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Abstract

Sirafi and Gvozdjak proved in [9] that the bananas surface, the
pseudosurface consisting in the 2-amalgamation of two spheres, does
not admit a finite Kuratowski Theorem.

In this paper we prove that pseudosurfaces arising from the n-
amalgamation of two closed surfaces, n > 2, do not admit a finite
Kuratowski Theorem, by showing an infinite family of minimal non-
embeddable graphs.

1 Introduction

It is well known that classical Kuratowski Theorem [7] gives an obstruction
set which characterizes planar graphs.

Robertson and Seymour proved in [8] that for any infinite set of graphs
of bounded genus, some member of the set is isomorphic to a minor of
another. Since the property of being embeddable in a surface is hereditary
(if a graph G can be drawn in a surface S then every minor of G can be
drawn in S), every closed surface admits a finite Kuratowski Theorem.

A natural question is to ask whether this result is true for pseudosurfaces
in general. Bodendiek and Wagner proved in [3] that the embeddability in
a pseudosurface with exactly one singular point is hereditary. In fact, Knor
proved in [6] that a pseudosurface is minor-closed if and only if it has at
most one singular point and some more spheres glued in a tree structure.
So the answer to the question is affirmative for pseudosurfaces containing
exactly one singular point.

However, if the pseudosurface has two or more singular points, the set
of minimal non-embeddable graphs may be non-finite. In [9] Siréii and
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Figure 1: The n~-amalgamation of S and S'.

Gvozdjak gave an infinite family of minimal graphs for a pseudosurface
with two singular points, the benanas surface, arising from two spheres
with exactly two points in common.

2 Preliminaries

Orientable surfaces are the surfaces obtainable by adding handles to a
sphere. Consequently, we speak of the orientable surface S, with ¢ handles;
the number ¢ is called the genus of the surface. In a like manner we can
add crosscaps to a surface, or remove an open disc and identify the pairs
of opposite points on the boundary. Every non-orientable surface can be
obtained by adding some number ¢’ of crosscaps to the sphere; this is called
the non-orientable surface of genus ¢’ (consult [11] for more details).

Let S and S’ be two closed surfaces. S#S’ is the surface called con-
nected sum of S and S’. It is obtained when removing a disc from each of
S and S’, and gluing the boundary circles of these discs together (see [5]).

We denote by S Il S the n-amalgamation of S and &', for n > 2 (the
pseudosurface arising when n distinct points in S and another n distinct
- points in S’ are chosen, and you identify each of these points in S with
a different point of these in S, as in Figure 1). All of these n points are
singular points; S and S’ are bubbles. In this paper, for any closed surfaces
S and S, and n > 2, we are going to give infinite families of minimal
non-embeddable graphs in S ns.

i From now on, all graphs are undirected, without loops or double edges.
We follow the standard terminology in Graph Theory (see [4], for instance).

m

Let G be a graph and m be a positive integer. We denote mG = U G,

et
and the sphere is Sp. A block of a graph is a maximal non-sep;rable
subgraph.

If G and H are two graphs we say that H is a topological minor of G
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Figure 2: An infinite minimal non-embeddable family in the bananas sur-
face.

when a subdivision of H is a subgraph of G. A graph G will be called min-

imal non-embeddable for a given (pseudo)surface S if G is not embeddable

in S but every H topological minor of G, with H # G, is embeddable in S.
Sirdii and Gvozdjak [9] gave the following result:

Theorem 2.1 If m > 3 then H,, (see Figure 2) is a minimal non-embed-
2
dable graph for Sy 11 Sg. |
Now we prove some previous results.

Lemma 2.2 Let G be a connected non-planar graph. Then G is embed-

3
dable in So I1 Sp if and only if G has two planar subgraphs Gi and G3
such that V(G1)NV(G3) = {v1,v2,v3} and E(G1)U E(G3) = E(G), where
v; € V(G) fori=1,2,3.

3
Proof. Necesgity: An embedding of G in Sy II Sy can be built by drawing
G in one bubble and G2 in the other one so that v;,v3 and vs lie in
the singular points in both cases. This is possible because Gy and G are
planar.

