# THE DOMINATION PARAMETERS OF THE CORONA AND ITS GENERALIZATION

#### Maciej Zwierzchowski

Institute of Mathematics
Technical University of Szczecin
al. Piastów 48/49
70-310 Szczecin
Poland

e-mail: mzwierz@arcadia.tuniv.szczecin.pl

Abstract: Let D be a dominating set of a simple graph G = (V, E). If the subgraph  $\langle V - D \rangle_G$  induced by the set V - D is disconnected, then D is called a split dominating set of G, and if  $\langle D \rangle_G$  has no edges, then D is an independent dominating set of G. If every vertex in V is adjacent to some vertex of D in G, then D is a total dominating set of G. The split domination number  $\gamma_s(G)$ , independent domination number i(G) and total domination number  $\gamma_t(G)$  equal the minimum cardinalities of a split, independent and total dominating set of G, respectively.. The concept of split domination was first defined by Kulli and Janakiram in 1997 [4], while total domination was introduced by Cockayne, Dawes and Hedetniemi in 1980 [2].

In this paper, we study the split, independent and total domination numbers of corona  $G \circ H$  and generalized coronas  $kG \circ H$  of graphs.

#### 1. Introduction

Let G be a simple graph with  $V(G) = \{x_1, x_2, \ldots, x_n\}, n \geq 1$ . By a copy of G we mean the graph  $G^*$  with the vertex set  $V(G^*) = \{x_1^*, x_2^*, \ldots, x_n^*\}$ , where  $x_i^*$  corresponds to a vertex  $x_i \in V(G)$  and the edge  $x_i^*x_j^* \in E(G^*)$  if and only if  $x_ix_j \in E(G)$ . The duplication of a subset  $S = \{v_1, v_2, \ldots, v_m\} \subseteq V(G)$  into the copy  $G^*$  of a graph G, is a set  $S^* \subseteq V(G^*)$  such that  $S^* = \{v_1^*, v_2^*, \ldots, v_m^*\}$ , where  $v_i^*$  corresponds to a vertex  $v_i$ . Recall that  $G \circ H$  is called the corona of graphs if it is obtained from the disjoint union of G and G opies of G (where G is a graph obtained from G with every vertex from G into the copy of G is a graph obtained from G to a fixed integer, G in G is a graph obtained from G copies of G and G opies of G with appropriate edges between each vertex G of the copy G and all of the vertices of the copy G and G of the copy G and all of the vertices and G of the copy G and G of the copy G and G of the copy G and all of the vertices of the copy G of the copy G and all of the vertices and G of the copy G of the copy G and G of the vertices and G of the copy G of the copy G and all of the vertices and G of the copy G of the copy G and G of the vertices and G of the copy G of the copy G and G of the vertices and G of the vertices and G of the copy G of the copy G of the vertices and G of the vertices and

corona  $kG \circ H$  has kr + rn vertices, and ks + ru + krt edges. For example  $4K_2 \circ K_1$ ,  $2P_3 \circ \overline{K_2}$  and  $2K_3 \circ K_2$  are illustrated in this figure



If k = 1, then we obtain the corona of graphs G and H.

If  $X \subseteq V(G)$ , then the notation  $\langle X \rangle_G$  means the subgraph of G induced by a subset X. A subset  $S \subset V(G)$  is called a *cut set* of G if  $\langle V(G) - S \rangle_G$  is disconnected.

