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Abstract

Let G be a graph with n vertices and let D be a minimum dom-
inating set of G. If V — D contains a dominating set D’ of G, then
D' is called an inverse dominating set of G with respect to D. The
inverse domination number 4'(G) of G is the cardinality of a small-,
est inverse dominating set of G. In this paper we characterise graphs
for which v(G) + 7'(G) = n. We give a lower bound for the inverse
domination number of a tree and give a constructive characterisation
of those trees which achieve this lower bound.
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1 Introduction

Let G = (V, E) be a graph with n > 2 vertices. For any vertex v € V, the
open neighbourhood of v, denoted N(v), is the set of all vertices adjacent to
v. The closed neighbourhood of v, denoted N[v], is N(v) U {v}. The degree
of a vertex v, denoted deg(v), is |[N(v)|. The mazimum degree (minimum
degree, respectively) of G is denoted by A(G) (6(G), respectively). Terms
not defined here may be found in [5].

A set D C V is a dominating set if every vertex not in D is adjacent
to at least one vertex in D. The domination number, denoted v(G), is the
minimum cardinality among all dominating sets of G. Let D be a minimum
dominating set in a graph G. If V — D contains a dominating set D’ of G,
then D’ is called an inverse dominating set with respect to D. Introduced
by Kulli and Sigarkanti {6], the inverse domination number v'(G) of G is
the cardinality of a smallest inverse dominating set of G. Note that every
graph without isolated vertices contains an inverse dominating set, since
the complement of any minimal dominating set is also a dominating set.
For this reason we restrict ourselves throughout this paper to graphs with
no isolated vertices. A dominating set D is called a y-set if |D| = v(G).
Also, an inverse dominating set D’ is called a 4'-set if |[D’'| = 4'(G). For
any vertex v € D, we say that u € N[v] is a private neighbour of v with
respect to D if N[u] N D = {v}. A characterisation for a dominating set
D to be minimal is that every vertex in D must have a private neighbour
with respect to D.

A set I C V is independent if no two vertices of I are adjacent. The indepen-
dence number, denoted Bo(G), is the cardinality of a maximum independent
set in G. In [6], Kulli and Sigarkanti include a proof that 7'(G) < Bo(G)
for all graphs G. However, this proof contains an error. We believe the
result is true; therefore we make the following conjecture.

Conjecture 1 For any graph G, ¥'(G) < Bo(G).

One reason for looking at inverse domination is found in the area of com-
puter science. In the event that there is a need for all nodes in a system to
have direct access to needed resources (large databases, for example) a dom-
inating set furnishes such a configuration. If a second important resource is
needed, then a separate disjoint dominating set provides duplication in case
the first is corrupted in some way. Redundancy in system design appears
to be a necessary feature to ensure reliability.
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In the next section we observe that v(G) + ¥'(G) < n for all graphs G.
Then we characterise those graphs which achieve equality. In Section 3 we
find a lower bound for the inverse domination number of a tree and provide
a constructive characterisation of those trees which achieve this bound. In
the final section we consider complexity results.

2 Graphs with v(G) +v'(G) =n

A classical theorem in graph theory is due to Gallai [3]. Here, ap(G) is the
vertex covering number, the smallest cardinality of a set of vertices with
the property that every edge in the graph is incident to at least one vertex
in the set.

Theorem 1 (Gallai [3]) For any graph G, ao(G) + Fo(G) = n.

A Gallai-type theorem has the form z(G) + y(G) = n where z(G), y(G)
are parameters defined on the graph G. In [2], Cockayne et al. survey
Gallai-type theorems. In this vein, we examine the domination and inverse
domination numbers and characterise those graphs for which a Gallai-type
theorem holds for these parameters.

Recall that the complement of any minimal dominating set in a graph with

no isolated vertices is an inverse dominating set. The following observations
are immediate.

Observation 1 For any graph G with no isolated vertices, v(G)++'(G) <
n.

Observation 2 For any graph G with no isolated vertices, v'(G) > v(G).

We now determine those graphs for which the inequality of Observation 1
is sharp. We look at two cases, the first concerning graphs with minimum
degree at least two.

Theorem 2 Let G be a connected graph with §(G) > 2. Then v(G) +
Y (G) =n if and only if G = Cy.
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Proof: Since ¥'(C4) > ¥(C4) = 2, then ¥(C4) +¥'(Cq) =4 =n.

Now suppose that G is a connected graph with §(G) > 2 and v(G)+v'(G) =
n. Here, for each y-set D, the set V — D is a minimum inverse dominating
set, and thus V — D is a minimal dominating set of G.