Sufficiency: We need both bubbles of Sy ﬁ So to draw G in it. We can
suppose without losing generality that three vertices of G (v1, vz and v3)
lie in the singular points. Let G1 = (V4 U {v1,v3,v3}, E1) be a subgraph
of G where V; and E, are, respectively, the sets of vertices and edges lying
in one bubble (maybe some of the edges have both ends in {v;,vs,v3}). In
a similar way we define G3 = (Va U {v1,v3,v3}, E3). It is easy to see that
these subgraphs verify the statement of the Lemma. o

As 3 consequence of Lemma 2.2 we have the next result.

3
Lemma 2.3 H,, admits an embedding in Sp I1 Sy, for any positive integer
m.
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Proof. 1t holds from Lemma 2.2 by taking the subgraph induced by {uo,
u1, w1} as Gy. O
For a given graph G, let p(G) be the minimum positive integer such
?(G)
that G admits an embedding in So [ ] So.

Corollary 2.4 If m > 3 then p(H;,) = 3. a
So we have the following result.

k k
Lemma 2.6 Let Gy,...,Gy be k graphs. Then p(U G;) = ZP(G,’).

=1 =1

Proof. Let us prove this result by induction. The case k = 1 is trivial.

2(G1)+p(G2)
e k = 2. It is easy to build an embedding of G; UG3 in Sy H So
p(G1)
from the embedding of Gy in So || So and the embedding of G2 in

p(Gz2)
So H Sa, since singular points not in G; can be regarded as lying
in one face of the embedding of G;. So p(G;: UG2) < p(G1) + p(G2).
p(G1UG3)

Now, let us consider an embedding of G1UG> in Sy H So. If the
P(G1UG3)

drawing of G; contains r singular points of So  J[  So, with r <

p(G1UG?3), then the drawing of G2 contains, at most, p(G1UG32) —r

singular points. So r > p(G:) and p(G;1 U G2) — r > p(G2). From

these inequalities we have p(G, U G2) > p(G1) + p(G2).

e Let us suppose that the statement holds for k£ > 2. Then we have

k+1 k+1
p(U Gi) —p((U Gi)UGk+1) —(ZP(Gc))-l—P(Gkﬂ) S p(Gi).o
=1

3 Minimal non-embeddable families for S, II S,

In this section we are going to give an infinite family of minimal non-
n
embeddable graphs in So II Sy, for every n > 3. As a consequence, we

obtain that So I Sp does not admit a fnite Kuratowski Theorem. Let us
consider the class of graphs H, depicted in Figure 3. We have the next
result:
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3
Figure 3: An infinite minimal non-embeddable family in So II Sp.

Theorem 3.1 If m > 3 then H,, is a minimal non-embeddable graph for
3
So II Sp.

Proof. First we will prove that H}, is non-embeddable in Sp ﬁ So. Let us
suppose that the assertion is false.

Let us consider a triple of vertices {z,y, 2} of H,. In a first case, let
us suppose that {z,y, 2} is a cut-set. The only two types of three vertices
cut-sets are {u;,v5, w3}, i =0,...,m —1 and {uj,vj—1, w5}, j=1,...m
Without losing generality we can consider that z = ug, y = vo and 2 = wp
It is easy to check that the subgraph H}, — v — {up,vo} — {vo, wo} is not
planar and this is contradictory with the statement of Lemma 2.2.

In a second case, let us suppose that {z,y,2} is not a cut-set. The
subgraph induced by {z,y, z} is, at most, a triangle, or one Kj > that does
not belong to any triangle. The subgraph obtained removing a triangle from
Hy,n iS, by symmetry, H:,.—{uo, vO}_{vO: ul} _{uO) ul} (fOl' {u'O’ Yo, ul})1 or
greater than HJ, —v— {uo,v0} — {vo, wo} (for {ug, vo, v}). It is not difficult
to check that this subgraph is not planar. In a similar way, it is easy to
check that the subgraph obtained removing one K; 2 from Hj, is not planar
(there are 8 types of vertices here). These two possible situations mean a
contradiction with the statement of Lemma 2.2.

3

To finish the proof, we show that H], — e is embeddable in Sp II S, for
every e € E(H!,). Taking into account the symmetry, there are only four
types of edges in H],, denoted as a,b, c and d in Figure 3.

H], —ea, H], — b, H,, — c and H], — d satisfy the statement of Lemma
2.2 takmg the subgraphs induced rspectlvely by {b,¢,d}, {a,c}, {a,b} a.nd
{a,b,¥'} as G4, and G, = (H], — e) — G1.

In the general case we have the next result.