In this paper we study three of many variations of the domination: the split domination, total domination and independent domination. Recall, a subset  $D \subseteq V(G)$  is a dominating set of G if every vertex  $y \in V(G) - D$ is adjacent to some vertex  $x \in D$ . We also say that y is dominated by D in G or by x in G. If  $D = \{x\}$  is a dominating set of G, then x is called a dominating vertex. The domination number  $\gamma(G)$  of G is the minimum cardinality of a dominating set of G. The domatic number d(G) of G is the maximum number of elements in a partition of V(G) into dominating sets, see [5]. If every vertex  $y \in V(G)$  is adjacent to some vertex  $x \in D$  in G, then D is called a total dominating set of G. The minimum cardinality of a total dominating set of G is the total domination number  $\gamma_t(G)$ . Of course, every total dominating set also is a dominating set of G. A dominating set D of G is a split dominating set of G if the induced subgraph  $(V(G) - D)_G$ is disconnected. We note that the existence of such a subset in a connected graph is assured under the condition that this graph is different from the complete graph. The split domination number  $\gamma_s(G)$  of G is the minimum cardinality of a split dominating set of G. A dominating set D of G is an independent dominating set of G if  $\langle D \rangle_G$  has no edges. The independent domination number i(G) of G is the minimum cardinality of a independent dominating set of G. For a convenience, a dominating, split dominating, independent dominating and total dominating set of G which realizes the number  $\gamma(G)$ ,  $\gamma_s(G)$ , i(G) and  $\gamma_t(G)$  will be called a  $\gamma(G)$  – set, a  $\gamma_s(G)$  – set, a i(G) - set and a  $\gamma_t(G) - set$ , respectively. Any term not defined in this paper may be found in [1].

## 2. Domination parameters of the corona

We start with a simple observations concerning mentioned domination parameters with respect to the corona  $G \circ H$ . The proofs of these observations are self-evident and they will be left to the reader.

Observation 1. For any graph G and H

$$\gamma(G \circ H) = |V(G)|.$$

Note that by the definition of the corona it follows that, if H is the complete graph, then  $K_1 \circ H$  also is complete. There is no split dominating set of  $K_1 \circ H$ , in the resulting graph. In conclusion, we assume that H is a noncomplete graph.

**Observation 2.** If  $|V(G)| \ge 2$  or H is disconnected and |V(G)| = 1, then  $\gamma_*(G \circ H) = |V(G)|$ .

It is not difficult to observe that, in the above cases, V(G) is the set realizing the domination number and the split domination number of  $G \circ H$ , respectively.

Observation 3. If H is a noncomplete connected graph, then

$$\gamma_s(K_1 \circ H) = \kappa(H) + 1,$$

where  $\kappa(H)$  is the minimum cardinality taken over all cut sets of H.

In this case, the sum of  $V(K_1)$  and the smallest cut set of H is  $\gamma_s(K_1 \circ H)$ —set.

Now, we determine the total domination number of the corona. It is easy to see that  $\gamma_t(K_1 \circ H) = 2$ , for any graph H. This result can be generalized to any graph G, what is the content of the following result.

Observation 4. For any graph G and H

$$\gamma_t(G \circ H) = |V(G)| + s,$$

where s is number of isolated vertices of G.

Finally, we determine the independent domination number of the corona.

Observation 5. For any graph G and H

$$i(G \circ H) = \beta_0(G) + (|V(G)| - \beta_0(G)) i(H),$$

where  $\beta_0(G)$  is the maximum cardinality of an independent set of G (i.e.  $\beta_0(G)$  is the independence number of G).

*Proof.* Let  $V(G) = \{x_1, x_2, ..., x_n\}$  and S be a maximum independent set of G. Let  $\mathcal{J}$  be a subset of  $\{1, 2, ..., n\}$ , such that

$$j \in \mathcal{J} \stackrel{df}{\Leftrightarrow} S \cap (\{x_i\} \cup V(H_i)) = \emptyset$$
, for some  $i \in \{1, 2, ..., n\}$ 

Observe that  $|S| = \beta_0(G)$  and  $|\mathcal{J}| = |V(G)| - \beta_0(G)$ . Since S also is a dominating set of G, then

$$D=S\cup\bigcup_{j\in\mathcal{J}}D_j,$$

is the smallest independent dominating set of  $G \circ H$ , where  $D_j$  is  $i(H_j)$ —set. Moreover,  $|D| = |S| + \sum_{j \in \mathcal{J}} |D_j| = \beta_0(G) + i(H)(|V(G)| - \beta_0(G))$ , as required.

