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1 Abstract

Let G and H be a pair of non-isomorphic graphs on fewer than m vertices.
In this paper, we introduce several new problems about decomposing the
complete graph K, into copies of G and H. We will assume that at least
one of G or H is not a cycle. We also begin to examine variations to the
problems of subgraph packing, covering, and factorization.

2 Introduction

Among the earliest results concerning graph decomposition is the problem
of partitioning the edges of the complete graph into cycles. When the cycles
each have length 3, the resulting decomposition of K, is known as a Steiner
triple system of order m or ST.S(m); see Chapter 1 of [17]. Cycle systems
with larger cycle length have been studied for some time [18].

The Oberwolfach problem (2, 3, 4, 10, 12, 15, 16] is defined as follows:
for ey +c2+- - -+¢; = m and ¢; > 3, partition the edges of K, into 2-factors
consisting of cycles with lengths from the set {c;,c2,...,c:}. As originally
posed, the problem asks if it is possible to seat m guests at ¢ tables with
€1,Co,...,c seats. Solutions have been found for the cases in which the
cycles have the same length (so all tables seat the same number of guests).

The Hamilton-Waterloo problem [1, 9] is a variation of the Oberwolfach
problem which may be stated as follows: for c; +co+---+c¢cs =cf +ch +
-o 4+ ¢ = m, ci,¢; > 3, and T +y = (m — 1)/2, partition the edges of
K, into z 2-factors consisting of cycles with lengths from {c1,c2,... ,¢s}
and y 2-factors consisting of cycles with lengths from {c},c5,... ,c;}. This
corresponds to the Oberwolfach problem where there are two sets of table
sizes. Consider a group of m guests that will be attending two dinner
parties. The s tables at Hamilton will seat ¢i,c¢o,...,cs guests, and the
t tables at Waterloo will seat c},ch, ... ,c; guests. For a variation of the
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Hamilton-Waterloo problem, see [6].

From here, there are many interesting generalizations of cycle decom-
positions. Other well-known problems include decomposing the complete
graph into hamilton cycles [11, 14], non-isomorphic ¢-factors with ¢ > 3 [13],
and other factors [5]. The graph decomposition problem has developed an
interesting history; for a broad overview, see (8].

We are particularly interested in decomposition problems involving two
or more non-isomorphic subgraphs, at least one of which is not a cycle.
In the next section, we will introduce several new graph decomposition
problems.

The graphs we consider will be simple graphs. Let V(G) = Z,. Define
[a,b] ={teZ, | a <t < b}, and let Gla, b] be the subgraph of G induced
by the vertices in {a, b]. The union G; UG- of graphs G; and G2 is the graph
with vertices V(G1) U V(G2) and edges E(G1) U E(G2). The center of the
star K , is the vertex of degree n. For other graph-theoretic terminology
used but not defined herein, see {7].

3 A new question

Consider the following general problem:

(G, H)-DECOMPOSITION: Let G and H be non-isomorphic graphs
on n; and ny vertices respectively, where n; < np < m and at
least one of the graphs G or H is not a cycle. For which val-
ues of m can the edges of K, be partitioned into edge-disjoint
copies of G and H?

If both G and H are cycles, then the problem posed above is the Hamilton-
Waterloo problem. Qur interest lies in the problems which arise when either
G or H is not a cycle. This problem gives rise to new variations of several
classic problems in graph theory. Consider the following notation.

Let G1,Gs,...,Gs be s edge-disjoint copies of G. We define G* =
\Ui-, Gi with edges E(G*) = Ui, E(Gi). Similarly, let Hy, Ho,... , H;
be t edge-disjoint copies of H, and we define H* = U;=1 H; with edges
E(H") = Uj-, E(Hj).

If K, — (BE(G*)U E(H*)) = K, the empty graph on m vertices, then
we say K, is (G, H)-multidecomposable and refer to the decomposition as
a (Km; G, H)-multidecomposition or (Km; G, H)-design.

We believe a variety of nice results may be obtained for this new ques-
tion. For instance,

Theorem 3.1 There is a (Km; Ky, K1,n)-design for alln > 3 andm =0, 1
(mod n).
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Proof. Let n > 3. Suppose m = pn for some positive integer p. If p =1,
then there is no multidesign, since there is just one copy of K, and no copies
of Kyn. Assume p > 2. If |a —b| = n— 1, clearly Kp,[a,b] = K,,. Let Sp =
{s € Zn | s =0 mod n}, and define K} = Uies, Emli,i +n —1]. Since
|So| = p, it is clear that K, — E(K};) = Kp(;), the complete multipartite
graph with p parts of size n.

Let i,j € Sp, where ¢ # j. Since [i,i+n—1]N{j,7 +n — 1] = ¢, the
vertices [{,7+n — 1] U [j, 7 + n — 1] induce a subgraph of K, ;) isomorphic
to K, n. Because K, , is the union of n copies of K ,, we may complete
the multidecomposition with (§)n copies of K1 ».

Suppose m = pn+1 for some integer p > 2. Let V(K ) = Zy—1 U{oo}.
As described above, the edges of Kin[0,m — 2] can be partitioned into p
copies of K, and (§)n copies of K1,n.

