The Inverse Domination Number of a Graph

Gayla S. Domke
Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303-3083, U.S.A.

Jean E. Dunbar
Department of Mathematics
Converse College
Spartanburg, SC 29302-0006, U.S.A.

Lisa R. Markus
Department of Mathematics
De Anza College
Cupertino, CA 95014, U.S.A.

December 19, 2003

Abstract

Let G be a graph with n vertices and let D be a minimum dominating set of G. If V-D contains a dominating set D' of G, then D' is called an *inverse dominating set of* G with respect to D. The inverse domination number $\gamma'(G)$ of G is the cardinality of a smallest inverse dominating set of G. In this paper we characterise graphs for which $\gamma(G) + \gamma'(G) = n$. We give a lower bound for the inverse domination number of a tree and give a constructive characterisation of those trees which achieve this lower bound.

1 Introduction

Let G = (V, E) be a graph with $n \geq 2$ vertices. For any vertex $v \in V$, the open neighbourhood of v, denoted N(v), is the set of all vertices adjacent to v. The closed neighbourhood of v, denoted N[v], is $N(v) \cup \{v\}$. The degree of a vertex v, denoted $\deg(v)$, is |N(v)|. The maximum degree (minimum degree, respectively) of G is denoted by $\Delta(G)$ ($\delta(G)$, respectively). Terms not defined here may be found in [5].

A set $D \subseteq V$ is a dominating set if every vertex not in D is adjacent to at least one vertex in D. The domination number, denoted $\gamma(G)$, is the minimum cardinality among all dominating sets of G. Let D be a minimum dominating set in a graph G. If V-D contains a dominating set D' of G, then D' is called an inverse dominating set with respect to D. Introduced by Kulli and Sigarkanti [6], the inverse domination number $\gamma'(G)$ of G is the cardinality of a smallest inverse dominating set of G. Note that every graph without isolated vertices contains an inverse dominating set, since the complement of any minimal dominating set is also a dominating set. For this reason we restrict ourselves throughout this paper to graphs with no isolated vertices. A dominating set D is called a γ -set if $|D| = \gamma(G)$. Also, an inverse dominating set D' is called a γ' -set if $|D'| = \gamma'(G)$. For any vertex $v \in D$, we say that $u \in N[v]$ is a private neighbour of v with respect to D if $N[u] \cap D = \{v\}$. A characterisation for a dominating set D to be minimal is that every vertex in D must have a private neighbour with respect to D.

A set $I \subseteq V$ is independent if no two vertices of I are adjacent. The independence number, denoted $\beta_0(G)$, is the cardinality of a maximum independent set in G. In [6], Kulli and Sigarkanti include a proof that $\gamma'(G) \leq \beta_0(G)$ for all graphs G. However, this proof contains an error. We believe the result is true; therefore we make the following conjecture.

Conjecture 1 For any graph G, $\gamma'(G) \leq \beta_0(G)$.

One reason for looking at inverse domination is found in the area of computer science. In the event that there is a need for all nodes in a system to have direct access to needed resources (large databases, for example) a dominating set furnishes such a configuration. If a second important resource is needed, then a separate disjoint dominating set provides duplication in case the first is corrupted in some way. Redundancy in system design appears to be a necessary feature to ensure reliability.

In the next section we observe that $\gamma(G) + \gamma'(G) \leq n$ for all graphs G. Then we characterise those graphs which achieve equality. In Section 3 we find a lower bound for the inverse domination number of a tree and provide a constructive characterisation of those trees which achieve this bound. In the final section we consider complexity results.

2 Graphs with $\gamma(G) + \gamma'(G) = n$

A classical theorem in graph theory is due to Gallai [3]. Here, $\alpha_0(G)$ is the vertex covering number, the smallest cardinality of a set of vertices with the property that every edge in the graph is incident to at least one vertex in the set.