From the above considerations, we obtain

Corollary 2.1. For any graph H

$$i(K_1 \circ H) = 1.$$

## 3. Domination parameters of the generalized corona

Let  $V(G) = \{x_1, x_2, \ldots, x_n\}$  be the vertex set of a graph G and  $G^1, G^2, \ldots, G^k$  and  $H^1, H^2, \ldots, H^n$  be the copies of G and H in  $kG \circ H$ , respectively. Put  $V(G^j) = \{x_1^i, x_2^j, \ldots, x_n^j\}$ , for  $j = 1, 2, \ldots, k$ . From the above it follows that for any fixed  $i \in \{1, 2, \ldots, n\}$  the vertex  $x_i^j \in V(G^j)$  is adjacent to all vertices of  $H^i$  in  $kG \circ H$ , for  $j = 1, 2, \ldots, k$ . Put  $Y_i = \langle V(H^i) \cup \{x_i^1, x_i^2, \ldots, x_i^k\} \rangle_{kG \circ H}$ , for  $i = 1, 2, \ldots, n$ . Then  $V(kG \circ H) = \bigcup_{i=1}^n V(Y_i)$  and  $V(Y_i) \cap V(Y_j) = \emptyset$ , for  $i \neq j$ .

First, we consider the domination number with respect to the k-corona,  $kG \circ H$ .

**Theorem 3.1.** For two arbitrary graphs G and H and for  $k \geq 1$ 

$$|V(G)| \le \gamma(kG \circ H) \le 2|V(G)|.$$

Proof. Let D be a  $\gamma(kG \circ H)$ -set. Let  $H^i$  and  $Y_i$  be the subgraphs of  $kG \circ H$  defined as above. First, we show that  $|V(G)| \leq \gamma(kG \circ H)$ . Assume that  $D \cap V(Y_m) = \emptyset$ , for some  $m \in \{1, 2, ..., n\}$ . Then any vertex from  $V(H_k)$  is not dominated by D in  $kG \circ H$  - a contradiction. Thus, it must be that  $D \cap V(Y_i) \neq \emptyset$ , for i = 1, 2, ..., n. In a consequence,  $n = |V(G)| \leq \gamma(kG \circ H)$ , as desired. To show that  $\gamma(kG \circ H) \leq 2|V(G)|$ , we construct a dominating set S of  $kG \circ H$  and |S| = 2|V(G)|. Let  $S = \bigcup_{i=1}^n \{h_i\} \cup \bigcup_{i=1}^n \{x_i^1\}$ , where  $h_i$  is some vertex from  $V(H^i)$ . Since the subset  $\{h_i, x_i^1\}$  is a dominating set of  $Y_i$  for any  $i \in \{1, 2, ..., n\}$ , thus S is a dominating set of  $kG \circ H$  and |S| = 2|V(G)|, as desired.

It is interesting to know for which graphs G and H the equality  $|V(G)| = \gamma(kG \circ H)$  holds. To answer the question we give some basic results. In all further results we shall take  $k \ge 1$ .

**Theorem 3.2.** Let G be a connected graph. If H has a dominating vertex, then

$$\gamma(kG \circ H) = |V(G)|$$
.

*Proof.* Duplicating the dominating vertex of H into every copy  $H^i$  of  $kG \circ H$ , we obtain a dominating set of  $kG \circ H$  with the cardinality |V(G)|. Hence  $\gamma(kG \circ H) \leq |V(G)|$ . Now, according to Theorem 3.1 we have  $\gamma(kG \circ H) = |V(G)|$ , as required.

**Proposition 3.3.** Let D be a  $\gamma(kG \circ H)$ -set with |D| = n = |V(G)|. Then  $|D \cap V(Y_i)| = 1$ , for i = 1, 2, ..., n.

*Proof.* Put D be a set as in the statement of the theorem.