Let S1 = {s € Zm—1 | s = 0 mod n}. For each s € S;, the edges
E, = {{o0,v} | v € [s,5+n — 1]} form a copy of K1 ,. Since |S1| = p, we
may complete the multidecomposition with these p copies of K} . O

If the conditions do not allow a (G, H)-multidecomposition, we will try
to use the edges of K, as efficiently as possible. This means we may use
only some maximal subset of edges, or we may reuse a small subset of edges.
If Km — (E(G*) UE(H*")) = L, where L is a non-empty graph, then we say
the (G, H)-multipacking of K, has leave L. If (G* UH*) — E(Kp,) = P,
where P is a non-empty graph, then we say the (G, H)-multicovering of K.,
has padding P. We may seek either a maximum (G, H)-multipacking or a
minimum (G, H)-multicovering; in both cases, L or P have as few edges as
possible.

Whenm = m' (mod n) and m’ > 2, it is natural to ask how “cfficiently”
we may multidecompose K, into copies of K, and K ,,. Consider first the
problem of a maximum packing of K, with copies of K, and K} 5. Using
the construction suggested in the proof of Theorem 3.1, we obtain the
following.

Theorem 3.2 Ifn > 3 and m = m’ (mod n), then there is a mazimum
(Km; Kn, K1,n)-multipacking with leave L = K.

Proof. By Theorem 3.1, the proof is clear when m = 0,1 (mod n). We
may assume that m = pn + m/, where p > 2 and m’ > 2.

We can multidecompose K,[0,pn — 1] into p copies of K, and (§)n
copies of K; 5. For each v € [pn,pn+m’ — 1] and 1 < k < p, the edges
Epy = {{s,v} | s € [(k—1)n,kn—1]} form a copy of K; . From the edges
of K,,, we have formed p copies of K, and (g)n + pm/ copies of K n.

The remaining edges of K, form a subgraph isomorphic to K,,/. Since
m’ < n, this subgraph contains no further copies of K, or K, ,,. a
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Next, consider the problem of a minimum covering of K with copies
of K,, and Kj .

Theorem 3.3 Ifn > 3 and m = m' (mod n), then there is a minimum
(Km; Kn,y K1,n)-multicovering with padding P, where

{ Kn—E(Kn_m41) #fm <(n+1)/2

Kn—E(Kmw)  ifm'>(n+1)/2

P =

Proof. As in Theorem 3.2, we may assume that m = pn+m/, where p > 2
and m’ > 2. We first multidecompose K, — E(Km[pn,pn + m’ — 1]) into
p copies of Kp, and (§)n 4+ pm’ copies of Ky n.

It remains to cover the edges of Ky[pn,pn +m’ — 1] = K. We may
use a single copy of K, to cover this subgraph. However, it is possible to
form a padding with fewer edges by using m’ — 1 copies of K. Suppose
m < (n+1)/2 and consider the following:

, n+1 n-1
— = 241
m < 2 5 +

So we have

n(m’ —1) - (";) < (’2‘) - (";) = |E(Kn - E(Km))| -

That is, when m' < (n + 1)/2, a padding obtained using m’ — 1 copies of
K » will have fewer edges than the padding resulting from just one copy
of K,. We first consider the covering by stars.

Suppose m’ < (n+1)/2. Let R = [pn,pn+m' —1] and § = [0,n —m/].
For each v € R, let K »(v) be the star with n edges centered at v with
pendant vertices (R— {pn,v})US. Let C* be the graph with vertices RUS
and edges U,er—{pn} (X 1,n(v)), where the edge {u,v} has multiplicity 2
whenever u,v € R — {pn}. Note that |[E(C*)| = n(m' — 1), since C* is
constructed from m’ — 1 copies of K p.

Clearly, the graph C* covers the edges of Km|pn,pn +m' —1]. In
addition, C* contributes the edges {{s,t} | s € [0,n—m'],t € [pn+1,pn+
m' — 1]} to the padding P as well as the edges E(Knlpn+ 1,pn+m' -
1]). Since Kn[0,n — m'] = Kyn_m/41, we have P = C*— K, & K, —
E(Kn-m’+l)'

If m’ > (n+1)/2, then we use a single copy of K, to cover the edges
of K. The padding P & K, — E(Km:) has (3) — ("2") edges. For m' =
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(n+1)/2, we note that the padding with m’ — 1 stars has as many edges as
the padding with one copy of K, but we prefer the simplicity of the latter.
O

4 Conclusion

Our constructions provide an effective way to decompose complete graphs
which are sufficiently large into subgraphs that are reasonably well-behaved.
We believe there are many interesting directions from this starting point.
It is natural to ask what results might be obtained for given subgraph
pairings G and H, or for 3 or more initial subgraphs. There appear to be
many exciting results possible.

We are especially interested in other constructions for the multidecom-
position problems we have introduced. For instance, how might we achieve
a more “balanced” (K,; G, H)-multidecomposition, in which the number
of copies of G is as close as possible to the number of copies of H? More
generally, for a given pair of subgraphs G and H, find a multidecomposition
of K, into g copies of G and h copies of H for all possible values of g > 1
and h > 1.

The Oberwolfach and Hamilton-Waterloo problems involve prescribed
2-factorizations of K,,, requiring that m is odd. When m is even, the so-
called “spouse-avoidance” variation of these problems look at prescribed
2-factorizations of K, — F, where F is a 1-factor. Removing a partic-
ular factor is a common technique in graph decomposition. We are cer-
tain that many results may be obtained for the problem of (Kn;G, H)-
multifactorizations. That is, our general multidecomposition problem may
take an interesting turn if one or both of the subgraphs G and H is a
spanning subgraph or factor of K,.

We welcome any and all comments and suggestions on the problems
mentioned here or related problems.
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