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Abstract
A set of points in a Steiner triple system (STS(v)) is said to be
independent if no three of these points occur in the same block. In
this paper we derive for each k < 8 a closed formula for the number of
independent sets of cardinality k in an STS(v). We use the formula
to prove that every STS(21) has an independent set of cardinality
eight and is as a consequence 4-colourable.

AMS classification: 05B07
Keywords: Steiner triple system; Independent set; Colouring.

1 Introduction

1

A Steiner triple system of order v, denoted briefly by STS(v), is a pair
(V,B) where V is a set of cardinality v, whose elements are called points,
and B is a collection of 3-element subsets of V, called blocks, such that
every 2-element subset of V appears in precisely one block. It is known
that Steiner triple systems exist for every v =1 or 3 (mod 6).

Let S = (V,B) be an STS(v). A (weak) x-colouring of S is a function
¢ : V = C, where C is a set of cardinality x, whose elements are called
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colours, such that |¢(T")| > 1 for all T € B; i.e. every block in the system
contains at least two differently coloured points. If a x-colouring exists, S
is said to be x-colourable; the least such value of x is called the chromatic
number of S.

A subset U of V in an STS(v), S = (V, B), is an independent set if no
three points of U occur in a single block T € B. We denote by Ix(S) the
number of independent sets of cardinality k that occur in S. If there is no
likelihood of confusion, we write I; or Jx(v) instead of I (S).

The main purpose of this article to obtain a formula for I;(S) in terms
of the numbers of occurrences in S of certain configurations. This is stated
as Theorem 1. From this formula we obtain explicit expressions for I (v),
3<k<8.

Sauer and Schonheim (7] show that an STS(21) cannot have an in-
dependent set of cardinality greater than ten. Moreover, with a suitable
implementation of Stinson’s hill-climbing algorithm (8], it is not too difficult
to construct for each k € {8,9,10} an STS(21) having an independent set
of maximum cardinality & (Colbourn and Rosa [1], Section 17.2). The only
remaining possibility is that there might exist an STS(21) whose largest
independent set has fewer than eight points. However, once we have ob-
tained the formula for I3(v) we can prove that every Steiner triple system
of order 21 has an independent set of cardinality eight (Theorem 2).

Theorem 2 then allows us to solve the problem of determining those
values of x for which there exists an STS(21) with chromatic number x. It
is well known that STS(21)s with chromatic number 3 exist. Haddad (5]
constructs an STS(21) with chromatic number 4, and Forbes, Grannell and
Griggs [3] prove that every STS(21) is 5-colourable. Using Theorem 2 it is
relatively straightforward to improve this last result and thereby completely
determine the spectrum of chromatic numbers for STS(21)s. We shall prove
that every Steiner triple system of order 21 is 4-colourable (Theorem 3).

2 Configurations

Definition 1 A configuration, X, is a partial Steiner triple system. More
formally, X = (V,B), where V is a non-empty set of points and B is a
collection of 3-element subsets of V, called blocks, such that Uy T =V
and every 2-element subset of V' appears in at most one block. We denote
the number of points in X by p(X) and the number of blocks by b(X). If P
is a point of X, we call the number of blocks of X containing P the degree
of P. Two configurations (V,B) and (V’,B’) are regarded as identical if
there is a bijection ¢ : V' — V' which preserves the blocks; i.e. ¢(T') € B’
if and only if T € B.
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Definition 2 If S is a Steiner triple system and X is a configuration, we
denote by n(X,S) the number of occurrences of X in S. If the system
S is fixed, we usually abbreviate n(X, S) to n(X). If X is denoted by a
subscripted upper-case letter, X;, say, we usually write the corresponding
subscripted lower-case letter, z;, for n(X;). A configuration X whose num-
ber of occurrences in an STS(v) depends only upon v and not on the actual
STS(v) is constant, otherwise it is variable.

We will need details of the 31 configurations of at most eight points,
and for convenience we list them in Table 1. For brevity, set brackets and
commas have been omitted. The numbering assigned to the configurations
is standard [1, 2.