Recall,  $Y_i = \left\langle V(H^i) \cup \bigcup_{j=1}^k \{x_i^j\} \right\rangle_{kG \circ H}$ . Assume that there exists an integer  $m \in \{1,2,\ldots,n\}$ , such that  $D \cap V(Y_m) = \emptyset$ . But it is not possible, since any vertex from  $V(H^m)$  would not be dominated by D in  $kG \circ H$ . Thus, it must be that  $D \cap V(Y_i) \neq \emptyset$ , for  $i=1,2,\ldots,n$ . Further, since the vertex set  $V(kG \circ H)$  is a disjoint union of exactly n subsets  $V(Y_i)$  and |D| = n, hence  $|D \cap V(Y_i)| = 1$ , for  $i=1,2,\ldots,n$ .

Recall that  $G^1, G^2, \ldots, G^k$  are the copies of G in  $kG \circ H$  and  $V(G^j) = \{x_1^j, x_2^j, \ldots, x_n^j\}$ , for  $j = 1, 2, \ldots, k$ .

**Proposition 3.4.** Let D be the  $\gamma(kG \circ H)$ -set with |D| = n = |V(G)|. If  $\gamma(H) \geq 2$ , then for any j = 1, 2, ..., k a subset  $D \cap V(G^j)$  is a dominating set of an induced subgraph  $G^j$  of  $kG \circ H$ .

Proof. Let D be a  $\gamma(kG \circ H)$ -set and |D| = n. By Proposition 3.3 we have  $|D \cap V(Y_i)| = 1$ , for i = 1, 2, ..., n. Moreover, since  $H^i$  has no dominating vertex, then  $D \cap V(H^i) = \emptyset$ , for i = 1, 2, ..., n (otherwise it would be  $|D \cap V(Y_m)| \geq 2$ , for some  $m \in \{1, 2, ..., n, \}$ ). This means that  $D \cap \bigcup_{i=1}^n V(H^i) = \emptyset$  and  $D \subset \bigcup_{j=1}^k V(G^j)$ . Put  $D_j = D \cap V(G^j)$ , for j = 1, 2, ..., k.

Now, we show that  $D_j$  is a dominating set of  $G^j$ , for  $j=1,2,\ldots,k$ . Let  $x_i^j \in V(G^j) - D_j$ , for a fixed  $i \in \{1,2,\ldots,n\}$  and for a fixed  $j \in \{1,2,\ldots,k\}$ . Observe that by the definition of  $kG \circ H$ , it follows that  $N_{kG\circ H}(x_i^j) = V(H^i) \cup N_{G^j}(x_i^j)$  (in other words vertex  $x_i^j$  has a neighbour in  $H^i$  or in  $G^j$ ). As we noticed  $D \cap V(H^i) = \emptyset$ , hence also  $D_j \cap V(H^i) = \emptyset$ . So, it must be that  $D_j \cap N_{G^j}(x_i^j) \neq \emptyset$ , what means that  $x_i^j$  is dominated by  $D_j$  in  $G^j$  ( $G^j$  is meant as an induced subgraph of  $kG\circ H$ ). As a consequence we obtain that  $D_j$  is a dominating set of  $G^j$ .

Moreover, duplicating  $D_j$  into G, for j = 1, 2, ..., k we obtain a partition of V(G) into k dominating sets of G. Hence the following results hold.

Corollary 3.5. Let D be the  $\gamma(kG \circ H)$ -set with |D| = n = |V(G)| and  $\gamma(H) \geq 2$ . Then  $k \leq d(G)$ , where d(G) is the domatic number of G.

**Corollary 3.6.** If G is a connected graph and  $2 \le k \le d(G)$ , then for any graph H

$$\gamma(kG\circ H)=|V(G)|.$$

Proof. Putting |V(G)| = n we can observe that any dominating set of  $kG \circ H$  contains at least one vertex of  $Y_i$ , for i = 1, 2, ..., n. Hence  $n \le \gamma(kG \circ H)$ . To complete the proof we construct a dominating set D of  $kG \circ H$  with the cardinality |D| = n. Since  $k \le d(G)$ , then the vertex set V(G) of G can be partitioned into k dominating sets of G, say  $D_1, D_2, ..., D_k$ . Further, let  $A^j$  be a duplication of  $D_j$  into  $G^j$  and let  $D = \bigcup_{j=1}^k A^j$ . It is obvious that |D| = n and by the definition of the graph  $kG \circ H$ , we see that D is a dominating set of  $kG \circ H$ . Hence the proof is complete.

