assignment L is called k-list assignment if
|L(w)| > k for every vertex v € V(G). And G is said to be k-choosable if
there is an L-list coloring for any k-list assignment L. The choice number,
denoted by ch(G), is the smallest integer k& such that G is k-choosable.
The idea of L-list colorings, the choosability and the choice number was
introduced by Vizing [5], as well as Erdés, Rubin and Taylor [2].
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We denote by K (I * r) the complete r-partite graph with ! vertices in
each part, and denote the complete (r+s+t+- - -)-partite graph K(I*7)+
K(mxs)+ K(nxt)+--- by K(lxr,m*s,nxt,-..).

There are several results about the problem of determining the choice
number of K(Ixr,mxs,nx+t,...). Erdds, Rubin, and Taylor [2] determined
it for K(2 * ).

THEOEM A. ch(K(2xr))=r.
Alon [1] showed the following bounds on ch(K (I * r)).

THEOEM B. There exist two positive constants ¢, and c; such that for
every ! > 2 and everyr > 2

cirlogl < ch(K (I * 7)) < eprlogl.

Recently, Kierstead [3] proved the following theorem.

THEOEM C. 1
ch(K(3+7)) = [—é:—] .
Our purpose in this paper is to consider the choice number of K(3r,2x
8,1 +t), thus extending Theorem C. Here we determine the choice number
of K(3 % r,1*t) exactly.

THEOREM 1.

ch(K(3x7,1xt)) =max(r+t, [ﬁ%}-]) .

Another of our intersts is to find a class of graphs whose chromatic
numbers are equal to their choice numbers. We call those graphs chromatic-
choosable.

We have already proposed the following conjecture in [4].
CONJECTURE 1. If|V(G)| < 2x(G)+1, then G is chromatic-choosable.
Applying Theorem 1, we obtain a very close result when the indepen-

dence number is at most 3.

THEOREM 2. Let G be a graph with |V(G)| < 2x(G). If the independence
number of G is at most 3, then G is chromatic-choosable.
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2 Proofs

Let G be a graph with an list-assignment L. Let X C V(G). We denote
L(X) = U,ex L(z). Let (X) denote the subgraph of G induced by X.

We use similar technique as in the proof of Theorem C. The following
lemma was also introduced in [3].

LEMMA 3. ([3]), Lemma 4) A graph G is k-choosable if G is L-choosable
for every k-list assignment L such that |L(V(G))| < |V(G)|.

Proof of Theorem 1. Let G = K(3*r,1xt). Let P, P,,---, P, be the
partite sets of G of size three, and let P; = {z;,9;,%} foreach 1 <i < 7.
Let zp41, 2742, ,2-4¢ be the vertices in the parts of G of size one. Let
kb iepel])

First, we show lower bound of the theorem. Since for any graph its
choice number is at least its chromatic number, it is clear that G is not
(r +t — 1)-choosable. To prove G is not (k — 1)-choosable, we construct a
(k- 1)-list assignment L' such that G is not L'-colorable. Let A;, A2, A3 be
three pairwise disjoint color sets with [A;| = |42] = [552], |As| = | 532,
For each i let L'(z;) = AjUAp and I'(y;) = ApUAzfor 1 <i <7
and L'(z) = A3U A, for 1 < i < r+ ¢t Then any L'-coloring of G
must use at least two colors on each F;, and one color on each z; for
j € {r+1,7+2,---,r +t}, thus we need at least 2r + ¢ colors on G.
However it holds that |[L'(V(G))| = |A1| +]A2] + 43| = 2 [52] + | 452 ] =

[:—’%T—Q] < 2r +t —1. Thus there does not exist L'-coloring of G and G is

not (k — 1)-choosable.
Next, we will show that G is k-choosable. The theorem states, in other
words,
_J k ift<r—-1,
ch(G) = { x(G) ift>r-1.