Theorem 1 (Gallai [3]) For any graph G, $\alpha_0(G) + \beta_0(G) = n$.

A Gallai-type theorem has the form x(G) + y(G) = n where x(G), y(G) are parameters defined on the graph G. In [2], Cockayne et al. survey Gallai-type theorems. In this vein, we examine the domination and inverse domination numbers and characterise those graphs for which a Gallai-type theorem holds for these parameters.

Recall that the complement of any minimal dominating set in a graph with no isolated vertices is an inverse dominating set. The following observations are immediate.

Observation 1 For any graph G with no isolated vertices, $\gamma(G) + \gamma'(G) \leq n$.

Observation 2 For any graph G with no isolated vertices, $\gamma'(G) \geq \gamma(G)$.

We now determine those graphs for which the inequality of Observation 1 is sharp. We look at two cases, the first concerning graphs with minimum degree at least two.

Theorem 2 Let G be a connected graph with $\delta(G) \geq 2$. Then $\gamma(G) + \gamma'(G) = n$ if and only if $G = C_A$.

Proof: Since $\gamma'(C_4) \geq \gamma(C_4) = 2$, then $\gamma(C_4) + \gamma'(C_4) = 4 = n$.

Now suppose that G is a connected graph with $\delta(G) \geq 2$ and $\gamma(G) + \gamma'(G) = n$. Here, for each γ -set D, the set V - D is a minimum inverse dominating set, and thus V - D is a minimal dominating set of G.

Claim: We can find a γ -set D such that $\langle V-D\rangle$ contains an edge. Let D_1 be a γ -set and suppose $V-D_1$ is an independent set. We will construct a γ -set D for which $\langle V-D\rangle$ contains an edge. Since $V-D_1$ is an independent set, each vertex in $V-D_1$ has at least two neighbours in D_1 . Further, the set D_1 must also be an independent set, since if $\langle D_1\rangle$ contains an edge, the endvertices of this edge have no private neighbours with respect to D_1 . Let $u\in D_1$ have neighbours $v,w\in V-D_1$. Then the set $D=(D_1-\{u\})\cup\{w\}$ is a γ -set for G and the subgraph $\langle V-D\rangle$ contains the edge uv. This completes the proof of the claim.

So let D be a γ -set for G such that $\langle V-D\rangle$ contains an edge, say xy. Since V-D is a minimal dominating set for G, each of x and y has a private neighbour with respect to V-D. Let the private neighbours of x,y be x',y' respectively. Note that $x',y'\in D$ and each of x',y' has no other neighbours in V-D.

Claim: $x'y' \in E$.

Suppose $x'y' \notin E$. Since $\delta(G) \geq 2$, x', y' each has a neighbour x'', y'' respectively and $x'', y'' \in D$. (Note that we can have x'' = y''.) Then the set $(D - \{x', y'\}) \cup \{x\}$ is a dominating set for G of smaller cardinality than $|D| = \gamma(G)$, a contradiction. Thus we have $x'y' \in E$.

Suppose now that $G \neq C_4$. Then there is a vertex $z \in V$ such that z is adjacent to at least one of x, y, x', y'. If $zx' \in E$, then $z \in D$ (since x' has no other neighbours in V - D), and the set $(D - \{x', y'\}) \cup \{y\}$ is a dominating set for G of smaller cardinality than $|D| = \gamma(G)$, a contradiction. Thus $zx' \notin E$ and a similar proof shows $zy' \notin E$.

Suppose $zx \in E$. If $z \in D$, then x' does not have a private neighbour with respect to D, so we must have $z \in V - D$. Since V - D is a minimal dominating set, z must have a private neighbour with respect to V - D, say $z' \in D$. The vertex z' has no neighbours in $(V - D) - \{z\}$, and must therefore have a neighbour $z'' \in D$. Note that $z'' \notin \{x', y'\}$. Then the set $(D - \{x', z'\}) \cup \{x\}$ is a dominating set for G of smaller cardinality than $|D| = \gamma(G)$, a contradiction. So $zx \notin E$ and similarly, $zy \notin E$. Thus, there is no vertex in $V - \{x, y, x', y'\}$ and $G = C_4$. \square

Next, we characterise connected graphs with minimum degree one for which $\gamma(G) + \gamma'(G) = n$.