**Theorem 3.7.** Let G be a connected graph. Then  $\gamma(kG \circ H) = |V(G)|$  if and only if H has a dominating vertex or  $k \leq d(G)$ .

Proof. The necessary condition is a straightforward consequence of Theorem 3.2 and Corollary 3.6. Now we show the sufficient condition. Let D be a  $\gamma(kG \circ H)$ -set with |D| = |V(G)| = n. If k = 1, then by Observation 1 the result follows. So, assume that  $k \geq 2$ . If H has a dominating vertex, then the theorem is true. Hence, suppose that H has no dominating vertex. Since  $D \cap V(Y_i) \neq \emptyset$ , for  $i = 1, 2, \ldots, n$ , then  $|D \cap V(Y_i)| = 1$ , because of there are exactly n disjoint subgraphs  $Y_i$  of  $kG \circ H$ . Moreover, since  $H^i$  has no dominating vertex, then  $D \cap V(H^i) = \emptyset$ , for  $i = 1, 2, \ldots, n$  (otherwise it would be  $|D \cap V(Y_m)| \geq 2$ , for some  $m \in \{1, 2, \ldots, n, \}$ ). This means that  $D \cap \bigcup_{i=1}^n V(H^i) = \emptyset$  and  $D \subset \bigcup_{j=1}^k V(G^j)$ . Moreover, for any j, holds  $|D \cap V(G^j)| \leq 1$ . Denote by  $N_{kG \circ H}(V(G^j))$  the sum of the open neighbourhoods of all vertices belonging to  $V(G^j)$ . It can observe that

$$N_{kG \circ H}(V(G^j)) = \bigcup_{i=1}^n V(H^i) \cup V(G^j).$$

If there exists an integer m, such that  $D \cap V(G^m) = \emptyset$ , then  $N_{kG \circ H}(V(G^m)) \cap D = \emptyset$ . Because of (as we noticed)  $D \cap \bigcup_{i=1}^n V(H^i) = \emptyset$ . It contradicts the fact that D is a dominating set of  $kG \circ H$ . Hence it must be that  $k \leq n$ . Further, put

$$D_j = D \cap V(G^j),$$

for j = 1, 2, ..., k. It is clear that  $D_j$  is a dominating set of  $G^j$  ( $G^j$  is meant as a subgraph of  $kG \circ H$ ) and  $D_i \cap D_j = \emptyset$ . Finally, duplicating  $D_j$  into G, for j = 1, 2, ..., k we obtain a partition of V(G) into k dominating sets of G. It means that k < d(G).

Next we discuss the split domination number of the generalized corona,  $kG \circ H$ , for  $2 \leq k \leq d(G)$ . First note that for a disconnected graph G the generalized corona  $kG \circ H$  also is disconnected, for any k. Thus  $\gamma(kG \circ H) = \gamma_s(kG \circ H)$ , if G is disconnected. Consequently, in the future investigations we shall assume that G is connected.

We shall give some propositions concerning the split domination number of special generalized coronas. Simple observation shows that the next proposition follows.