Claim: We can find a y-set D such that (V — D) contains an edge.

Let D; be a <-set and suppose V — D; is an independent set. We will
construct a <-set D for which (V — D) contains an edge. Since V — D,
is an independent set, each vertex in V' — D) has at least two neighbours
in D;. Further, the set D; must also be an independent set, since if (D;)
contains an edge, the endvertices of this edge have no private neighbours
with respect to D;. Let ©v € D; have neighbours v,w € V — D;. Then
the set D = (D; — {u}) U {w} is a y-set for G and the subgraph (V' — D)
contains the edge uv. This completes the proof of the claim.

So let D be a y-set for G such that (V' — D) contains an edge, say zy. Since
V — D is a minimal dominating set for G, each of z and y has a private
neighbour with respect to V — D. Let the private neighbours of z,y be z’,y’
respectively. Note that 2',3' € D and each of 2/, %’ has no other neighbours
inV —-D.

Claim: z'y’' € E.

Suppose z'y’ ¢ E. Since 6(G) = 2, z',y’ each has a neighbour z”,y"
respectively and z”,y” € D. (Note that we can have =" = y”.) Then the
set (D — {z',y'})U{z} is a dominating set for G of smaller cardinality than
|D| = 4(G), a contradiction. Thus we have z'y’ € E.

Suppose now that G # C4. Then there is a vertex z € V such that z is
adjacent to at least one of z,y,z’,y’. If zz’' € E, then z € D (since z’ has no
other neighbours in V — D), and the set (D — {z',y'})U{y} is a dominating
set for G of smaller cardinality than |D| = 4(G), a contradiction. Thus
2z’ ¢ E and a similar proof shows zy’ ¢ E.

Suppose zz € E. If z € D, then z’ does not have a private neighbour
with respect to D, so we must have z € V — D. Since V — D is a minimal
dominating set, z must have a private neighbour with respect to V — D,
say 2’ € D. The vertex z’ has no neighbours in (V — D) — {z}, and must
therefore have a neighbour 2” € D. Note that 2" ¢ {z/,y’}. Then the set
(D - {',2'}) U {z} is a dominating set for G of smaller cardinality than
|D| = v(G), a contradiction. So zz ¢ E and similarly, zy ¢ E. Thus, there
is no vertex in V — {z,y,2',¢¥'} and G=C4. O
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Next, we characterise connected graphs with minimum degree one for which
¥(G) +'(G) =n.

Theorem 3 Let G be a connected graph with n > 3 and §(G) = 1. Let
L C V be the set of all degree one vertices (leaves) and let S = N(L)
(stems). Then v(G)+v'(G) = n if and only if the following two conditions
hold:

1. V = S is an independent set and

2. for every vertez x € V — (SU L), every stem in N(x) is adjacent to
at least two leaves.

Proof: Suppose v(G) + v'(G) =n.

Case 1: V — (SUL) = @: In this case V — § = L is an independent set,
and both conditions hold.

Case 2: V — (SUL) # 0: We will first show that V — S is an independent
set. Assume to the contrary that V — § is not an independent set. Let
Ny =N(S)-(SUL)and No=V - (N;USUL).

Claim 1: Ny # 0.

Assume N, is empty. There is an edge uv in (V7). Clearly S is a y-set and
Ny UL - {u} is an inverse dominating set. Hence 7(G) +7'(G) <n—1,a
contradiction. Thus N, # §.

Claim 2: There is a y-set D for G such that DN (N UL) = 0.

In order dominate any vertex v € L either v or its neighbour in S must
be in D. Thus, we can find a y-set containing no leaves. Note that for
any y-set D with DNL =@, S C D. Of all such y-sets, let D be one
with D N N; having minimum cardinality. Suppose y € D N N;, and let 2
be a private neighbour of y with respect to D. Note that z € N3 and all
private neighbours of y with respect to D are in No. Now y has at least
two private neighbours with respect to D, since if z is the only such private
neighbour, then D — {y} U {2} is a <y-set of G with fewer vertices in N;
than D. Since deg(z) > 2, z must be adjacent to a vertex in V — D. Then
V — (DU {z}) is an inverse dominating set for G with fewer vertices than
V — D, a contradiction.

Now we let D be a v-set for G such that DN (N; U L) = @. We note that
any y-set E for {N3) yields a y-set EU S for G, since otherwise DN N, is
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a dominating set for (N2) with |[D N Ny| < |E].

Claim 8: §({N2)) > 1.