For any graph G, if G is I-choosable then G + K, is (I +n)-choosable. Thus
if it holds that ch(G) = x(G) for t = r—1 it holds that ch(G) = x(G) while
t>r—1 Whent=r~-1, we have k =+t = x(G). Hence it suffices to
show the theorem that G is k-choosable with ¢ < » — 1.

Thus in the subsequent argument, we suppose that t < » — 1. We shall
prove that G is k-choosable by induction on 7. The case where » = 1 (and
hence t = Q) is trivial, so we may assume r > 2.

Let L be a k-list assignment for G. First, we outline how to color G;
we will color G by following four steps.

1. We color two vertices of each P; for 1 < i < r by one color.
2. We color vertices which are not colored at step 1 of each P;for1 <i<r
as many as possible.
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3. We color all vertices which are colored at neither steps 1 nor 2 by some
colors used at step 1. (Here, of course, some vertices lose their colors.)
4. We color the vertices which lost their colors at step 3.

Stepl. If there exist i € {1,2,---,7} such that (), p, L(v) # 0 then we
assign the same color ¢ € [,¢p, L(¥) to each vertex of P; and finish the
proof applying the induction hypothesis. So we assume that

n L(v)=0,foralli€ {1,2,.--,7}. (1)

vEP;

Let s; be the number of colors that appear in exactly one of z;,¥;, z; and
d; be the number of colors that appear in exactly two of 3, y;, z;. Then it is
clear that s;+2d; = 3k. We may assume that |[L(V(G))| < |V(G)| = 3r+t,
by Lemma 3. Hence s; + d; < |L(V(G))| < 3r + ¢ and so

r+t<dforallie {1,2,---,7}. (2)
Thus for each i € {1,2,---,7}, there exist two vertices u,v € P; such that

LWLl > [£] 2 [";“‘]. )

We will choose a color «; for each i € {1,2,--r} as follows. Suppose
that , have been chosen for all 2 < i. Choose a; € U, yep,,upo(L(w) N
L))\ {an|k < i} and u,v € Pi(u # v) with a; € L(v) N L{v) so that
|L(u) N L(v)| is as large as possible. This is possible by (2). We may
assume u and v are z; and y;. Color both z; and y; with o;.

Remark 1. Using (3),

B L 2 [ doral v (1,2, =+ @

And if |L(=z;) N L(2;)] > ¢ then |L(z:) N L(y)| > |L(z:) N L(z)| and

similarly if |L(y;)NL(2:)| > i then | L(z;)NL(y:)| > |L(y:)NL(2;)|. Applying
this with ¢ < [§], and using (1),we obtain

k k
[E@) 0 Ll L) N L < | 5| foran v e 1,20, 5]y 9
Remark 2. The following inequalities hold:
k
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In order to check the first inequality, consider

[g]—(2r—t—k)=[%]—2r—t

3 4r+2t—-1
Dl let | — -t =0.
_"2 3 ] 2r—t=0

Also, since t < r — 1, we have k = [#+2=1] < [4"*2(';1)'1] =2r-1.
Thus the second inequality [%] < r follows.

Step 2. Let X, denote the subset of V(G) such that X, = {z;, 4|l <
i < 7t}U {2zl < i< p}. Let ¢ be the largest number such that there
exist an L-coloring of (X,) , called f, such that f(z;) = f(y;) for any
i€ {1,2,--+,r}. We may assume f(z;) = f(y:) = o4 foralli € {1,2,---,7}
and let f(2;) = g; for all i € {1,2,---,q}. We claim that

q>2r+t-k. )

Let R= f(X,) and D = {j € {1,2,...,q}{{ej, 5} C L(2g+1)}. Then
L(244+1) C R, for otherwise we could color z,+; with a new color. Thus
[D| > k — 7. Suppose that j € D and v ¢ R. We can conclude v ¢
L(z;) n L(y;), since otherwise we could color z,4; with a; and both z;
and y; with . By a similar reason, we have v ¢ L(2;). Thus we conclude
that (L(z;) N L{y;)) U L(2;) C R for all j € D. Now if there exists j €
{1,2,---,[5£1} N D, then, by (1) and (4), it holds that