Theorem 3 Let G be a connected graph with $n \geq 3$ and $\delta(G) = 1$. Let $L \subseteq V$ be the set of all degree one vertices (leaves) and let S = N(L) (stems). Then $\gamma(G) + \gamma'(G) = n$ if and only if the following two conditions hold:

- 1. V-S is an independent set and
- 2. for every vertex $x \in V (S \cup L)$, every stem in N(x) is adjacent to at least two leaves.

Proof: Suppose $\gamma(G) + \gamma'(G) = n$.

Case 1: $V - (S \cup L) = \emptyset$: In this case V - S = L is an independent set, and both conditions hold.

Case 2: $V - (S \cup L) \neq \emptyset$: We will first show that V - S is an independent set. Assume to the contrary that V - S is not an independent set. Let $N_1 = N(S) - (S \cup L)$ and $N_2 = V - (N_1 \cup S \cup L)$.

Claim 1: $N_2 \neq \emptyset$.

Assume N_2 is empty. There is an edge uv in $\langle N_1 \rangle$. Clearly S is a γ -set and $N_1 \cup L - \{u\}$ is an inverse dominating set. Hence $\gamma(G) + \gamma'(G) \leq n - 1$, a contradiction. Thus $N_2 \neq \emptyset$.

Claim 2: There is a γ -set D for G such that $D \cap (N_1 \cup L) = \emptyset$.

In order dominate any vertex $v \in L$ either v or its neighbour in S must be in D. Thus, we can find a γ -set containing no leaves. Note that for any γ -set D with $D \cap L = \emptyset$, $S \subseteq D$. Of all such γ -sets, let D be one with $D \cap N_1$ having minimum cardinality. Suppose $y \in D \cap N_1$, and let z be a private neighbour of y with respect to D. Note that $z \in N_2$ and all private neighbours of y with respect to D are in N_2 . Now y has at least two private neighbours with respect to D, since if z is the only such private neighbour, then $D - \{y\} \cup \{z\}$ is a γ -set of G with fewer vertices in N_1 than D. Since $deg(z) \geq 2$, z must be adjacent to a vertex in V - D. Then $V - (D \cup \{z\})$ is an inverse dominating set for G with fewer vertices than V - D, a contradiction.

Now we let D be a γ -set for G such that $D \cap (N_1 \cup L) = \emptyset$. We note that any γ -set E for $\langle N_2 \rangle$ yields a γ -set $E \cup S$ for G, since otherwise $D \cap N_2$ is

a dominating set for $\langle N_2 \rangle$ with $|D \cap N_2| < |E|$.

Claim 3: $\delta(\langle N_2 \rangle) \geq 1$.

Assume to the contrary, that there is a vertex $z \in N_2$ such that $N(z) \cap N_2 = \emptyset$. Then z is adjacent to at least two vertices in N_1 . Let $N(z) = \{y_1, y_2, \ldots, y_k\}, k \geq 2$ with $N(z) \subseteq N_1$. Since $D \cap N_1 = \emptyset$, then $z \in D$. If there is a vertex $y_i \in N(z)$ such that y_i is adjacent to a vertex $x \notin D$, then $D_1 = D - \{z\} \cup \{y_i\}$ is a γ -set for G, and $V - (D_1 \cup \{z\})$ is an inverse dominating set for G. Thus for all $y_i \in N(z)$, $N(y_i) \subseteq D \subseteq N_2 \cup S$. So $D_2 = D \cup \{y_2\} - \{z\}$ is a γ -set for G. Since D_2 is a minimum dominating set, each vertex $u \in N(y_2) \cap D = N(y_2)$ is adjacent to a vertex in $V - (D \cup \{y_2\})$, otherwise $D - \{u\}$ is a dominating set of G. Now $D_3 = D \cup \{y_1\} - \{z\}$ is a γ -set for G and $V - (D_3 \cup \{y_2\})$ is an inverse dominating set for G. Thus $\gamma(G) + \gamma'(G) < n$, a contradiction. Therefore, $\delta(\langle N_2 \rangle) \geq 1$.