Of particular relevance are configurations in the table that have no
points of degree 1. There are precisely nine of them:

CIB:D11E11E21E31F13F21F3,G1$ (1)

and they are all variable. The main reason for our interest in these config-
urations is a theorem established by Horék, Phillips, Wallis and Yucas [6]:
Any constant n-block configuration, together with all m-block configurations
for m < n having all points of degree at least two form a generating set for
the n-line configurations.

This theorem guarantees that for each configuration in Table 1, there is
a formula giving its frequency of occurrence in a given STS(v) as a function
of v and the frequencies of the configurations (1). We adopt the convention
(Definition 2) of using appropriate subscripted lower-case letters, except
that we write p for ¢;¢ (Pasch) and m for d; (mitre). For brevity we write
ny for v(v —1)(v — 3).

Formulae for the first three configurations are well-known. Indeed, the
first is just the formula for the number of blocks in an STS(v):

ap = %'v(v -1), a1 = %(v -7, a= -%"—

The next nine equalities are taken from Grannell, Griggs and Mendel-
sohn [4):

M - — v =D =D
b2 - 48 ('U 7)(” 9)1 b3 48 v 5)) b4 ) ('U 7)) b5 6 3
cm=ﬁ(v—8)+3p, c11=ﬂ(v—7),

8 4
n Ty n
612=T”(U—9)+12P, ¢4 = - —6p, 615=Fv~
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The formulae for the 5-block configurations are given by Danziger, Mendel-
sohn, Grannell and Griggs [2):

=3, d="r-12p, di="—12%-6m,

ds = 3(v — 7)p, d6=%—12p, d7=%—6p—3m.

Formulae are now derived for eg, e7, eg and fyo using the technique
described in Section 13.1 of Colbourn and Rosa [1].

By considering the different ways of adding a block to configuration D,
linking two points of degree 2 we obtain the formula

er = da — 3ey,
and by linking the point of degree 1 to a point of degree 2,
€ = 4d2 - 1261.

Similarly, by adding a block to the mitre configuration linking two of its
points of degree 2,

eg = 6m,
and, finally, by adding a block to Ej linking two of its points,

foo = 3e; — 21f;.

3 Independent sets
We now state and prove the main result.

Theorem 1 Let S = (V,B) be a given Steiner iriple system of order v.
Then

= (Y _1\b(X) v —p(X)
19 = (1) + T On0xs) (2278,
where the sum extends over all configurations X consisting of at most k

points.

Proof. If W is a subset of V and X is a configuration, denote by
n(X, W) the number of occurrences of X in the restriction of S to W. Con-
sider a k-element set W. Suppose W contains exactly ! blocks of S and we
compute the sum over all possible configurations, X, 3, (—1)*®)n(X, W).
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Then we obtain the value }_ (=1)*(}) = —1if I > 1, and zero if ! = 0.
Hence

I.(S)

(}) + = T ncew)
w X
(}) + 0 S w),
X w

where ), indicates a sum over all possible k-subsets of V.

But }°, n(X, W) is the total count obtained by listing the k-element
subsets W and scoring 1 for each copy of X in W. The same number is
found by taking each copy of X in S and extendin §(1t in all possible ways
to a set of size k, and this is given by n(X, S)(}_ pg X)) Therefore

I(S) = () + Tx (-1)®n(X,5)(3225)). O

If k is small, the expression for I;(S) given by Theorem 1 only has a
modest number of terms. Indeed, setting k = 8 and recalling from Table 1
the 31 configurations that have at most eight points,

o= (5)-e(’5) ra(2) re('7)
—(b3+b4)(v—7)—b5(”;6)

v—=6
+c10 + c11 + c12 + (€14 + c15)(v — 7)+P( 9 )

—(m+d))(v—"T7)—ds~dy —ds —ds — dr
+ei(v—T)+extes+eg+er+es
—hv=-7—-fo—fa—fao+a.