**Proposition 3.8.** For any graph H and for  $k \geq 2$ 

$$\gamma_s(kK_1\circ H)=|V(H)|.$$

**Proposition 3.9.** Let G be a connected graph and let  $k \geq 2$ , then

$$\gamma_s(kG \circ K_1) = |V(G)|.$$

Proof. If  $G \cong K_1$  and  $k \geq 2$ , then  $kG \circ K_1$  is isomorphic to the star with at least three vertices and then  $\gamma_s(kK_1 \circ K_1) = 1 = |V(G)|$ , as desired. Suppose that G is different from  $K_1$ . Let |V(G)| = n. We show that  $\gamma_s(kG \circ H) = n$ , for  $H \cong K_1$ . Since  $n \geq 2$ , then  $kG \circ H$  has n copies of H, say  $H^1, H^2, \ldots, H^n$ . Of course  $H^i \cong K_1$ , for  $i = 1, 2, \ldots, n$ . Putting  $V(H^i) = \{h^i\}$ , for  $i = 1, 2, \ldots, n$  we state that the subset  $\{h^1, h^2, \ldots, h^n\} \subset V(kG \circ H)$  is a split dominating set of  $kG \circ H$  with the cardinality n, as required.

**Proposition 3.10.** Let G be a connected graph different from  $K_1$  and let  $k \geq 2$ , then for any graph H

$$\gamma_s(2G\circ H)=|V(G)|\,.$$

*Proof.* Let D be a  $\gamma(G)$ -set and let  $G^1$  and  $G^2$  be two copies of G in  $2G \circ H$ . Observe that  $V(G) - D \neq \emptyset$  is a dominating set of G (otherwise D would not be a minimal dominating set of G). Further, duplicating D into  $G^1$  and V(G) - D into  $G^2$  we obtain a split dominating set of  $2G \circ H$ , with the cardinality |V(G)|. According to Theorem 3.1 the result follows.  $\square$ 

Finally, we discuss the  $\gamma_s(kG \circ H)$ , for  $3 \le k \le d(G)$  and  $H \ncong K_1$ .

**Theorem 3.11.** Let G be a connected graph different from  $K_1$ . If H is different from  $K_1$  and  $3 \le k \le d(G)$ , then

$$|V(G)| + 1 \le \gamma_s(kG \circ H) \le |V(G)| + k - 1.$$

*Proof.* Let D be a  $\gamma(kG \circ H)$ -set. Hence |D| = |V(G)| = n. We show that D is not a split dominating set of  $kG \circ H$ . More precisely, we prove that  $\langle V(kG \circ H) - D \rangle_{kG \circ H}$  is connected.

Recall  $Y_i = \left\langle V(H^i) \cup \bigcup_{j=1}^k \{x_i^j\} \right\rangle_{kG \circ H}$ , for i = 1, 2, ..., n. Note that  $Y_i \cong kK_1 \circ H$  and additionally observe that the last graph is connected, for all  $k \geq 1$ .

Consider two adjacent vertices of G. Without loss of generality we may assume that  $x_1x_2 \in E(G)$ . Thus by the definition of  $kG \circ H$ , it follows that  $x_1^j x_2^j \in E(kG \circ H)$ , for  $j=1,2,\ldots,k$ . Further, consider the subgraphs  $Y_1 = \left\langle V(H^1) \cup \bigcup_{j=1}^k \{x_1^j\} \right\rangle_{kG \circ H}$  and  $Y_2 = \left\langle V(H^2) \cup \bigcup_{j=1}^k \{x_2^j\} \right\rangle_{kG \circ H}$  of  $kG \circ H$ . According to Proposition 3.3 and Proposition 3.4, exactly one vertex from D belongs to  $\bigcup_{j=1}^k \{x_1^j\}$  and  $\bigcup_{j=1}^k \{x_1^j\}$ , respectively. Thus  $\langle V(Y_1) - D\rangle_{kG \circ H}$  and  $\langle V(Y_1) - D\rangle_{kG \circ H}$  is connected, because of they are isomorphic to  $(k-1)K_1 \circ H$  and  $k-1 \geq 2$ . Since  $k \geq 3$ , then we can find  $m \in \{1,2,\ldots,k\}$  such that  $x_1^m, x_2^m \in V(kG \circ H) - D$  and  $x_{i_1}^m x_{i_2}^m \in E(kG \circ H)$ . This means that  $\langle (V(Y_{i_1}) \cup V(Y_{i_2})) - D\rangle_{kG \circ H}$  is connected. Now, it is obvious that if  $x_{i_1}, x_{i_1} \in V(G)$  are joined by a path in G containing successive vertices  $x_{i_1}x_{i_2}\ldots x_{i_l}$ , then the induced subgraph  $\langle (V(Y_{i_1}) \cup \ldots \cup V(Y_{i_l})) - D\rangle_{kG \circ H}$  is connected. Further, since G is connected, hence every two vertices are joined by a path in G. As a consequence, we obtain that  $\langle V(kG \circ H) - D\rangle_{kG \circ H}$  is connected, as required. Finally,  $|V(G)| = \gamma(kG \circ H) < \gamma_s(kG \circ H)$  and the lower bound of  $\gamma_s(kG \circ H)$ 