Claim 4: $\gamma(\langle N_2 \rangle) + \gamma'(\langle N_2 \rangle) = |N_2|$.

By Claim 3, $\delta(\langle N_2 \rangle) \geq 1$, so $\langle N_2 \rangle$ has an inverse dominating set, thus $\gamma(\langle N_2 \rangle) + \gamma'(\langle N_2 \rangle) \leq |N_2|$. Let E' be a γ' -set for $\langle N_2 \rangle$ and let E be a γ -set for $\langle N_2 \rangle$ for which $E' \subseteq N_2 - E$. Assuming that the claim does not hold, we know that $|E| + |E'| < |N_2|$. Since $E \cup S$ is a dominating set for G, we know that $E \cup S$ is a γ -set for G (since otherwise $D \cap N_2$ is a dominating set for $\langle N_2 \rangle$ with $|D \cap N_2| < |E|$). Since the set $E' \cup N_1 \cup L$ is an inverse dominating set for G, we have that $\gamma(G) + \gamma'(G) \leq |E \cup S| + |E' \cup N_1 \cup L| < n$, a contradiction. Therefore, $\gamma(\langle N_2 \rangle) + \gamma'(\langle N_2 \rangle) = |N_2|$.

Claim 5: $\delta(\langle N_2 \rangle) \geq 2$.

Assume, to the contrary, that there is a vertex $z \in N_2$ such that $|N(z) \cap N_2| = 1$. Then z is adjacent to $y \in N_1$ and $w \in N_2$. Let F be a γ -set for $\langle N_2 \rangle$ that does not contain z. The set $F \cup S$ is a γ -set for G and $L \cup N_1 - \{y\} \cup (N_2 - F)$ is an inverse dominating set for G. Thus $\gamma(G) + \gamma'(G) < n$, a contradiction. Therefore, $\delta(\langle N_2 \rangle) \geq 2$.

By Claim 4, Claim 5 and Theorem 2 each component of $\langle N_2 \rangle$ is a cycle on four vertices. Let the cycle z_1, z_2, z_3, z_4, z_1 be a component in $\langle N_2 \rangle$. Since G is connected, at least one vertex, say z_1 , is adjacent to a vertex $y \in N_1$. The set $D_4 = D \cup \{z_2, z_4\} - \{z_1, z_3\}$ is a γ -set for G. The set $V - (D_4 \cup \{z_1\})$ is an inverse dominating set for G. So $\gamma(G) + \gamma'(G) < n$, a contradiction. Therefore it must be true that V - S is an independent set, and Condition 1 holds in this case.

Now we show that Condition 2 also holds in this case. Since V-S is an independent set, each vertex in $V-(S\cup L)$ must be adjacent to at least two stems.

Now suppose $x \in V - (S \cup L)$, $v \in N(x)$ (hence, v is a stem) and v is adjacent to only one leaf, say u. Since every vertex in V - S is adjacent to a vertex in S, S is a dominating set of G and $\gamma(G) \leq |S|$. In order to dominate the vertices in L, at least |N(L)| = |S| vertices are required, and $\gamma(G) \geq |S|$. Thus, $\gamma(G) = |S|$.