[’ * ‘] + & < |L(z5) 0 L{y;)] + |L(z5)]

3
= |(L(z;) N L{y;)) U L(z;)|
< |R|
=r+gq,

andsoq > [=t]+k—r. If {1,2,---,[ZEt]}IND = @, theng > |{L1,2,- -, [+
|D| > [%$£] + k — r. Thus we have ¢ > [5ft] + k — r in either case. And
hence

q> [r—;—'f-l +k—r

=2r+t—k+[-—6k—§r_2t]

22r+t-k+[3t;—2]
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r+t—k.

v

This proves (7)

Step 3.  Let X be a maximal subset of V(G) such that both X > X,
and there exists an L-coloring ¢ of (X) such that ¢(z;) = c(y;) for all i €
{1,2,--+,7r}. Let Q = ¢(X) and U = V(G)\ X. Let S C {q+1,q+2,---,7+
t} such that U = {2; | i € §}. Again we may assume that c(z;) = c(;) = ay
for all i € {1,2,---,7} and ¢(2;) = B; for all i € {1,2,---,r +t} \ S. For
each i € S, L(%) C @, for otherwise we could color 2; with a new color.
Foreachi € §,let D; = {h € {1,2,---,2r+t—k}{{an, B} C L(z)}. Then
it holds

k=|L(z)| < +|Di| +{(r +1t) - (2r +t - k) - |S]},
and hence we have
IS] < |Dyl.

Thus there exists an injection ¢ : § — {1,2,---,2r + ¢ — k} such that
#(t) € D; foralli € S. Let U' = {zs, ys|h € ¢(S)}.
Color z; with ag(;) for all i € S.

Step 4. Suppose i € S and ¢(¢) = h. Then L(z;) C Q, for otherwise we
could color z), with a new color and color 2; with 8. Since h < 2r+t—k <
[£] by (6), it holds by (5) that

|L(zn) \ Q] = |L(zn) \ (L(zn) N L(2n)) U (Q \ L(2n)))|
>k— ng —@r+t—|S|—k)
2 |S].
Similarly, it holds

|ZL{yn) \ QI 2 |S].

Since (U') is isomorphic to K(2 * |S|) and |L(v)\Q| > |S| for every
v € U’, by Theorem A there exist an L-coloring ¢’ of (U’) that does not
use any color of Q. Thus we can define an L-coloring C of G by

cv) ifveV(G)\(UUU),
Clw)=< apy ifv=2€U, and
dv) ifvel.

n
In order to prove Theorem 2, we use the following lemma in [4].
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LEMMA 4. ([4], Lemma 6) Let G be a graph and n be a positive integer. If
G is k-choosable, and it holds (n—1)(|V(G)| +n) < n(k+1), then G+ K,
i3 (k + 1)-choosable.

Proof of Theorem 2.

Let G be a graph satisfying the assumption of Theorem 2. By the
assumption, there exists a complete multi-partite graph K = K(3*r,2 *
8,1xt) with 7 < ¢ such that G is a subgraph of K, and x(G) = x(K). Since
ch(G) < ch(K) and x(G) < ch(G), it is sufficient to prove the theorem that
K is x(G)-choosable.

We will show that if 7 < ¢ then K(3#7,2+s, 1xt) is chromatic-choosable,
by induction on s. The base step s = 0 is clear by Theorem 1, then we
assume 8 > 0. By the hypothesis of induction, we assume K(3 * r,2 *
(8—1),1%¢)is (r + 38— 1+ t)-choosable. Since K(3*1,2x35,1%¢) =
K(3+7,2+(s—1),1xt) + K and the order of K(3+r,2 3,1 %) is less
than or equal to twice the number of its chromatic number, we conclude
that K(3+7,2+s,1%t) is (r + s+ t)-choosable by applying Lemma 4 with
n = 2, and this completes the proof. @
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