Assume to the contrary, that there is a vertex z € N, such that N(z) N
Ny = 0. Then z is adjacent to at least two vertices in N;. Let N(z) =
{y1,92,..., ¥}, k > 2 with N(z) C N;. Since DN N; = 0, then z € D.
If there is a vertex y; € N(z) such that y; is adjacent to a vertex z ¢ D,
then Dy = D — {2} U{y:} is a y-set for G, and V — (D; U{z}) is an inverse
dominating set for G. Thus for all y; € N(z), N(y;) C D C NoUS. So
Dy = DU{y2} —{z} is a y-set for G. Since D; is a minimum dominating set,
each vertex u € N(y2)ND = N(y2) is adjacent to a vertex in V — (DU {y2}),
otherwise D — {u} is a dominating set of G. Now D3 = DU{y;} ~ {2z} isa
v-set for G and V — (D3 U {y2}) is an inverse dominating set for G. Thus
¥(G) + ¥'(G) < n, a contradiction. Therefore, §({Nz2)) > 1.

Claim 4: Y((N2)) + 7 (Vo)) = | Nal.

By Claim 3, §((N2)) > 1, so (N2) has an inverse dominating set, thus
Y((N2)) + v ({N2)) < |N2|. Let E' be a v'-set for (N2) and let E be a y-set
for (Ny) for which E/ C N, — E. Assuming that the claim does not hold,
we know that |E| + |E’| < |Nz|. Since EU S is a dominating set for G, we
know that EU S is a y-set for G (since otherwise D N N; is a dominating
set for (N2) with |D N Nz| < |E|). Since the set E'U N; U L is an inverse
dominating set for G, we have that v(G)++'(G) < |EUS|+|E'UN1UL| < n,
a contradiction. Therefore, v((N2)) + 7' ({N2)) = |Ny|.

Claim 5: 6({N2)) = 2.

Assume, to the contrary, that there is a vertex z € Nz such that {N(z) N
N2| = 1. Then z is adjacent to y € Ny and w € No. Let F be a v-
set for (N;) that does not contain z. The set F U S is a vy-set for G
and LUN; — {y} U (N; — F) is an inverse dominating set for G. Thus
v(G) + ¥'(G) < n, a contradiction. Therefore, §({Nz2)) > 2.

By Claim 4, Claim 5 and Theorem 2 each component of (N;) is a cycle on
four vertices. Let the cycle zi, 22, 23, z4, 21 be a component in (Ns). Since
G is connected, at least one vertex, say z, is adjacent to a vertex y € N;.
The set Dy = DU{z3, 24} — {21, 23} is a y-set for G. The set V —(D,U{z1})
is an inverse dominating set for G. So v(G) + +'(G) < n, a contradiction.
Therefore it must be true that V' — S is an independent set, and Condition
1 holds in this case.

Now we show that Condition 2 also holds in this case. Since V — S is an

independent set, each vertex in V — (S U L) must be adjacent to at least
two stems.
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Now suppose z € V — (SU L), v € N(z) (hence, v is a stem) and v is
adjacent to only one leaf, say u. Since every vertex in V — S is adjacent
to a vertex in S, S is a dominating set of G and 4(G) < |S|. In order to
dominate the vertices in L, at least |N(L)| = |S| vertices are required, and
7(G) 2 |S]. Thus, ¥(G) =|S|.

Let D = (S —{v})U{u}. Since every vertex in V —(SUL) is adjacent to at
least two vertices in S, D is a dominating set of G of size |D| = |S| = ¥(G).
Now, the set D' =V — D — {2z} = (V - § — {u,z}) U {v} is an inverse
dominating set of G. Again, since z € DU D’, then v(G) + 7' (G) < n—1,
a contradiction, and Condition 2 holds.

Conversely, suppose V' — S is an independent set and for every vertex €
V —(SUL), every stem in N(z) is adjacent to at least two leaves. Let S be
the set of stems adjacent to exactly one leaf, So = S —5,, L; = N(S;)NL
and Ly = N(S2) N L. Clearly, S; is a subset of every y-set. In addition, it
is straightforward to see that no vertex-in V — (SU L) is in any v-set, so
that 4(G) = |S|. Furthermore, for any vertex u € L;, every v-set contains
either u or its neighbour in S;. Let D be any y-set and D; C D be the
set of vertices which dominate L;. (Note that |D| = |S] = 4(G) and
|D1| = |L1] = |S1].)