To show the upper bound we construct a split dominating set S of  $kG \circ H$  with the cardinality |V(G)| + k - 1. Let  $\{A_1, A_2, \ldots, A_k\}$  be the partition of V(G) into k dominating sets of G (such a partition exists, since k is not greater than the domatic number of G). Put  $S_j$  be a duplication of  $A_j$  into  $G^j$ , for  $j = 1, 2, \ldots, k$ . It is easy to observe that  $\bigcup_{m=1}^k S_m$  is a dominating set of  $kG \circ H$  with  $\left|\bigcup_{m=1}^k S_m\right| = |V(G)|$ . Further, let  $S = \bigcup_{m=1}^k S_m \cup \bigcup_{j=1}^k \{x_1^j\}$ . Note that  $\langle V(kG \circ H) - S \rangle_{kG \circ H}$  is disconnected, since  $H^1$  is one of the connected components of it. All this together gives that S is a split dominating set with required cardinality not greater than |V(G)| + k - 1.

holds.

**Theorem 3.12.**  $\gamma_t(kG \circ H) = |V(G)| \iff G$  has no isolated vertices and V(G) can be partitioned into k total dominating sets.

Proof. Let D be a  $\gamma(kG \circ H)$ -set with |D| = n = |V(G)|. Recall  $Y_i = \left\langle V(H^i) \cup \bigcup_{j=1}^k \{x_i^j\} \right\rangle_{kG \circ H}$ , for i=1,2,...,n. Observe that  $D \cap V(Y_i) = \{x_i^j\}$ , for some  $j \in \{1,2,...,k\}$ . Otherwise D would not be a dominating set of the generalized corona or |D| would be greater than n, what contradicts the assumption of D. Since D is a total dominating set, then  $\{x_i^j\}$  is adjacent to some vertex of D in  $kG \circ H$ , say  $x_m^j$ ,  $i \neq m \in \{1,2,...,n\}$ . Thus  $x_i$  is not an isolated vertex of G, because of it is adjacent to  $x_m$  in G. Next, note that  $D \cap V(G^j)$  is a total dominating set of  $G^j$  and duplicating this set into V(G), for j=1,2,...,k, we obtain the partition of

Suppose that G has no isolated vertices and V(G) can be partitioned into k total dominating sets. Then duplicating each element of the partition into different copy of G in the generalized corona we obtain the required total dominating set of  $kG \circ H$ . Thus the theorem is true.

Corollary 3.13. Let  $k \geq 1$ , then for any graph H

V(G) into k total dominating sets, as desired.

$$\gamma_t(kP_n \circ H) = n \iff k = 1, 
\gamma_t(kC_n \circ H) = n \iff (k = 2 \text{ and } n \equiv 0 \pmod{4}) \text{ or } k = 1. 
\gamma_t(kK_n \circ H) = n \iff k \leq \left\lfloor \frac{n}{2} \right\rfloor.$$

Arguing similarly as in the proof of Theorem 3.7, but with respect to an independent dominating set, we obtain the result due to Theorem 3.7

**Theorem 3.14.** Let G be a connected graph. Then  $i(kG \circ H) = |V(G)|$  if and only if H has a dominating vertex or V(G) can be partitioned into k independent dominating sets.