After substituting from the formulae in Section 2 and simplifying, this gives

Iy = n,(v®—80v! + 25750% — 4182002 + 344724v — 1167600)/8!
+ p(v? — 37v + 354)/2 @)
—(v-22)m+ (v—25)e; +e2+e3

~-(w-28)fi-fo—fat g
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In a similar manner and with somewhat less effort we obtain formulae for
I, 3<k<T:

Iy = %(v‘ — 5203 + 1014v? — 8808v + 28905) + (v — 15)p ~m + &1 — fi,

Ny
120

I = Z—'!'(v ~9)(w—-10)v—12)+p, Is=—2(v-T)(v-09),

Ny _ Ty
I4-§('U-6) and I3 = 6"

4 STS(21)s

Theorem 2 Every Steiner triple system of order 21 has an independent
set of cardinality eight.

Proof. Let S be a given STS(21). By (2), the number of occurrences
in S of eight independent points is

I3(21)=315+9p+m—4dey+es+e3+7f1— fa— fs+ g1- (3)

To deal with the terms in (3) with negative coefficients, we define three
9-point, 7-block configurations,

Fsr: {{0: 1, 2}v {Os 3, 4}1 {113’ 5]’: {2s 3, 6}: {11 4, 7}’ {2, 4, 8}: {5, 6, 7}}:
F3: {{0,1,2},{0,3,4},{1,3,5}, {2,3,6},{1,4,7},{2,5,7}, {4,5,8}},
Fy: {{0,1,2},{0,3,4},{1,3,5},{2,3,6},{1,4,7}, {4,6,8},{2,7,8}},
and use the corresponding subscripted lower-case letters fa7, fag, fa4 to
denote their frequencies of occurrence in S.

By considering the addition of a block to configuration Ej linking one
of these pairs of points of degree 2: {0, 5}, {0, 6}, {5, 6}, {1, 4}, {1, 7}, {4,
7}, thus converting the Ej to either an Fy4 or an F3, we obtain the formula

6es = 3f3 + faa > 3f3.

Similarly, by adding a block to configuration Eg linking points 0 and 7, or
points 4 and 5, we obtain eg = 3 f3 + f39, which, combined with the formula
for eg from Section 2, gives another upper bound for f3, namely

6m = 3f3 + fag > 3fs.
Finally, by adding a block to configuration E; linking points 2 and 4,

e =2fs+ far 2 2fo.
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From the formulae for d» and eg from Section 2 we obtain e; < p, and
from those above, f3 < e3 +m and f2 < 1e,. Hence

1
Ig(21) > 315+ 5p+ —ea + 7f1 + .

2
The proof of the theorem shows that, in fact, every STS(21) has at least
315 independent sets of cardinality eight. O

Theorem 3 Every Steiner triple system of order 21 is 4-colourable.

Proof. By Theorem 2, every STS(21) has at least eight independent
points. Given an STS(21), choose eight independent points and colour them
red. Let U be the configuration consisting of the 13 points that are not
coloured red and the 18 blocks that do not contain a red point. (There
are 70 blocks altogether of which 28 contain two red points and 24 contain
exactly one red point.) Denote by p * ¢ the third point in the block of the
STS(21) that contains points p and g.

Suppose there exists a point z that occurs in exactly five blocks of U,

{z,a,b},{z,c,d},{z,e, f},{z,9,h},{2,%,5}.

Let k and | be the remaining points of U. We can assume that the points
are labelled in such a way that bk is not equal to [, that a * ¢ is not equal
to e or f, and that a *x d is not equal to e or f. A valid 4-colouring of the
STS(21) is achieved by assigning colours as follows, yellow: {a, ¢, d, e, f},
blue: {g, h, i, j} and green: {z, b, k, }.

Alternatively, suppose y is a point that occurs in only four blocks of U,

{y’a‘l b}’ {y)ci d}’ {y1 e’ f}’ {yi g) h}?

with points {i, 7, k, {} of U remaining. We assume that the points are
labelled such that j * k is not equal to !, a %1 is not equal to c or d, and b* ¢
is not equal to c or d. Now colour {a, b, ¢, d, i} yellow, {e, f, g, h} blue
and {y, 7, k, !} green.

Finally, a simple counting argument shows that there must exist a point
of degree 4 or 5 in U. Let n be the number of points of degree 6 in U. Then
n < 4 since five such points would require at least 6 +5+4+3+2 > 18
blocks. Hence (3 - 18 — 6n)/(13 — n) > 3 and therefore it is impossible for
all the remaining points to have degree less than 4 in U. 0
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