Let $D=(S-\{v\})\cup\{u\}$. Since every vertex in $V-(S\cup L)$ is adjacent to at least two vertices in S, D is a dominating set of G of size $|D|=|S|=\gamma(G)$. Now, the set $D'=V-D-\{x\}=(V-S-\{u,x\})\cup\{v\}$ is an inverse dominating set of G. Again, since $x\not\in D\cup D'$, then $\gamma(G)+\gamma'(G)\leq n-1$, a contradiction, and Condition 2 holds.

Conversely, suppose V-S is an independent set and for every vertex $x \in V-(S \cup L)$, every stem in N(x) is adjacent to at least two leaves. Let S_1 be the set of stems adjacent to exactly one leaf, $S_2 = S - S_1$, $L_1 = N(S_1) \cap L$ and $L_2 = N(S_2) \cap L$. Clearly, S_2 is a subset of every γ -set. In addition, it is straightforward to see that no vertex in $V-(S \cup L)$ is in any γ -set, so that $\gamma(G) = |S|$. Furthermore, for any vertex $u \in L_1$, every γ -set contains either u or its neighbour in S_1 . Let D be any γ -set and $D_1 \subseteq D$ be the set of vertices which dominate L_1 . (Note that $|D| = |S| = \gamma(G)$ and $|D_1| = |L_1| = |S_1|$.)

Now let D' be an inverse dominating set for D in G. Then D' must contain the following:

- 1. all vertices in L_2 , in order to dominate $L_2 \cup S_2$;
- 2. all vertices in $D'_1 = (S_1 \cup L_1) D_1$, in order to dominate $L_1 \cup S_1$; and
- 3. all vertices in $V (S \cup L)$, in order to dominate $V (S \cup L)$.

Thus $\gamma'(G) \ge |L| + |V - (S \cup L)| = |V - S|$. Since every inverse dominating set lies outside a γ -set, we also know that $\gamma'(G) \le |V - S|$. So $\gamma'(G) = |V - S|$ and the result follows. \square

For any graph G of order n=2 with $\delta(G)=1$, clearly $G=K_2$, and $\gamma(K_2)+\gamma'(K_2)=2=n$. If a graph is disconnected, then the domination number of the graph is the sum of the domination numbers of its components. The next result follows immediately.

Corollary 1 For any graph G with no isolated vertices, $\gamma(G) + \gamma'(G) = n$ if and only if each component of G is either C_4 , K_2 or a graph described in Theorem 3.

3 A lower bound for trees

In this section we examine the inverse domination number of trees. We begin by finding a lower bound.

Theorem 4 For any tree T of order $n \ge 2$, $\gamma'(T) \ge \frac{n+1}{3}$.

Proof: Let T be a tree, let D' be a γ' -set and let D be a γ -set with $D' \subseteq V - D$. Since D is a dominating set of T, we have at least $\gamma'(T)$ edges between D and D'. If $V - (D \cup D') = \emptyset$, then $\gamma(T) + \gamma'(T) = n$. Then $\gamma'(T) \ge \frac{n}{2} \ge \frac{n+1}{3}$, since $n \ge 2$. Otherwise, since D' is also a dominating set of T, every vertex in $V - (D \cup D')$ has at least one edge to D and at least one edge to D'. Hence that the number of edges from $V - (D \cup D')$ is at least $2|V - (D \cup D')|$. Counting edges of T, we get

$$n-1 \ge 2(n - (\gamma(T) + \gamma'(T))) + \gamma'(T)$$
$$\gamma'(T) + 2\gamma(T) \ge n+1$$

Since $\gamma'(T) \geq \gamma(T)$, the result follows. \square

From the proof of the theorem, if $\gamma'(T) = \frac{n+1}{3}$ then $\gamma(T) = \gamma'(T)$ and every vertex in $V - (D \cup D')$ has degree 2, with one neighbour in D, the other in D'. Furthermore, every vertex in D' has exactly one neighbour in D. This gives us the following lemma.