Proposition 3.15. Let  $n \geq 3$ , then

$$d_i(C_n) = 3 \iff n \equiv 0 \pmod{3},$$
  
 $d_i(C_n) = 2 \iff n \text{ is even and } n \equiv 1, 2 \pmod{3},$   
 $d_i(C_n) = 0 \iff n \text{ is odd and } n \equiv 1, 2 \pmod{3},$ 

where  $d_i(C_n)$  is the maximum number of elements in a partition of  $V(C_n)$  into independent dominating sets. Moreover, if n is even and  $n \equiv 0 \pmod{3}$ , then  $V(C_n)$  can be partitioned into 2 or 3 independent dominating sets.

*Proof.* Let D be an independent dominating set of  $C_n$ ,  $n \geq 3$ . Since  $C_n$  is 2-regular, thus  $V(C_n)$  can not be partitioned into more than 3 dominating sets and of course 3 independent dominating sets. Now, we consider all cases with respect to the complement of D in  $C_n$ .

Assume that  $\langle V(C_n) - D \rangle_{C_n} \cong \overline{K_s}$ , then n is even. Moreover,  $\{D, V(C_n) - D\}$  is the unique partition of  $V(C_n)$  into independent dominating sets.

Assume that  $\langle V(C_n) - D \rangle_{C_n} \cong sK_2$  and  $D = \{x_i : i \equiv 1 \pmod{3}\}$ . Then it is not difficult to observe that,  $\{D, \{x_i : i \equiv 2 \pmod{3}\}, \{x_i : i \equiv 2 \pmod{3}\}\}$ 

 $0 \pmod{3}$  is the unique partition of  $V(C_n)$  into independent dominating sets and  $n \equiv 0 \pmod{3}$ .

Assume that there exist  $x_i, x_j \in V(C_n) - D$ , such that  $N_{C_n}(x_i) \subset D$  and  $N_{C_n}(x_j) \not\subseteq D$ . From the fact that  $N_{C_n}(x_i) \subset D$  it follows that  $V(C_n)$  can not be partitioned into more than 2 independent dominating sets. But  $V(C_n) - D$  is not an independent dominating set of  $C_n$ , since  $x_j$  is adjacent to some vertex of  $V(C_n) - D$  in  $C_n$ , by the assumption of  $x_j$ . Thus, in this case, there is no partition of  $V(C_n)$  into independent dominating sets.

Reassuming, if  $n \equiv 0 \pmod{3}$ , then  $V(C_n)$  can be partitioned into 2 or 3 independent dominating sets. If n is even and  $n \equiv 1, 2 \pmod{3}$ , then  $V(C_n)$  can be partitioned into 2 independent dominating sets, and if n is odd and  $n \equiv 1, 2 \pmod{3}$ , then there does not exist any partition of  $V(C_n)$  into independent dominating sets.

Corollary 3.16. Let H be a graph with  $\gamma(H) \geq 2$ , then

$$i(kP_n \circ H) = n \Longleftrightarrow k = 2,$$

$$i(kC_n \circ H) = n \Longleftrightarrow (k = 2 \text{ and } n \text{ is even}) \text{ or } (k = 3 \text{ and } n \equiv 0 \pmod{3}),$$

$$i(kK_n \circ H) = n \Longleftrightarrow k = n,$$

$$i(kK_{m,n} \circ H) = m + n \Longleftrightarrow k = 2.$$

### Acknowledgements

The author wish to thank the referee for useful comments and suggestions.

#### REFERENCES

- [1] C. Berge, Graphs and Hypergraphs, North-Holland Publishing, Amsterdam, (1973).
- [2] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs. Networks 10 (1980) 211-219.
- [3] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math, 4 (1970), 322-324.
- [4] V. R. Kulli, B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York XXXII(1997), 16-19.
- [5] B. Zelinka, On domatic numbers of graphs, Mathematica Slovaca 1 (1981), 91-95.