Now let D’ be an inverse dominating set for D in G. Then D’ must contain
the following;:

1. all vertices in Ly, in order to dominate Ly U Ss;
2. all vertices in D} = (S1UL;)— Dy, in order to dominate L; US;; and
3. all vertices in V' — (SU L), in order to dominate V — (SU L).

Thus v'(G) > |L|+|V —(SUL)| = |V — S|. Since every inverse dominating
set lies outside a v-set, we also know that 4'(G) < [V — §]. So ¥/(G) =
|V — S| and the result follows. O

For any graph G of order n = 2 with §(G) = 1, clearly G = K>, and v(K2)+
v'(K2) = 2 = n. If a graph is disconnected, then the domination number
of the graph is the sum of the domination numbers of its components. The
next result follows immediately.

Corollary 1 For any graph G with no isolated vertices, v(G) +v'(G) =n
if and only if each component of G is either Cy, Ky or a graph described in
Theorem 8.
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3 A lower bound for trees

In this section we examine the inverse domination number of trees. We
begin by finding a lower bound.

Theorem 4 For any tree T of order n > 2, v'(T) > %—1-

Proof: Let T be a tree, let D’ be a +/-set and let D be a ~-set with
D’ C V—D. Since D is a dominating set of T', we have at least v/(T") edges
between D and D'. If V — (DU D’) = @, then ¥(T) + v(T) = n. Then
Y(T) > 3 > 2f1, since n > 2. Otherwise, since D’ is also a dominating
set of T, every vertex in V — (D U D’) has at least one edge to D and at
least one edge to D’. Hence that the number of edges from V — (D U D’)
is at least 2|V — (D U D’)|. Counting edges of T, we get

n—122(n—(y(T)+~' (1)) +~(T)

YT +2(T) 2n+1
Since v'(T") > 4(T), the result follows. O

From the proof of the theorem, if v'(T') = 131 then y(T') = v/(T') and every
vertex in V — (DU D’) has degree 2, with one neighbour in D, the other in
D’. Furthermore, every vertex in D’ has exactly one neighbour in D. This
gives us the following lemma.

Lemma 1 Let T be a tree of order n > 2 and let D’ be a +'-set with
corresponding y-set D. If v'(T) = -’33L1, then

1 ifz e V—-(DUD'), thendegz = 2, |[N(z)ND| =1 and |N(z)ND'| =
1,
2. ify€ D, then |IN(y)ND| =0 and |[N(y)ND'| =1, and

3. ifze D', then |[N(z)ND|=1 and [N(z)ND’'| =0.

We now recursively define all trees which achieve the lower bound in The-
orem 4. We will use the expression attach a Ps,[z,y, z|, to vertez w in a
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tree T to refer to the operation of adding the path [z,y, 2] to T and joining
w and z by an edge.

Let T be the family of trees T such that 4'(T") = %‘ Clearly, any tree in
T must have 3k+2 vertices for some nonnegative integer k. Let X (P,) = 0.
Also, let C be the family of labeled trees T; that can be obtained from a
sequence T1,...,T; (j = 1) of trees such that T is a path P, and if j > 2,
T;4+1 can be obtained recursively from T; by attaching a P; = [z,y, 2] to
a vertex w in T}, where zw € E(Tiy1), w € X(T3), and let X(Tiy1) =
X(Ti)u {=}.

Theorem 5 The families T and C are equal.

Proof: Suppose T € C. Then T has 3k + 2 vertices for some nonnegative
integer k and 4'(T') > k+ 1 by Theorem 4. Clearly if n =2,then T = P, €
T. Let the vertices of the original P, be u and v, and let the k copies of
P; have vertices x;,y;, z; for 1 < ¢ < k where d(u,z;) < d(u,y:) < d(u, 2;).
We proceed by induction on n to prove that any tree T € C has a y-set D
and a v'-set D’ with respect to D such that DUD' = {u,v}U{3]l <i <
k}U{z|l <i<k}and |D|=|D'| = 2.

If n=2then T = [u,v] so DUD’' = {u,v} and |D| = |D'| = 1.

Now suppose n > 5 and any tree 71 € C with n; < n vertices (n; = 3k +2)
has a y-set D; and a v'-set D,’ with respect to D; such that D; U D} =
{u, v} U{pill <i <k} U {21 <i < ki} and |Dy| = |Df| = 2L,

Let [zk, Yk, zx] be the last P3 added in the construction of T. Let T} =
T — {zk, Yk, 2k}, so that T} € C. Note that T7 has ny = n — 3 vertices and
n; = 3k; + 2 where k; = k — 1. By the inductive hypothesis, T} has a y-set
D, and a vy'-set D} with respect to D; such that D;UD} = {u,v}U{y|l <
i <k—-1}U{zll <i<k—1}and [Dy| = |Djj = &=2*L = k. By the
construction of T, z is adjacent to a vertex w € Dy U Dj.