Lemma 1 Let T be a tree of order $n \geq 2$ and let D' be a γ' -set with corresponding γ -set D. If $\gamma'(T) = \frac{n+1}{3}$, then

- 1. if $x \in V (D \cup D')$, then $\deg x = 2$, $|N(x) \cap D| = 1$ and $|N(x) \cap D'| = 1$,
- 2. if $y \in D$, then $|N(y) \cap D| = 0$ and $|N(y) \cap D'| = 1$, and
- 3. if $z \in D'$, then $|N(z) \cap D| = 1$ and $|N(z) \cap D'| = 0$.

We now recursively define all trees which achieve the lower bound in Theorem 4. We will use the expression attach a P_3 , [x, y, z], to vertex w in a

tree T to refer to the operation of adding the path [x, y, z] to T and joining w and x by an edge.

Let T be the family of trees T such that $\gamma'(T) = \frac{n+1}{3}$. Clearly, any tree in T must have 3k+2 vertices for some nonnegative integer k. Let $X(P_2) = \emptyset$. Also, let C be the family of labeled trees T_j that can be obtained from a sequence T_1, \ldots, T_j $(j \ge 1)$ of trees such that T_1 is a path P_2 , and if $j \ge 2$, T_{i+1} can be obtained recursively from T_i by attaching a $P_3 = [x, y, z]$ to a vertex w in T_i , where $xw \in E(T_{i+1})$, $w \notin X(T_i)$, and let $X(T_{i+1}) = X(T_i) \cup \{x\}$.

Theorem 5 The families T and C are equal.

Proof: Suppose $T \in \mathcal{C}$. Then T has 3k+2 vertices for some nonnegative integer k and $\gamma'(T) \geq k+1$ by Theorem 4. Clearly if n=2, then $T=P_2 \in \mathcal{T}$. Let the vertices of the original P_2 be u and v, and let the k copies of P_3 have vertices x_i, y_i, z_i for $1 \leq i \leq k$ where $d(u, x_i) < d(u, y_i) < d(u, z_i)$. We proceed by induction on n to prove that any tree $T \in \mathcal{C}$ has a γ -set D and a γ' -set D' with respect to D such that $D \cup D' = \{u, v\} \cup \{y_i | 1 \leq i \leq k\} \cup \{z_i | 1 \leq i \leq k\}$ and $|D| = |D'| = \frac{n+1}{3}$.

If n = 2 then T = [u, v] so $D \cup D' = \{u, v\}$ and |D| = |D'| = 1.

Now suppose $n \geq 5$ and any tree $T_1 \in \mathcal{C}$ with $n_1 < n$ vertices $(n_1 = 3k_1 + 2)$ has a γ -set D_1 and a γ' -set D_1' with respect to D_1 such that $D_1 \cup D_1' = \{u, v\} \cup \{y_i | 1 \leq i \leq k_1\} \cup \{z_i | 1 \leq i \leq k_1\}$ and $|D_1| = |D_1'| = \frac{n_1 + 1}{3}$.

Let $[x_k, y_k, z_k]$ be the last P_3 added in the construction of T. Let $T_1 = T - \{x_k, y_k, z_k\}$, so that $T_1 \in \mathcal{C}$. Note that T_1 has $n_1 = n - 3$ vertices and $n_1 = 3k_1 + 2$ where $k_1 = k - 1$. By the inductive hypothesis, T_1 has a γ -set D_1 and a γ' -set D_1' with respect to D_1 such that $D_1 \cup D_1' = \{u, v\} \cup \{y_i | 1 \le i \le k - 1\} \cup \{z_i | 1 \le i \le k - 1\}$ and $|D_1| = |D_1'| = \frac{(n-3)+1}{3} = k$. By the construction of T, x_k is adjacent to a vertex $w \in D_1 \cup D_1'$.

If $w \in D_1$, let $D = D_1 \cup \{z_k\}$ and $D' = D'_1 \cup \{y_k\}$. If $w \in D'_1$, let $D = D_1 \cup \{y_k\}$ and $D' = D'_1 \cup \{z_k\}$.