Theorem 3.2 The following two statements are true:
1. {H}, U 232K} is an infinite family of minimal non-embeddable graphs
inSoﬁSo, with m > 3 and n odd, n > 3.
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2.{Hm U 252K5} is an infinite family of minimal non-embeddable graphs
inSoﬁSo, withm > 3 and n even, n > 2.

4
Proof. Since H}, is embeddable in Sp I Sp and p(Ks) = 2, the statement
is a consequence of Corollary 2.4 and Lemma 2.5. o

Remark 3.3 It can also be proved that {2H,, U 258K;} is another infi-
nite family of minimal non-embeddable subgraphs for So ﬁ So with m > 3
and n odd, n > 3.

As a consequence of Theorems 2.1, 3.1 and 3.2 we state the main result
of this section.

Theorem 3.4 S ﬁ So does not admit a finite Kuratowski Theorem for
n>2. a

4 Minimal non-embeddable families for S, I1 S,

Let S, be a surface of genus p, orientable or not. Now we are going to

give an infinite family of minimal non-embeddable graphs in S, ﬁ Sy, for
every n 2 2 and p,q > 1, in both orientable and non-orientable cases. As
n

a consequence, Sp I1 S, does not admit a finite Kuratowski Theorem.
We need some previous results. Battle, Harary, Kodama and Youngs

k
proved in [1] that 4(G) = Z“)‘(G{) where G; is a block of a given graph

=1
G for i = 1,...,k. From Stahl and Beineke results [10] we obtain the
following property for the non-orientable genus:

Lemma 4.1 Let G be a graph such that 5(G;) 2> 1 for every G; block of
k
G,i=1,..,k. Then %(G) =Y _7(G)). o

=1
According to the above Lemma 4.1, we obtain the genus of the families
H,, and H},.
Lemma 4.2 7(Hn) = ¥(Hm) = 7(H},) = 3(Hy,) = 1, for every m > 3.

Proof. For m > 3, Hy, and H}, cannot be embedded in the plane since
they contain K3 3 as a minor. However it is easy to build an embedding of
them in the torus and in the projective plane. a
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Theorem 4.3 Let Sy, and Sy be two surfaces of genus p and q respectively
(orientable or not) with p,q > 1. The following two statements are true:

1. {(p+q+1)H!, U22Ks} is an infinite family of minimal non-em-
beddable subgraphs in Sp 11 Sy, with m > 3 and n odd, n > 3.

2. {(p+9+1)HnU22K;5} is an infinite family of minimal non-em-
beddable subgraphs in S, ﬁSq, with m > 3 and n even, n > 2.

Proof. To prove the first statement let us suppose that, for some m > 3,
n
(p+ q+ 1)H}, U 252 K5 can be embedded in S, II S, with = odd, n > 3.
Notice that S, II S, = (S,#:So) II (So#S,) ,where 7 denotes the connected
sum of two surfaces.
Let k be the number of K5 embedded completely either in S, or in S,.
n
So there is a (272 - k) K5 embedded in S II So. As Kj is not planar,
every embedding of Kz must contain at least 2 singular points of Sp ﬁ So-
Let k be the number of Hj, embedded in S, or S,. So there is a
”
(p+g+1—h) H!, embedded in Sg I S;. Having into consideration that
3
H]}, is not embeddable in So I Sp (by Theorem 3.1), every embedding of
n

H], must contain at least 4 singular points of Sg I Sp.

Notice that k,h > 0, and p+ ¢ 2> k+ h by Lemma 4.2. We can state
another relation using the number of singular points: n — 2(252 - k) —
4(p+q+1—h) 20, and hence 2k+4h > 1+4p+4q > 1 + 4k +4h. Thus
1+ 2k < 0 which is a contradiction.

To prove the minimality of (p + ¢ + 1)H}, U 252 K; we are going to

n
embed ((p+ g+ 1)H}, U252 K;) ~ e in Sp 1 S,. First, let us consider that
e is removed from one Ks. Then we can embed p Hj, in Sp, ¢ H}, in Sy,
n
H, U 25K; in Sp II So (by Remark 3.3) and K; — e in any plane face
since it is planar. Finally, if e is removed from H},, we can embed p H},
n

in S,, ¢ Hy, in S, and (HY, — ) U 252 Kj in S II So, using Remark 3.3.

The second statement can be proved analogously. o
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