If we Dy, le¢ D =DyU{z}and D) = DjU {y}. If w € Dj, let
D = D, U {yx} and D' = Dy U {zk}.

Clearly D and D’ are minimum dominating sets of T, since if D is not a
v-set for T, then there is a smaller dominating set for T which in turn gives
us 7(T1) < k, a contradiction. So ¥'(T) = |D'| =k+1=2 and T € T.
ThusCC T.
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Conversely, suppose T € 7. Then +/(T) = 2! and n = 3k + 2 for some
nonnegative integer k.

We will proceed by induction on n. Clearly if n = 2, then T = P, € C. Now
suppose 7 2> 5 and any tree T} with n; < n vertices and v/(T}) = l'-léﬂ is
a tree in C. Let D’ be any v'-set of T' and D be the y-set corresponding to
D'. 1t is immediate to see that the only star in 7 is P, which is an element
of C. So we may assume that there are vertices in T with distance at least
2 from a leaf. Root T" at any such vertex r. Let z be a vertex furthest from
r. Then z is a leaf. Let N(2) = y and z be the parent of y. Since z is a leaf,
either 2 € D and y € D/, or 2 € D' and y € D. Now, suppose deg y > 2.
Then y has at least one more child ¢. Since z is a vertex furthest from 7,
then ¢t must also be a leaf. By Lemma 1, since y = N(z) is either in D or
D', then t ¢ D and t & D’. Hence, t is either not dominated by D or D', a
contradiction. Thus, deg y = 2. By Lemma 1, since {y,z} C DU D’, then
z € V—(DUD') and deg z = 2. Let w € V(G) be such that N(z) = {w, y}.
Now, let Ty =T — {=z,y, z}.

Since x ¢ DU D', then D; = D — {y,z} and D] = D’ — {y, 2} are both
dominating sets of T;. Clearly D; and D] are minimum dominating sets
of Ty, since if D, is not a vy-set for T}, then there is a smaller dominating
set for T) which in turn gives us ¥(T) < 242, a contradiction. So v/(T}) =
|Dj| =+'(T) -1 =2 — 1 = 232 = il By the inductive hypothesis,
Ty eC.

Suppose w = z; where z; € V(T}). Since z is a vertex furthest from r,
z; is a leaf and either 2; € D and y; € D' or z; € D’ and y; € D. So
z; € V- (DUD') and z is not dominated by either D or D’'. Thus w # z;
and T €C. Hence 7 CC.

Therefore, the families 7 and C are equal. O

4 Complexity results

Finally, we show that the problem of finding an inverse dominating set of
cardinality at most k in a graph is NP-complete even when restricted to
chordal graphs. First recall that the problem of finding a dominating set
of cardinality at most k in a graph is NP-complete (see [4]).
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DOMINATING SET
INSTANCE: Graph G = (V, E), positive integer k < |V|.

QUESTION: Does G have a dominating set of cardinality at most k?

Theorem 6 DOMINATING SET is NP-complete.

We now turn our attention to inverse dominating sets.

INVERSE DOMINATING SET
INSTANCE: Graph G = (V, E), positive integer k < |V|.

QUESTION: Does G have an inverse dominating set of cardinality at most
k?

Theorem 7 INVERSE DOMINATING SET is NP-complete even when
restricted to chordal graphs.

Proof:We will use a transformation from DOMINATING SET. Let G be
any graph. Form the graph G* = G + K, by adding a new vertex = and
making it adjacent to every vertex in G. Note that this construction can
be done in polynomial time.

Claim: G has a dominating set of cardinality at most k if and only if G*
has an inverse dominating set of cardinality at most k.

If G has a dominating set of cardinality at most k, then this set will be an
inverse dominating set in G*, since {z} is a minimum dominating set of G*.
Conversely, suppose that G* has an inverse dominating set of cardinality
at most k. Call this set D’. If £ € D', by minimality, G* contains a
dominating set D of cardinality 1 that does not contain z, and this is
clearly a dominating set of G. If z ¢ D', then the vertices of D’ form a
dominating set of G of cardinality at most k. This completes the proof of
the Claim.

Since the join operation preserves chordality, INVERSE DOMINATING
SET is NP-complete even when restricted to chordal graphs (see (1]). O
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