Clearly D and D' are minimum dominating sets of T, since if D is not a γ -set for T, then there is a smaller dominating set for T which in turn gives us $\gamma(T_1) < k$, a contradiction. So $\gamma'(T) = |D'| = k + 1 = \frac{n+1}{3}$ and $T \in \mathcal{T}$. Thus $\mathcal{C} \subseteq \mathcal{T}$.

Conversely, suppose $T \in \mathcal{T}$. Then $\gamma'(T) = \frac{n+1}{3}$ and n = 3k + 2 for some nonnegative integer k.

We will proceed by induction on n. Clearly if n=2, then $T=P_2\in\mathcal{C}$. Now suppose $n\geq 5$ and any tree T_1 with $T_1< n$ vertices and $T_1< n$ vertices in $T_1> n$ vertices and $T_1> n$ vertices and $T_1> n$ vertices in $T_1> n$ vertices and $T_1> n$ vertices and $T_1> n$ vertices in $T_1> n$ vertices and $T_1> n$ vertices and

Since $x \notin D \cup D'$, then $D_1 = D - \{y, z\}$ and $D_1' = D' - \{y, z\}$ are both dominating sets of T_1 . Clearly D_1 and D_1' are minimum dominating sets of T_1 , since if D_1 is not a γ -set for T_1 , then there is a smaller dominating set for T_1 which in turn gives us $\gamma(T) < \frac{n+1}{3}$, a contradiction. So $\gamma'(T_1) = |D_1'| = \gamma'(T) - 1 = \frac{n+1}{3} - 1 = \frac{n-2}{3} = \frac{n_1+1}{3}$. By the inductive hypothesis, $T_1 \in \mathcal{C}$.

Suppose $w=x_i$ where $x_i \in V(T_1)$. Since z is a vertex furthest from r, z_i is a leaf and either $z_i \in D$ and $y_i \in D'$ or $z_i \in D'$ and $y_i \in D$. So $x_i \in V - (D \cup D')$ and x is not dominated by either D or D'. Thus $w \neq x_i$ and $T \in C$. Hence $T \subseteq C$.

Therefore, the families \mathcal{T} and \mathcal{C} are equal. \square

4 Complexity results

Finally, we show that the problem of finding an inverse dominating set of cardinality at most k in a graph is NP-complete even when restricted to chordal graphs. First recall that the problem of finding a dominating set of cardinality at most k in a graph is NP-complete (see [4]).

DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer $k \leq |V|$.

QUESTION: Does G have a dominating set of cardinality at most k?

Theorem 6 DOMINATING SET is NP-complete.

We now turn our attention to inverse dominating sets.

INVERSE DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer $k \leq |V|$.

QUESTION: Does G have an inverse dominating set of cardinality at most k?

Theorem 7 INVERSE DOMINATING SET is NP-complete even when restricted to chordal graphs.

Proof: We will use a transformation from DOMINATING SET. Let G be any graph. Form the graph $G^* = G + K_1$, by adding a new vertex x and making it adjacent to every vertex in G. Note that this construction can be done in polynomial time.

Claim: G has a dominating set of cardinality at most k if and only if G^* has an inverse dominating set of cardinality at most k.

If G has a dominating set of cardinality at most k, then this set will be an inverse dominating set in G^* , since $\{x\}$ is a minimum dominating set of G^* . Conversely, suppose that G^* has an inverse dominating set of cardinality at most k. Call this set D'. If $x \in D'$, by minimality, G^* contains a dominating set D of cardinality 1 that does not contain x, and this is clearly a dominating set of G. If $x \notin D'$, then the vertices of D' form a dominating set of G of cardinality at most k. This completes the proof of the Claim.

Since the join operation preserves chordality, INVERSE DOMINATING SET is NP-complete even when restricted to chordal graphs (see [1]).